

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc74at-04-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C7X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C72** has 128 bytes of RAM and 22 I/O pins. In addition several peripheral features are available including: three timer/counters, one Capture/Compare/ PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. Also a 5-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C73/73A devices have 192 bytes of RAM, while the PIC16C76 has 368 byes of RAM. Each device has 22 I/O pins. In addition, several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Syn-Asynchronous Receiver chronous Transmitter (USART) is also known as the Serial Communications Interface or SCI. Also a 5-channel high-speed 8-bit A/ D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The **PIC16C74/74A** devices have 192 bytes of RAM, while the **PIC16C77** has 368 bytes of RAM. Each device has 33 I/O pins. In addition several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as the Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is provided. Also an 8-channel high-speed

8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C7X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C7X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C7X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications).

1.1 Family and Upward Compatibility

Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C7X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 16.0 for more details about Microchip's development tools.

NOTES:

TABLE 3-3: PIC16C74/74A/77 PINOUT DESCRIPTION (Cont.'d)

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/ output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2 C mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	when interfacing to a microprocessor bus.
RD1/PSP1	20	21	39	1/0	ST/TTL ⁽³⁾	
RD2/PSP2	20	22	40	1/0	ST/TTL ⁽³⁾	
RD3/PSP3	22	23	41	1/0	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	1/0	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	1/0	ST/TTL ⁽³⁾	
RD6/PSP6	29	32	4	1/0	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	1/0	ST/TTL ⁽³⁾	
				1/0	OI/ITE	PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
Vss	12,31	13,34	6,29	Р		Ground reference for logic and I/O pins.
Vdd	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	—	1,17,28,	12,13,			These pins are not internally connected. These pins should
		40	33,34			be left unconnected.
Legend: I = input	0 = oi	•			put/output	P = power
		lot used			TL input	ST = Schmitt Trigger input external interrupt.

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel

Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	ldress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read		0x 0000	0u 0000
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	RTB pins wl	nen read				XXXX XXXX	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	—	Unimpleme	nted							—	—
09h	—	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	—	—	—	Write Buffe	r for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	—	Unimpleme	nted					•		—	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	ffer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	SB)			-		xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	—	Unimpleme	nted							_	_
19h	—	Unimpleme	nted							—	—
1Ah	—	Unimpleme	nted							—	_
1Bh	_	Unimpleme	nted							_	_
1Ch	—	Unimpleme	nted							_	—
1Dh	_	Unimpleme	nted							—	—
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

TABLE 4-1: PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.

4.2.2.1 STATUS REGISTER Applicable Devices 72|73|73A|74|74A|76|77

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	1 = Bank 2	ster Bank \$ 2, 3 (100h 0, 1 (00h -	- 1FFh)	used for ir	ndirect addr	essing)		
bit 6-5:	11 = Bank 10 = Bank 01 = Bank 00 = Bank	: Register E < 3 (180h - < 2 (100h - < 1 (80h - F < 0 (00h - 7 k is 128 by	1FFh) 17Fh) Fh) ′Fh)	ct bits (use	ed for direct	addressin	g)	
oit 4:	•			struction,	or sleep ir	struction		
bit 3:	•	r-down bit power-up o ecution of t	•					
bit 2:		sult of an a			peration is z			
bit 1:	1 = A carr	y-out from	the 4th lo	w order bi	N, SUBLW, S t of the resu bit of the res	It occurred		r borrow the polarity is reversed
bit 0:	1 = A carr 0 = No car Note: For	y-out from rry-out fror borrow the berand. For	the most n the mos polarity is	significant t significar s reversed		esult occuri result occu ion is exec	red irred uted by add	ding the two's complement of the either the high or low order bit o

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

٦

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: W	rite Collisio	n Detect l	oit				
	1 = The S	SPBUF reg	jister is wr		it is still tr	ansmitting	the previou	us word
bit 6:	SSPOV: R	eceive Ove	erflow Det	ect bit				
	the data ir BUF, even	byte is rece SSPSR re if only train new rece	egister is I	ost. Overfl data, to av	ow can on oid setting	ly occur in overflow.	slave mod In master	revious data. In case of overflow e. The user must read the SSP mode the overflow bit is not se SSPBUF register.
	In I ² C mod	<u>de</u>						
	1 = A byte in transmit 0 = No ove	mode. SS						us byte. SSPOV is a "don't care
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit			
	$\frac{\text{In SPI model}}{1 = \text{Enable}}$ $0 = \text{Disable}$	es serial po					s serial por pins	t pins
	0 = Disabl	es the seria	ort and co	nfigures th	nese pins a	as I/O port	pins	ial port pins s input or output.
bit 4:	CKP: Cloc	k Polarity	Select bit					
		ate for cloc						receive on rising edge. ceive on falling edge.
	$\frac{\ln l^2 C \mod SCK \text{ relea}}{1 = \text{Enable}}$	se control e clock	-11		4		. (:)	
	0 = Holds			, ,			o time)	
bit 3-0:	0001 = SF 0010 = SF 0011 = SF 0100 = SF 0101 = SF	PI master n PI master n PI master n PI master n PI slave mo	node, cloc node, cloc node, cloc node, cloc ode, clock ode, clock	k = Fosc/4 k = Fosc/1 k = Fosc/6 k = TMR2 = SCK pir = SCK pir	l 6 64 output/2 1. SS pin co	ontrol enal		n be used as I/O pin.
	$0111 = ^{2}(0)$ $1011 = ^{2}(0)$ $1110 = ^{2}(0)$	C slave mo C firmware C slave mo	de, 10-bit controlled de, 7-bit a	address I Master M ddress wi	th start an	d stop bit i	nterrupts er interrupts o	

Г

11.4 <u>I²C[™] Overview</u>

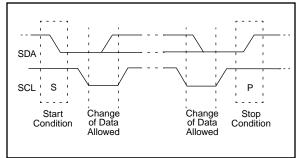
This section provides an overview of the Inter-Integrated Circuit (I^2C) bus, with Section 11.5 discussing the operation of the SSP module in I^2C mode.

The l^2C bus is a two-wire serial interface developed by the Philips Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. The enhanced specification (fast mode) is also supported. This device will communicate with both standard and fast mode devices if attached to the same bus. The clock will determine the data rate.

The l^2C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-3 defines some of the l^2C bus terminology. For additional information on the l^2C interface specification, refer to the Philips document "*The* l^2C bus and how to use it."#939839340011, which can be obtained from the Philips Corporation.

In the I²C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of as operating in either of these two relations:

- Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver


In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I²C bus is limited only by the maximum bus loading specification of 400 pF.

11.4.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

FIGURE 11-14: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

TABLE 11-3: I²C BUS TERMINOLOGY

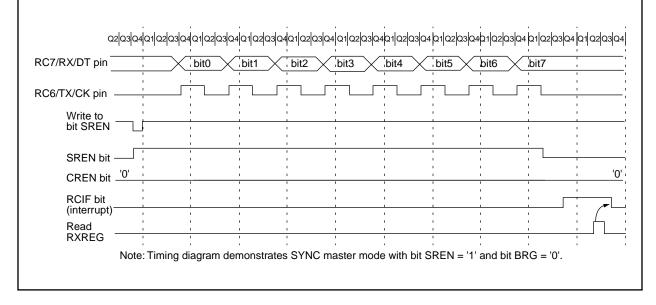
FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x	
SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
	SPEN : Ser 1 = Serial p 0 = Serial p	oort enable	d (Configur	es RC7/R	X/DT and	RC6/TX/Cł	<pre>< pins as se</pre>	erial port pins)
	RX9 : 9-bit I 1 = Selects 0 = Selects	9-bit rece	otion					
bit 5:	SREN: Sing	gle Receive	e Enable bi	t				
	<u>Asynchron</u> Don't care	ous mode						
	Synchrono 1 = Enable 0 = Disable This bit is c	s single rec s single re	ceive ceive	is comple	ete.			
	Synchrono Unused in t		<u>slave</u>					
bit 4:	CREN: Cor	ntinuous Re	eceive Enal	ble bit				
	Asynchrone 1 = Enable 0 = Disable	s continuou						
	<u>Synchrono</u> 1 = Enable 0 = Disable	s continuou		until enabl	e bit CREN	l is cleared	(CREN ove	errides SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'					
	FERR: Fran 1 = Framing 0 = No fran	g error (Ca		ed by reac	ling RCRE	G register a	and receive	next valid byte)
	OERR : Ove 1 = Overru 0 = No ove	n error (Ca		d by clear	ing bit CRI	EN)		
bit 0:	RX9D : 9th	hit of receiv) etch hav	an ho nar	ity hit)			

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.


TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Rec	eive Reg	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate (Generato	or Registe	r					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

13.4.1 FASTER CONVERSION - LOWER RESOLUTION TRADE-OFF

Not all applications require a result with 8-bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the trade-off of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the clock source of the A/D module may be switched so that the TAD time violates the minimum specified time (see the applicable electrical specification). Once the TAD time violates the minimum specified time, all the following A/D result bits are not valid (see A/D Conversion Timing in the Electrical Specifications section.) The clock sources may only be switched between the three oscillator versions (cannot be switched from/to RC). The equation to determine the time before the oscillator can be switched is as follows:

Conversion time = $2TAD + N \cdot TAD + (8 - N)(2TOSC)$ Where: N = number of bits of resolution required. Since the TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D oscillator may be changed. Example 13-3 shows a comparison of time required for a conversion with 4-bits of resolution, versus the 8-bit resolution conversion. The example is for devices operating at 20 MHz and 16 MHz (The A/D clock is programmed for 32Tosc), and assumes that immediately after 6TAD, the A/D clock is programmed for 2Tosc.

The 2TOSC violates the minimum TAD time since the last 4-bits will not be converted to correct values.

EXAMPLE 13-3:	4-BIT vs. 8-BIT CON	/ERSION TIMES

	- (1)	Reso	lution
	Freq. (MHz) ⁽¹⁾	4-bit	8-bit
TAD	20	1.6 μs	1.6 μs
	16	2.0 μs	2.0 μs
Tosc	20	50 ns	50 ns
	16	62.5 ns	62.5 ns
2TAD + N • TAD + (8 - N)(2TOSC)	20	10 μs	16 μs
	16	12.5 μs	20 µs

Note 1: PIC16C7X devices have a minimum TAD time of 1.6 µs.

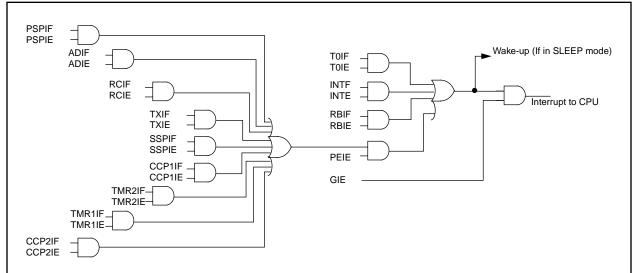
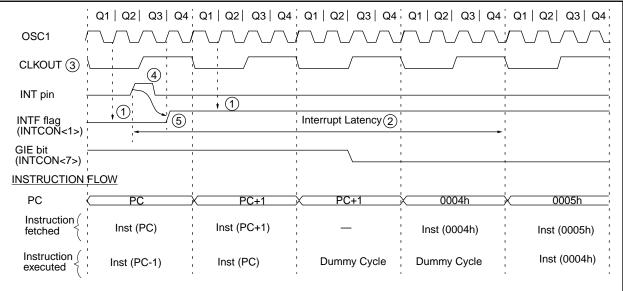

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	—	—	_	—	_	—	—	CCP2IF	0	0
8Dh	PIE2	_	_	_	—	_	—	—	CCP2IE	0	0
1Eh	ADRES	A/D Resu	It Registe	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	_	_	—	_	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA I	Data Directior	Register	•			11 1111	11 1111
09h	PORTE	—		—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Dat	a Directior	n Bits	0000 -111	0000 -111

TABLE 13-3: SUMMARY OF A/D REGISTERS, PIC16C73/73A/74/74A/76
--

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C73/73A/76, always maintain these bits clear.


FIGURE 14-16: INTERRUPT LOGIC

The following table shows which devices have which interrupts.

Device	TOIF	INTF	RBIF	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	CCP2IF
PIC16C72	Yes	Yes	Yes	-	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C73	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C73A	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C74A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

FIGURE 14-17: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

PIC16C7X

IORWF	Inclusive	e OR W v	with f			
Syntax:	[label]	IORWF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27				
Operation:	(W) .OR.	(f) \rightarrow (de	estination)		
Status Affected:	Z					
Encoding:	00	0100	dfff	ffff		
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to destination		
Example	IORWF		RESULT,	0		
	Before In					
		RESULT W	= 0x13 = 0x91	-		
	After Inst			3		

MOVLW	Move Literal to W							
Syntax:	[<i>label</i>] MOVLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \to (W)$							
Status Affected:	None							
Encoding:	11 00xx kkkk kkkk							
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1 Q2 Q3 Q4							
	Decode Read literal 'k' Process Write to data W							
Example	MOVLW $0x5A$ After Instruction W = 0x5A							

MOVF	Move f						
Syntax:	[<i>label</i>] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7					
Operation:	$(f) \rightarrow (de)$	stination)				
Status Affected:	Z						
Encoding:	00	1000	dfff	ffff			
Description:	ption: The contents of register f is moved to a destination dependant upon the status of d. If d = 0, destination is W register. I d = 1, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to destination			
Example	MOVF	,	0				
	After Instruction W = value in FSR register Z = 1						

MOVWF	to f							
Syntax:	[label]	MOVW	= f					
Operands:	$0 \le f \le 127$							
Operation:	$(W) \rightarrow (f)$							
Status Affected:	None							
Encoding:	00	0000	lfff	ffff				
Description:	Move data from W register to register							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write register 'f'				
Example	MOVWF	OPTIC	DN_REG					
	Before Instruction							
		OPTION W	= 0xFl = 0x4l					
	After Inst	ruction						
		OPTION						
		W	= 0x4l	F				

Applicable Devices 72 73 73A 74 74A 76 77

17.1 DC Characteristics: PIC16C72-04 (Commercial, Industrial, Extended) PIC16C72-10 (Commercial, Industrial, Extended) PIC16C72-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICS				ing tem		ure -4 -4	litions (unless otherwise stated) $10^{\circ}C \leq TA \leq +125^{\circ}C$ for extended, $10^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $2C \leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset Signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset Signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
			3.7	4.0	4.4	V	Extended Only
D010	Supply Current (Note 2,5)	IDD	-	2.7	5.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3,5)	IPD	- - - -	10.5 1.5 1.5 2.5	42 16 19 19	μΑ μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -0°C to +70°C VDD = 4.0V, WDT disabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +125°C
D023	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μA	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 72 73 73A 74 74A 76 77

17.2 DC Characteristics: PIC16LC72-04 (Commercial, Industrial)

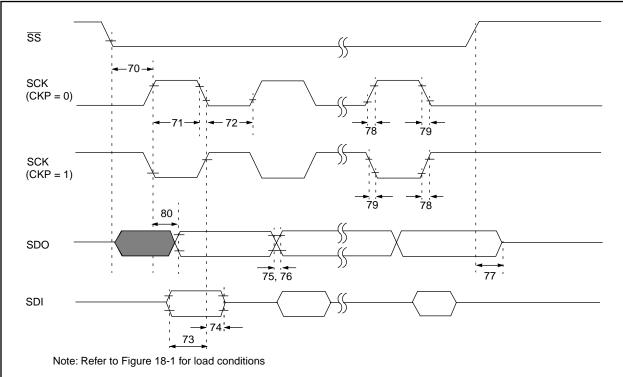
							$0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

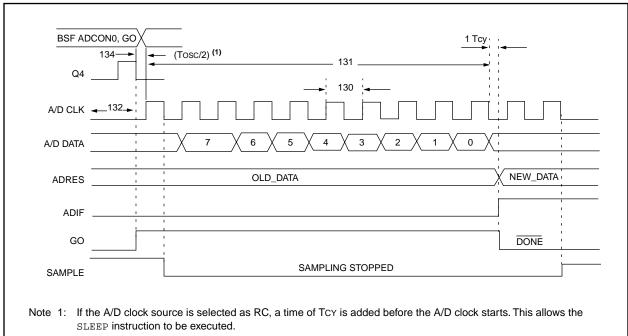
 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:


 $OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD <math>\overline{MCLR} = VDD; WDT$ enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77


TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	-	ns	
71	TscH	SCK input high time (slave mode)	TCY + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	TCY + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	-	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-17: A/D CONVERSION TIMING

TABLE 20-14: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 76/77	1.6	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16LC76/77	2.0	—		μs	Tosc based, VREF full range
			PIC16 C 76/77	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16 LC 76/77	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not (Note 1)	_	9.5	_	TAD		
132	TACQ	TACQ Acquisition time		Note 2	20		μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start	_	Tosc/2 §	_	-	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	
135	Tswc	Switching from conve	$rt \rightarrow sample time$	1.5 §	_		TAD	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

Package Marking Information (Cont'd)

44-Lead TQFP

Example

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.		
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.		
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.				

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX C: WHAT'S NEW

Added the following devices:

- PIC16C76
- PIC16C77

Removed the PIC16C710, PIC16C71, PIC16C711 from this datasheet.

Added PIC16C76 and PIC16C77 devices. The PIC16C76/77 devices have 368 bytes of data memory distributed in 4 banks and 8K of program memory in 4 pages. These two devices have an enhanced SPI that supports both clock phase and polarity. The USART has been enhanced.

When upgrading to the PIC16C76/77 please note that the upper 16 bytes of data memory in banks 1,2, and 3 are mapped into bank 0. This may require relocation of data memory usage in the user application code.

Added Q-cycle definitions to the Instruction Set Summary section.

APPENDIX D: WHAT'S CHANGED

Minor changes, spelling and grammatical changes.

Added the following note to the USART section. This note applies to all devices except the PIC16C76 and PIC16C77.

For the PIC16C73/73A/74/74A the asynchronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information or use the PIC16C76/77.

Divided SPI section into SPI for the PIC16C76/77 and SPI for all other devices.