

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc74at-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C7X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C72** has 128 bytes of RAM and 22 I/O pins. In addition several peripheral features are available including: three timer/counters, one Capture/Compare/ PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. Also a 5-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C73/73A devices have 192 bytes of RAM, while the PIC16C76 has 368 byes of RAM. Each device has 22 I/O pins. In addition, several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Syn-Asynchronous Receiver chronous Transmitter (USART) is also known as the Serial Communications Interface or SCI. Also a 5-channel high-speed 8-bit A/ D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The **PIC16C74/74A** devices have 192 bytes of RAM, while the **PIC16C77** has 368 bytes of RAM. Each device has 33 I/O pins. In addition several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as the Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is provided. Also an 8-channel high-speed

8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C7X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C7X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C7X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications).

1.1 Family and Upward Compatibility

Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C7X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 16.0 for more details about Microchip's development tools.

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72	PIC16CR72 ⁽¹⁾					
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20					
	EPROM Program Memory (x14 words)	512	1K	1K	2К	2К	—					
lemory	ROM Program Memory (14K words)	_	_	_	_	_	2К					
	Data Memory (bytes)	36	36	68	128	128	128					
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2					
eripherals	Capture/Compare/ PWM Module(s)	—	_	—	—	1	1					
	Serial Port(s) (SPI/I ² C, USART)	_	_	—	—	SPI/I ² C	SPI/I ² C					
	Parallel Slave Port	_	—	—	_	_	—					
	A/D Converter (8-bit) Channels	4	4	4	4	5	5					
	Interrupt Sources	4	4	4	4	8	8					
	I/O Pins	13	13	13	13	22	22					
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-5.5	2.5-6.0	3.0-5.5					
atures	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes					
	Brown-out Reset	Yes	—	Yes	Yes	Yes	Yes					
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP					

TABLE 1-1: PIC16C7XX FAMILY OF DEVCES

		PIC16C73A	PIC16C74A	PIC16C76	PIC16C77
Clock	Maximum Frequency of Oper- ation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	8K	8K
	Data Memory (bytes)	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, US- ART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	—	Yes	—	Yes
	A/D Converter (8-bit) Channels	5	8	5	8
	Interrupt Sources	11	12	11	12
	I/O Pins	22	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
eatures	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip sales office for availability of these devices.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

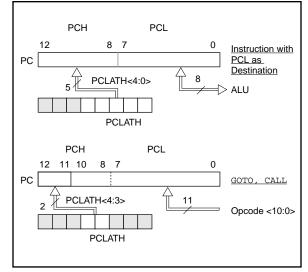
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	ldress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read		0x 0000	0u 0000
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	RTB pins wl	nen read				XXXX XXXX	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	—	Unimpleme	nted							—	—
09h	—	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	—	—	—	Write Buffe	r for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	—	Unimpleme	nplemented							—	_
0Eh	TMR1L	Holding reg	ling register for the Least Significant Byte of the 16-bit TMR1 register						xxxx xxxx	uuuu uuuu	
0Fh	TMR1H	Holding reg	ister for the N	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	ffer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	SB)			-		xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	—	Unimpleme	nted							_	_
19h	—	Unimpleme	nted							—	—
1Ah	—	Unimpleme	nted							—	_
1Bh	_	Unimpleme	nted							_	_
1Ch	—	Unimpleme	nted							_	—
1Dh	—	Unimpleme	nted							—	—
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

TABLE 4-1: PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.


3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.

4.3 PCL and PCLATH Applicable Devices 72/73/73A/74/74A/76/77

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-17 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-17: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
- Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Program Memory Paging Applicable Devices 72|73|73A|74|74A|76|77

PIC16C7X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

Note: PIC16C7X devices with 4K or less of program memory ignore paging bit PCLATH<4>. The use of PCLATH<4> as a general purpose read/write bit is not recommended since this may affect upward compatibility with future products. Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

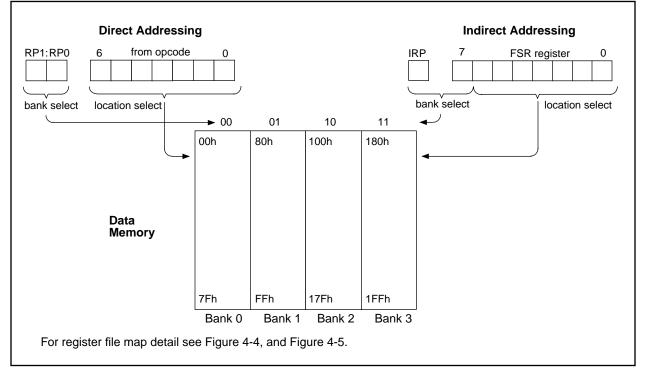
EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine
		;in page 0 (000h-7FFh)

4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

	•	cabl				
72	73	73A	74	74A	76	77

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-18.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movwf clrf incf	INDF FSR,F	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next</pre>
CONTINUE			
	:		;yes continue

FIGURE 4-18: DIRECT/INDIRECT ADDRESSING

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	—	—	PORTA Dat	PORTA Data Direction Register						11 1111
9Fh	ADCON1	—		—	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

8.1 <u>Timer1 Operation in Timer Mode</u>

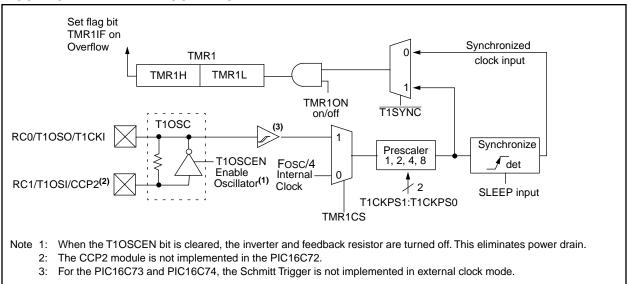
Applicable Devices

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect since the internal clock is always in sync.

8.2 <u>Timer1 Operation in Synchronized</u> Counter Mode Applicable Devices 72 73 73A 74 74A 76 77

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set or pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.


In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

8.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the appropriate electrical specifications, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripplecounter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to the appropriate electrical specifica-tions, parameters 40, 42, 45, 46, and 47.

FIGURE 8-2: TIMER1 BLOCK DIAGRAM

9.0 TIMER2 MODULE

Applicable Devices 72|73|73A|74|74A|76|77

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for PWM mode of the CCP module(s). The TMR2 register is readable and writable, and is cleared on any device reset.

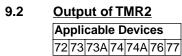
The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

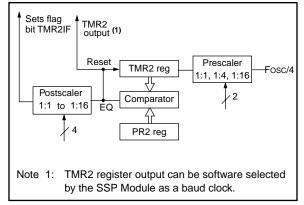
Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 9-2 shows the Timer2 control register.


9.1 <u>Timer2 Prescaler and Postscaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler and postscaler counters are cleared when any of the following occurs:


- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 9-1: TIMER2 BLOCK DIAGRAM

	TABLE 10-5:	REGISTERS ASSOCIATED WITH PWM AND TIMER2
--	-------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	TMR1IF	0000 0000	0000 0000					
0Dh ⁽²⁾	PIR2	—	_	_		_	_	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ^(1,2)	SPIE ^(1,2) ADIE RCIE ⁽²⁾ TXIE ⁽²⁾ SSPIE CCP1IE TMR2IE TMR1IE								0000 0000
8Dh ⁽²⁾	PIE2	—	CCP2IE								0
87h	TRISC	PORTC Da	ata Directio		1111 1111	1111 1111					
11h	TMR2	Timer2 mod	dule's registe	ər						0000 0000	0000 0000
92h	PR2	Timer2 mod	dule's perioc	l register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/Co	mpare/PWN	/ register1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWN	/ register1 ((MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh (2)	CCPR2L	Capture/Co	mpare/PWN	/ register2 (LSB)					xxxx xxxx	uuuu uuuu
1Ch ⁽²⁾	CCPR2H	Capture/Co	mpare/PWN	/ register2 ((MSB)					xxxx xxxx	uuuu uuuu
1Dh ⁽²⁾	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.

14.0 SPECIAL FEATURES OF THE CPU Applicable Devices

72 73 73A 74 74A 76 77

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- · In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits

Applicable Devices

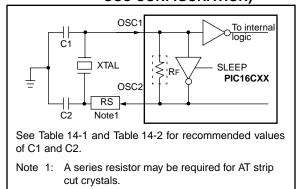
The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

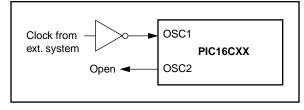
FIGURE 14-1: CONFIGURATION WORD FOR PIC16C73/74

		—	—	—		_	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13												bit0	Address	2007h
bit 13-5:	Unimple	mented	I: Read	as '1'										
bit 4:	CP1:CP0 11 = Coo 10 = Upp 01 = Upp 00 = All r	le prote per half per 3/4th	ction of of progin of prog	f ram me gram m	emory	•		d						
bit 3:	PWRTE : 1 = Powe 0 = Powe	r-up Tin	ner ena	bled	le bit									
bit 2:	WDTE : W 1 = WDT 0 = WDT	enable	d	r Enable	e bit									
bit 1-0:	FOSC1:F 11 = RC 10 = HS 01 = XT 00 = LP 0	oscillato oscillato oscillato	or or or	tor Sele	ection b	vits								

14.2 Oscillator Configurations Applicable Devices 72/73/73A/74/74A/76/77


14.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:


- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor
- 14.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 14-3). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 14-4).

FIGURE 14-3: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

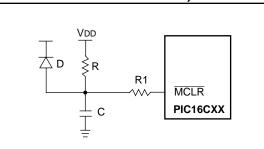
FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 14-1: CERAMIC RESONATORS

Ranges Te	ested:				
Mode	Freq	OSC1	OSC2		
XT	455 kHz	68 - 100 pF	68 - 100 pF		
	2.0 MHz	15 - 68 pF	15 - 68 pF		
	4.0 MHz	15 - 68 pF	15 - 68 pF		
HS	8.0 MHz	10 - 68 pF	10 - 68 pF		
	16.0 MHz	10 - 22 pF	10 - 22 pF		
	se values are f as at bottom of p	i or design guidar bage.	nce only. See		
Resonato	rs Used:				
455 kHz	Panasonic E	FO-A455K04B	± 0.3%		
2.0 MHz	Murata Erie	Murata Erie CSA2.00MG ± 0.5%			
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%				
8.0 MHz	Murata Erie	Murata Erie CSA8.00MT ± 0.5%			
16.0 MHz	Murata Erie	CSA16.00MX	± 0.5%		
All reso	onators used did	d not have built-in	capacitors.		

TABLE 14-2:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF


These values are for design guidance only. See notes at bottom of page.

	Crystals Used	
32 kHz	Epson C-001R32.768K-A	\pm 20 PPM
200 kHz	STD XTL 200.000KHz	± 20 PPM
1 MHz	ECS ECS-10-13-1	\pm 50 PPM
4 MHz	ECS ECS-40-20-1	\pm 50 PPM
8 MHz	EPSON CA-301 8.000M-C	\pm 30 PPM
20 MHz	EPSON CA-301 20.000M-C	\pm 30 PPM

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 14-1).

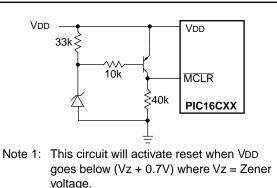

- 2: Higher capacitance increases the stability of oscillator but also increases the start-up time.
- 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

FIGURE 14-13: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

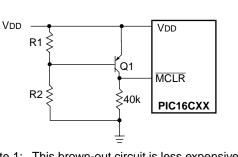
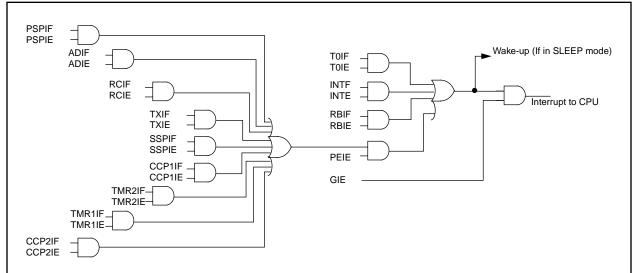

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 14-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- 2: Internal brown-out detection on the PIC16C72/73A/74A/76/77 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

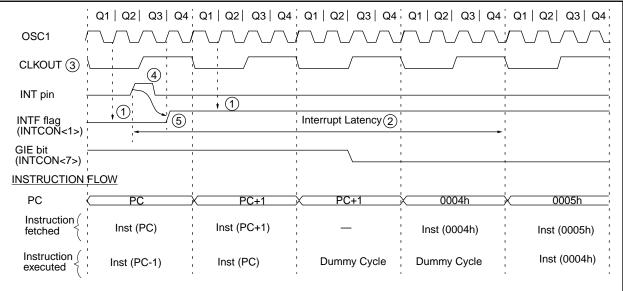
FIGURE 14-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2



Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

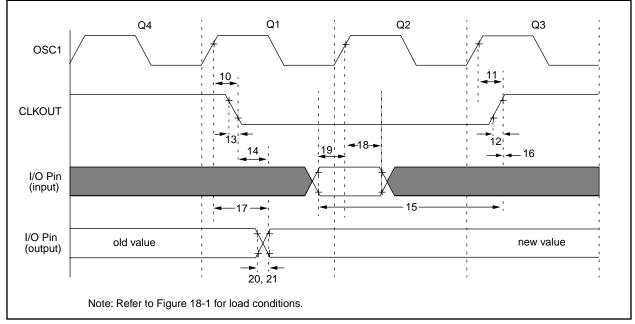
- 2: Internal brown-out detection on the PIC16C72/73A/74A/76/77 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.


FIGURE 14-16: INTERRUPT LOGIC

The following table shows which devices have which interrupts.

Device	TOIF	INTF	RBIF	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	CCP2IF
PIC16C72	Yes	Yes	Yes	-	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C73	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C73A	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C74A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

FIGURE 14-17: INT PIN INTERRUPT TIMING


Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

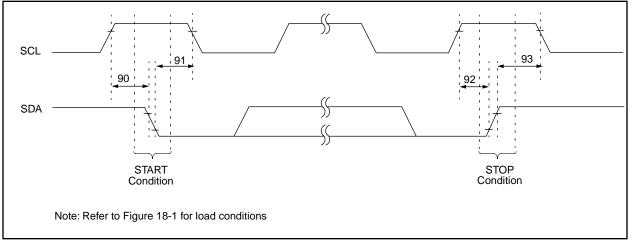
Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-3: CLKOUT AND I/O TIMING

TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS
--

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out vali	d	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	id before CLKOUT ↑		_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	ort in hold after CLKOUT \uparrow		_	-	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 73/74	100	-		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 73/74	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0			ns	
20*	TioR	Port output rise time	PIC16 C 73/74	—	10	25	ns	
			PIC16LC73/74	—	_	60	ns	
21*	TioF	Port output fall time	PIC16 C 73/74	_	10	25	ns	
			PIC16 LC 73/74	—	_	60	ns	
22††*	Tinp	INT pin high or low time		Тсү	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	Тсү	—	_	ns	

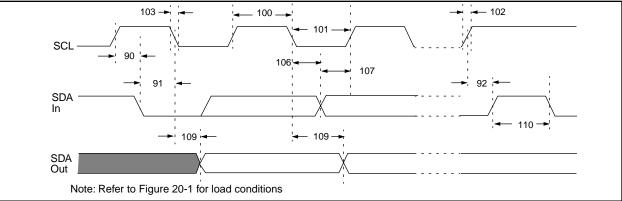
* These parameters are characterized but not tested.


†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

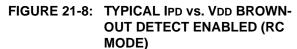
Applicable Devices 72 73 73A 74 74A 76 77

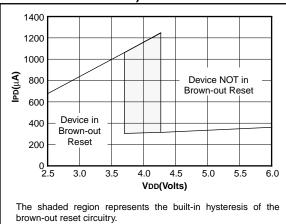

FIGURE 18-9: I²C BUS START/STOP BITS TIMING

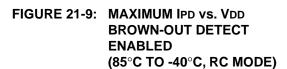
Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600		—	113	condition
91	THD:STA	START condition	100 kHz mode	4000		—	ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—	115	pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	—	—	115	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	—	—	113	

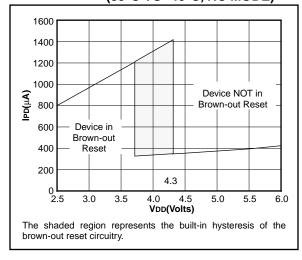
Applicable Devices 72 73 73A 74 74A 76 77

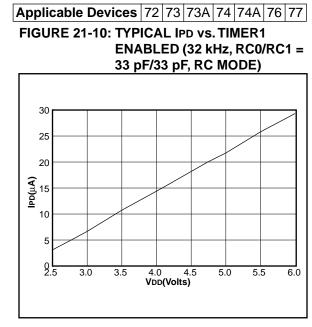
FIGURE 20-14: I²C BUS DATA TIMING

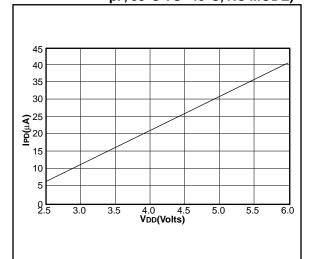


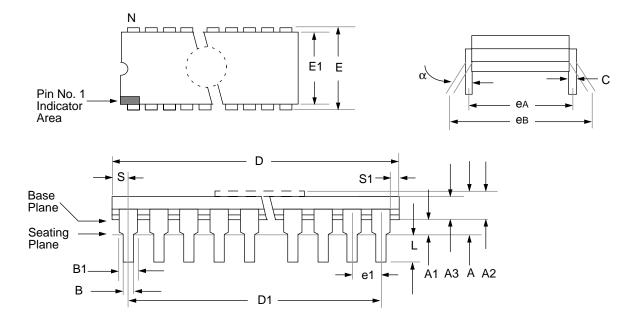

TABLE 20-10: I²C BUS DATA REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Мах	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
101	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	_		
102	Tr	SDA and SCL rise	100 kHz mode	-	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	Tf	SDA and SCL fall time	100 kHz mode	-	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.


2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.





PIC16C7X

22.2 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW)

	Pa	ckage Group: (Ceramic CERDIP	Dual In-Line (C	DP)	
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
Ν	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

APPENDIX C: WHAT'S NEW

Added the following devices:

- PIC16C76
- PIC16C77

Removed the PIC16C710, PIC16C71, PIC16C711 from this datasheet.

Added PIC16C76 and PIC16C77 devices. The PIC16C76/77 devices have 368 bytes of data memory distributed in 4 banks and 8K of program memory in 4 pages. These two devices have an enhanced SPI that supports both clock phase and polarity. The USART has been enhanced.

When upgrading to the PIC16C76/77 please note that the upper 16 bytes of data memory in banks 1,2, and 3 are mapped into bank 0. This may require relocation of data memory usage in the user application code.

Added Q-cycle definitions to the Instruction Set Summary section.

APPENDIX D: WHAT'S CHANGED

Minor changes, spelling and grammatical changes.

Added the following note to the USART section. This note applies to all devices except the PIC16C76 and PIC16C77.

For the PIC16C73/73A/74/74A the asynchronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information or use the PIC16C76/77.

Divided SPI section into SPI for the PIC16C76/77 and SPI for all other devices.

PIC16C7X

Registers
FSR 20
Summary29 INDF
Summary
INTCON
Summary29 Maps
PIC16C7221
PIC16C73
PIC16C73A
PIC16C74
PIC16C76
PIC16C77
OPTION
Summary
PCL Summary29
PCLATH
Summary
PORTB
Summary
Reset Conditions136 SSPBUF
SCROF Section
SSPCON
Diagram79
SSPSR
Section
SSPSTAT
Section
STATUS
Summary29
Summary
TMR0 Summary29
TRISB
Summary
Reset 129, 133
Reset Conditions for Special Registers
RP0 bit20, 30 RP1 bit
RP1 bit
RX9D bit
S
S
SCK
SCL
SDI
SDO
Serial Communication Interface (SCI) Module, See USART Services
One-Time-Programmable (OTP)7
Quick-Turnaround-Production (QTP)7
Serialized Quick-Turnaround Production (SQTP)7
Slave Mode
SCL
SLEEP
SMP
Software Simulator (MPSIM) 165
SPBRG

SPBRG Register	26 28
Special Event Trigger	
Special Features of the CPU	129
Special Function Registers	
PIC16C72	23
PIC16C73	25. 27
PIC16C73A	25 27
PIC16C74	
PIC16C74A	,
PIC16C76	27
PIC16C77	27
Special Function Registers, Section	23
SPEN bit	
SPI	
	~~~~
Block Diagram	
Master Mode	
Master Mode Timing	87
Mode	80
Serial Clock	85
Serial Data In	
Serial Data Out	
Slave Mode Timing	
Slave Mode Timing Diagram	87
Slave Select	85
SPI clock	86
SPI Mode	
SSPCON	
SSPSTAT	
SPI Clock Edge Select bit, CKE	83
SPI Data Input Sample Phase Select bit, SMP	83
SPI Mode	
SREN bit	
SS	
55	80
SSP	
SSP Module Overview	77
Module Overview Section	77
Module Overview Section SSPBUF	77 86
Module Overview Section SSPBUF SSPCON	77 86 84
Module Overview Section SSPBUF SSPCON SSPSR	77 86 84 86
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT	77 86 84 86
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD SSPADD Register	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD SSPADD Register	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD SSPADD Register	
Module Overview Section	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD SSPADD Register	
Module Overview Section	
Module Overview Section	
Module Overview Section	
Module Overview	
Module Overview Section	
Module Overview Section	
Module Overview	