

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc74a-04i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 0											
00h ⁽⁴⁾	INDF Addressing this location uses contents of FSR to address data memory (not a physical register)										0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h (4)	STATUS	IRP ⁽⁷⁾	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h (4)	FSR	Indirect data	a memory ad	dress pointe	er				•	XXXX XXXX	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch when	written: POR	TA pins wher	read		0x 0000	0u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins whe	n read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	DRTC pins whe	en read				XXXX XXXX	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Dat	a Latch whe	n written: PC	ORTD pins whe	en read				xxxx xxxx	uuuu uuuu
09h (5)	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah (1,4)	PCLATH	_	_	_	Write Buffer fo	or the upper t	5 bits of the I	Program Cou	unter	0 0000	0 0000
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—	-	-	-	—	—	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of the	e 16-bit TMR1	l register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	lost Significa	ant Byte of the	16-bit TMR1	register			XXXX XXXX	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit R	egister				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	_SB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (N	MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Trar	nsmit Data R	egister						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register2 (L	_SB)					xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register2 (N	MSB)					xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

 TABLE 4-2:
 PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

4: These registers can be addressed from either bank.

5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.

6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.

IABLE	4-Z .		3// 3A// 4	114A SP	ECIAL FU	INC HOIN	REGISI	ER SUN		(Cont.a)		
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)	
Bank 1		•		L						-		
80h ⁽⁴⁾	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)									
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
82h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte	•	•			0000 0000	0000 0000	
83h ⁽⁴⁾	STATUS	IRP(7)	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu	
84h ⁽⁴⁾	FSR	Indirect data	a memory ad	ldress pointe	er					XXXX XXXX	uuuu uuuu	
85h	TRISA	—	—	PORTA Dat	ta Direction Re	gister				11 1111	11 1111	
86h	TRISB	PORTB Dat	a Direction F	Register						1111 1111	1111 1111	
87h	TRISC	PORTC Dat	ta Direction F	Register						1111 1111	1111 1111	
88h (5)	TRISD	PORTD Dat	ta Direction F	Register						1111 1111	1111 1111	
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ta Direction E	Bits	0000 -111	0000 -111	
8Ah ^(1,4)	PCLATH	—	—	—	Write Buffer fo	or the upper	5 bits of the	Program Cou	unter	0 0000	0 0000	
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
8Dh	PIE2	—	—	—	—	—	—	—	CCP2IE	0	0	
8Eh	PCON	—	—	—	_	—	_	POR	BOR(6)	dd	uu	
8Fh	—	Unimpleme	nted							-	—	
90h	—	Unimpleme	nted							-	—	
91h	_	Unimpleme	nted							—	—	
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111	
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Regis	ter				0000 0000	0000 0000	
94h	SSPSTAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000	
95h	—	Unimpleme	nted	•						-	_	
96h	—	Unimpleme	nted							-	—	
97h	—	Unimpleme	nted							-	-	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010	
99h	SPBRG	Baud Rate	Generator Re	egister						0000 0000	0000 0000	
9Ah	_	Unimpleme	nted							-	_	
9Bh	—	Unimpleme	nted							-	-	
9Ch	_	Unimpleme	nted								_	
9Dh	—	Unimpleme	nted							_	_	
9Eh	—	Unimpleme	nted							-	_	
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000	

TABLE 4-2: PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

- 4: These registers can be addressed from either bank.
- 5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.
- 6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.

FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)

PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R	= Readable bit		
bit7	1						bit0	U	 Writable bit Unimplemented bit, read as '0' Value at POR reset 		
bit 7:	1 = Enabl	Parallel S es the PS les the PS	P read/wr	te interrup		Enable bit					
bit 6:	·										
bit 5:	1 = Enabl	ART Rece es the US les the US	ART recei	ve interrup	ot						
bit 4:	1 = Enabl	ART Trans es the US les the US	ART trans	mit interru	ıpt						
bit 3:	1 = Enabl	ynchronou es the SS les the SS	P interrup	t	pt Enable b	bit					
bit 2:	1 = Enabl	CCP1 Inte les the CC les the CC	P1 interru	pt							
bit 1:	1 = Enabl	TMR2 to F es the TM les the TM	R2 to PR2	2 match in	•						
bit 0:	1 = Enabl	TMR1 Ove es the TM les the TM	R1 overflo	w interrup	ot						
Note 1:	PIC16C73					Slave Port i	mplemente	ed, tl	his bit location is reserved		

5.0 I/O PORTS Applicable Devices 72 73 73A 74 74A 76 77

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers Applicable Devices 72 73 73A 74 74A 76 77

PORTA is a 6-bit latch.

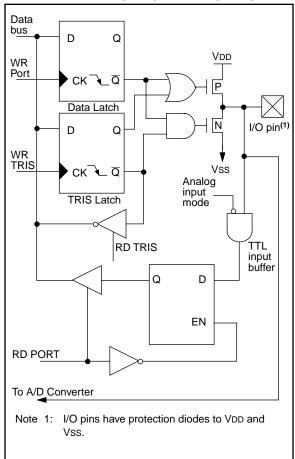
The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

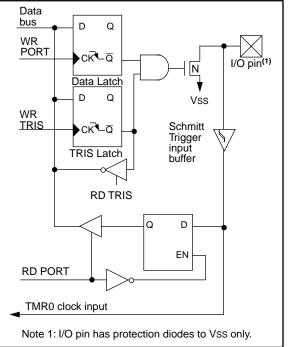
Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.


EXAMPLE 5-1: INITIALIZING PORTA

BCF	STATUS,	RP0	;	
BCF	STATUS,	RP1	;	PIC16C76/77 only
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<5:4> as outputs
			;	TRISA<7:6> are always
			;	read as '0'.

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

10.1.4 CCP PRESCALER

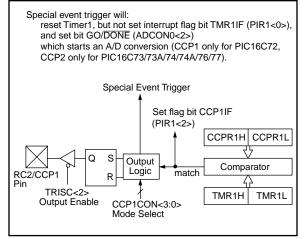
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

10.2 <u>Compare Mode</u>


Applicable Devices

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

10.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

10.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

10.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP2 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

For the PIC16C72 only, the special event trigger output of CCP1 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

13.4 A/D Conversions

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

Example 13-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0).

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 13-2: A/D CONVERSION

;

; ;

BSF	STATUS,	RP0	;	Select Bank 1
BCF	STATUS,	RP1	;	PIC16C76/77 only
CLRF	ADCON1		;	Configure A/D inputs
BSF	PIE1,	ADIE	;	Enable A/D interrupts
BCF	STATUS,	RP0	;	Select Bank 0
MOVLW	0xC1		;	RC Clock, A/D is on, Channel 0 is selected
MOVWF	ADCON0		;	
BCF	PIR1,	ADIF	;	Clear A/D interrupt flag bit
BSF	INTCON,	PEIE	;	Enable peripheral interrupts
BSF	INTCON,	GIE	;	Enable all interrupts
Enquiro th	at the m	oquirod gamp	14.	ng time for the selected input channel has elapsed.
		on may be sta		

BSF	ADCON0,	GO	;	; Start A/D Conversion	
:			;	; The ADIF bit will be set and the GO/DONE bit	
:			;	; is cleared upon completion of the A/D Conversion.	

15.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 15-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 15-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

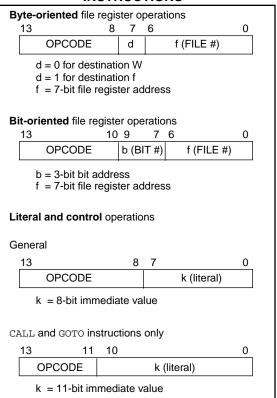
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASM assembler.

Figure 15-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 Instruction Descriptions

ADDLW	Add Lite	ral and \	~						
Syntax:	[label] Al		k						
Operands:		$0 \le k \le 255$							
·									
Operation:	(W) + k –	→ (vv)							
Status Affected:	C, DC, Z		1						
Encoding:	11	111x	kkkk	kkkk					
Description:	The conter added to the result is pl	he eight b	oit literal 'k'	and the					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process data	Write to W					
Example:	ADDLW	0x15							
	Before In	Before Instruction							
		- W	0x10						
	After Inst		0.05						
		W =	0x25						
ADDWF	Add W a	nd f							
Syntax:	[<i>label</i>] A	DDWF	f,d						
Operands:	$0 \le f \le 12$	27							

ANDLW	AND Lite	eral with	w						
Syntax:	[<i>label</i>] A	[<i>label</i>] ANDLW k							
Operands:	$0 \le k \le 2$	$0 \le k \le 255$							
Operation:	(W) .AND	D. (k) \rightarrow (W)						
Status Affected:	Z								
Encoding:	11	1001	kkkk	kkkk					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal "k"	Process data	Write to W					
Example	ANDLW	0x5F							
	Before In	struction	1						
		W =	0xA3						
	After Inst	W =	0x03						
ANDWF	AND W v	vith f							
Syntax:	[<i>label</i>] A	NDWF	f,d						
Operands:	$0 \le f \le 127$								

ADDWF	Add W a	nd f							
Syntax:	[<i>label</i>] A	DDWF	f,d						
Operands:	$0 \le f \le 12$ $d \in [0,1]$	7							
Operation:	(W) + (f)	ightarrow (desti	nation)						
Status Affected:	C, DC, Z								
Encoding:	00	0111	dfff	ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	ADDWF	FSR,	0						
	Before In								
		W = FSR =	0x17 0xC2						
	After Inst	ruction							
		W = FSR =	0xD9 0xC2						

ANDWF	AND W v	vith f								
Syntax:	[<i>label</i>] A	NDWF	f,d							
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27								
Operation:	(W) .AND	D. (f) \rightarrow (d	destinatio	n)						
Status Affected:	Z									
Encoding:	00	0101	dfff	ffff						
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1 the result is stored back in register 'f'.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example	ANDWF	FSR,	1							
	Before In									
		W = FSR =	0x17 0xC2							
	After Inst									
		0x17								
		FSR =	0x02							

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (*fuzzy*TECH[®]–MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

Applicable Devices 72 73 73A 74 74A 76 77

18.1 DC Characteristics: PIC16C73/74-04 (Commercial, Industrial) PIC16C73/74-10 (Commercial, Industrial) PIC16C73/74-20 (Commercial, Industrial)

DC CH	ARACTERISTICS		Standa Operat	-		ure -4	itions (unless otherwise stated) $10^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	10.5 1.5 1.5	42 21 24	μΑ μΑ μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

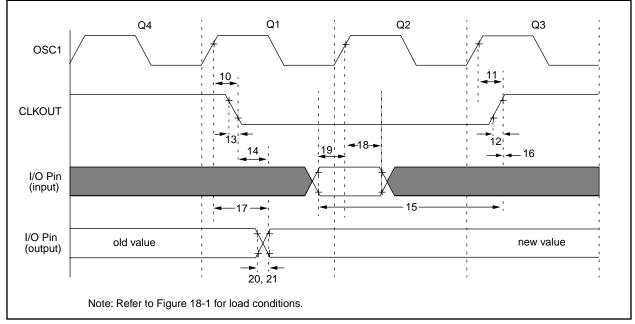
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.


3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

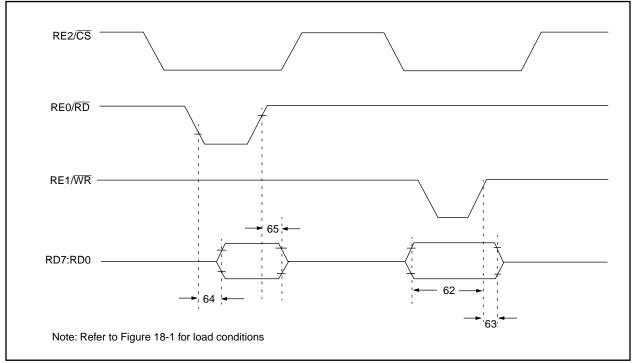
Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-3: CLKOUT AND I/O TIMING

TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS
--

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out vali	_	_	0.5Tcy + 20	ns	Note 1	
15*	TioV2ckH	Port in valid before CLKOU	0.25Tcy + 25	_	_	ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	_	-	ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 73/74	100	-		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 73/74	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0			ns	
20*	TioR	Port output rise time	PIC16 C 73/74	—	10	25	ns	
			PIC16 LC 73/74	—	_	60	ns	
21*	TioF	Port output fall time	PIC16 C 73/74	_	10	25	ns	
			PIC16 LC 73/74	—	_	60	ns	
22††*	Tinp	INT pin high or low time	INT pin high or low time		_	_	ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	Тсү	—	_	ns	

* These parameters are characterized but not tested.

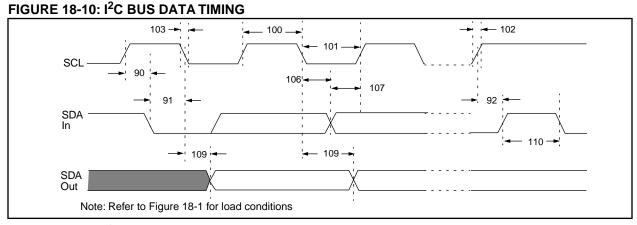

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

 Applicable Devices
 72
 73
 73A
 74
 74A
 76
 77

FIGURE 18-7: PARALLEL SLAVE PORT TIMING (PIC16C74)


TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C74)

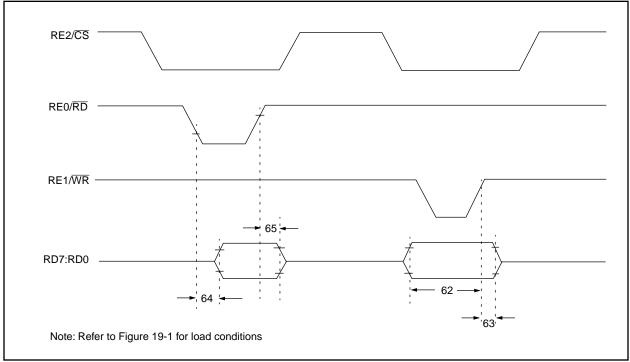
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup time	20	—	-	ns		
63*	TwrH2dtl	\uparrow or $\overline{CS}\uparrow$ to data–in invalid (hold time) PIC16 C 74		20	—	—	ns	
			PIC16 LC 74	35	—	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid				ns	
65	TrdH2dtl	\overline{RD} or \overline{CS} to data–out invalid	10	—	30	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 18-10: I²C BUS DATA REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Мах	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mini mum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a mini mum of 10 MHz
			SSP Module	1.5TCY	_		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini mum of 10 MHz
			SSP Module	1.5TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission car start
	Cb	Bus capacitive loading		-	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 19-8: PARALLEL SLAVE PORT TIMING (PIC16C74A)

TABLE 19-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C74A)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup tir	n valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)				ns ns	Extended Range Only
63*	TwrH2dtl	\overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data–in invalid (hold time)	PIC16 C 74A	20	—	—	ns	
			PIC16 LC 74A	35	—	-	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid	and $\overline{CS}\downarrow$ to data–out valid			80 90	ns ns	Extended Range Only
65	TrdH2dtl	\overline{RD} or \overline{CS} to data–out invalid		10	—	30	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

20.2 DC Characteristics: PIC16LC76/77-04 (Commercial, Industrial)

DC CHA	RACTERISTICS			ard Ope ing tem	•	-	itions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	Vpor	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μΑ	BOR enabled VDD = 5.0V

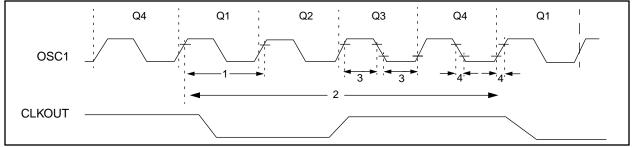
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSs.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

 Applicable Devices
 72
 73
 73A
 74
 76
 77

20.5 <u>Timing Diagrams and Specifications</u>

FIGURE 20-2: EXTERNAL CLOCK TIMING

TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10) HS osc mode (-20)
			50	_	250	ns	
			5	—	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	_	—	ns	XT oscillator
	TosH	Low Time	2.5	—	_	μs	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-15: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

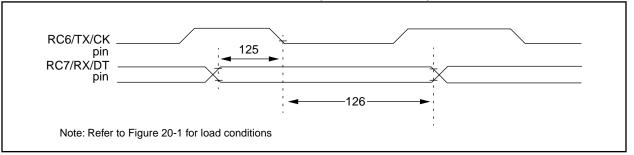


TABLE 20-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic	acteristic				Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	PIC16 C 76/77 PIC16 LC 76/77	_	_	80 100	ns ns	
121	Tckrf	Clock out rise time and fall time	PIC16 C 76/77			45	ns	
	(Master Mod	(Master Mode)	PIC16 LC 76/77	—		50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16 C 76/77	—	-	45	ns	
			PIC16 LC 76/77	—	—	50	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-16: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 20-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before $CK \downarrow (DT setup time)$	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	—	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

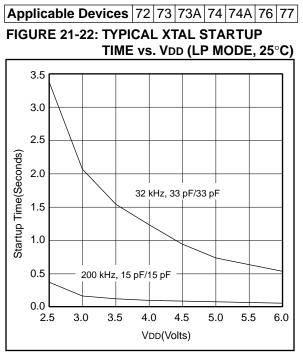
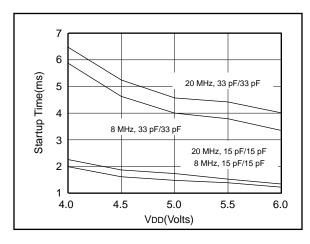



FIGURE 21-23: TYPICAL XTAL STARTUP TIME vs. Vdd (HS MODE, 25°C)

FIGURE 21-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

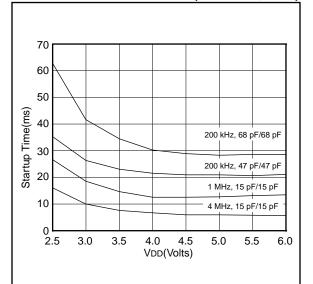
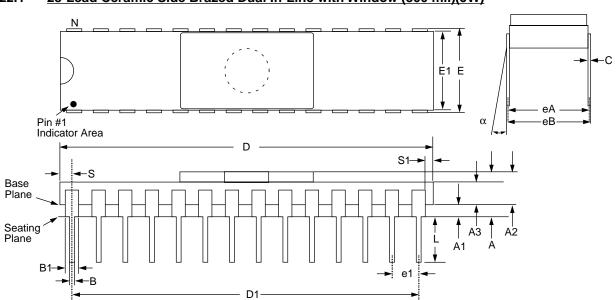
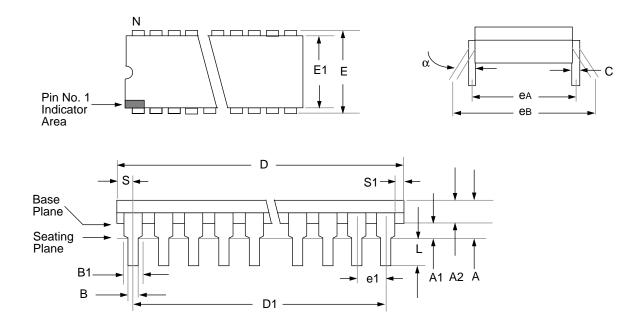



TABLE 21-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
	4		
Crystals Used			
32 kHz	Epson C-00	± 20 PPM	
200 kHz	STD XTL 2	± 20 PPM	
1 MHz	ECS ECS-1	± 50 PPM	
4 MHz	ECS ECS-4	± 50 PPM	
8 MHz	EPSON CA	± 30 PPM	
20 MHz	EPSON CA	± 30 PPM	

22.0 PACKAGING INFORMATION



22.1 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)

Package Group: Ceramic Side Brazed Dual In-Line (CER)							
Symbol	Millimeters			Inches			
	Min	Мах	Notes	Min	Max	Notes	
α	0 °	10°		0°	10°		
А	3.937	5.030		0.155	0.198		
A1	1.016	1.524		0.040	0.060		
A2	2.921	3.506		0.115	0.138		
A3	1.930	2.388		0.076	0.094		
В	0.406	0.508		0.016	0.020		
B1	1.219	1.321	Typical	0.048	0.052		
С	0.228	0.305	Typical	0.009	0.012		
D	35.204	35.916		1.386	1.414		
D1	32.893	33.147	Reference	1.295	1.305		
E	7.620	8.128		0.300	0.320		
E1	7.366	7.620		0.290	0.300		
e1	2.413	2.667	Typical	0.095	0.105		
eA	7.366	7.874	Reference	0.290	0.310		
eB	7.594	8.179		0.299	0.322		
L	3.302	4.064		0.130	0.160		
Ν	28	28		28	28		
S	1.143	1.397		0.045	0.055		
S1	0.533	0.737		0.021	0.029		

PIC16C7X

22.4 40-Lead Plastic Dual In-line (600 mil) (P)

Package Group: Plastic Dual In-Line (PLA)							
		Millimeters			Inches		
Symbol	Min	Мах	Notes	Min	Max	Notes	
α	0°	10°		0 °	10°		
А	_	5.080		_	0.200		
A1	0.381	_		0.015	_		
A2	3.175	4.064		0.125	0.160		
В	0.355	0.559		0.014	0.022		
B1	1.270	1.778	Typical	0.050	0.070	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.181	52.197		2.015	2.055		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
E	15.240	15.875		0.600	0.625		
E1	13.462	13.970		0.530	0.550		
e1	2.489	2.591	Typical	0.098	0.102	Typical	
eA	15.240	15.240	Reference	0.600	0.600	Reference	
eB	15.240	17.272		0.600	0.680		
L	2.921	3.683		0.115	0.145		
N	40	40		40	40		
S	1.270	_		0.050	-		
S1	0.508	_		0.020	_		