

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc74at-04i-pq

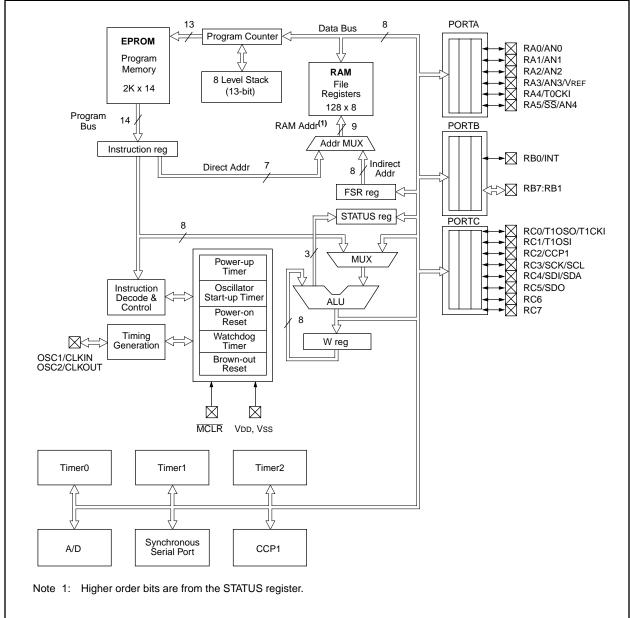
Email: info@E-XFL.COM

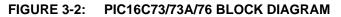
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

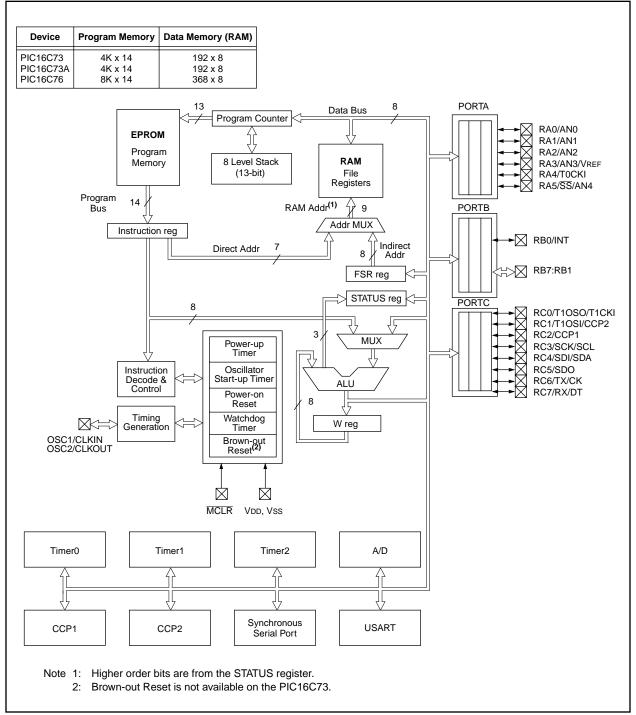
Table of Contents

1.0 General Description	5
2.0 PIC16C7X Device Varieties	7
3.0 Architectural Overview	9
4.0 Memory Organization	19
5.0 I/O Ports	43
6.0 Overview of Timer Modules	57
7.0 Timer0 Module	59
8.0 Timer1 Module	65
9.0 Timer2 Module	69
10.0 Capture/Compare/PWM Module(s)	
11.0 Synchronous Serial Port (SSP) Module	
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART)	99
13.0 Analog-to-Digital Converter (A/D) Module	. 117
14.0 Special Features of the CPU	
15.0 Instruction Set Summary	. 147
16.0 Development Support	
17.0 Electrical Characteristics for PIC16C72	
18.0 Electrical Characteristics for PIC16C73/74	
19.0 Electrical Characteristics for PIC16C73A/74A	
20.0 Electrical Characteristics for PIC16C76/77	. 219
21.0 DC and AC Characteristics Graphs and Tables	
22.0 Packaging Information	. 251
Appendix A:	
Appendix B: Compatibility	. 263
Appendix C: What's New	. 264
Appendix D: What's Changed	
Appendix E: PIC16/17 Microcontrollers	. 265
Pin Compatibility	
Index	. 273
List of Examples	. 279
List of Figures	
List of Tables	
Reader Response	
PIC16C7X Product Identification System	. 287

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. As an example, the legend below would mean that the following section applies only to the PIC16C72, PIC16C73A and PIC16C74A devices.


Applicable Devices 72 73 73A 74 74A 76 77


12|13|13A|14|14A|16|11


To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

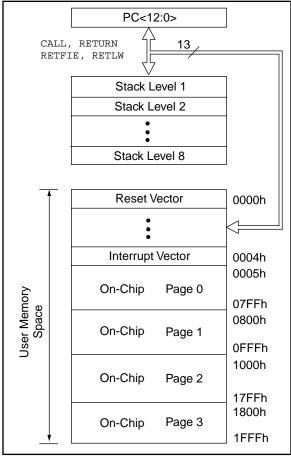


FIGURE 4-3: PIC16C76/77 PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1:RP0 (STATUS<6:5>)

- = 00 \rightarrow Bank0
- = 01 \rightarrow Bank1
- = $10 \rightarrow \text{Bank2}$
- = 11 \rightarrow Bank3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

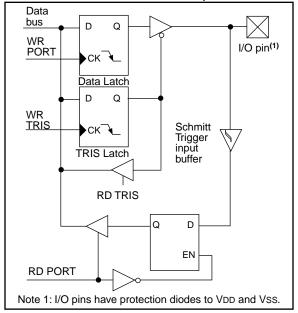
FIGURE 4-13: PIR1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 0Ch)

0 (1)	R/W-0 ADIF		R-0 RCIF		R-0 TXIF	R/W			R/W-0 CCP1IF		1	2/W-0 //R2IF		R/W TMR	-	D		Read	doblo	hit		
	ADI		Keir			001					<u> </u>	/11/211			bit0	W U	/ =	Writa Unim read	able b nplen as '(oit nenteo		
1	= A re	ad	arallel or a wr d or wri	ite o	peratic	n has							eare	ed in	soft	war	e)					
1	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete																					
1	RCIF : USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (cleared by reading RCREG) 0 = The USART receive buffer is empty																					
1	TXIF : USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full																					
1	SSPIF : Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive																					
<u>C</u> 1 0 <u>C</u> 1 0 <u>P</u>	0 = Waiting to transmit/receive CCP1IF : CCP1 Interrupt Flag bit <u>Capture Mode</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> Unused in this mode																					
1	TMR2IF : TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred																					
1	TMR1IF : TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow																					
			73A/76 evices,							S	lav	e Port	im	plen	nente	ed,	this	s bit l	ocat	ion is	rese	rved
o errupt pal er	on thes	e de ts ge it, G	evices, et set wh IE (INT)	alwa nen a	ays mai	intain t	his l	bit n o	clear.	ga	ardle	ess of t	he	state	of its	cor	rre	es	espondi	esponding e	esponding enable	is bit location is rese esponding enable bit or lag bits are clear prior to

5.5 PORTE and TRISE Register Applicable Devices 72/73/73A/74/74A/76/77

PORTE has three pins RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs) and that register ADCON1 is configured for digital I/O. In this mode the input buffers are TTL.


Figure 5-9 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. The operation of these pins is selected by control bits in the ADCON1 register. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

5.0	D 0	D AAA A	D 444 a			D 444 4	D 444 4			
R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1			
IBF bit7	OBF	IBOV	PSPMODE	_	bit2	bit1	bit0 bit0	 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 		
bit 7 :										
bit 6:	 6: OBF: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read 									
bit 5:	 IBOV: Input Buffer Overflow Detect bit (in microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred 									
bit 4:	PSPMODE 1 = Paralle 0 = Genera	I slave por		de Select b	bit					
bit 3:	Unimplem	ented: Re	ad as '0'							
bit 2:	PORTE Data Direction Bits Bit2: Direction Control bit for pin RE2/CS/AN7 1 = Input 0 = Output									
bit 1:	Bit1: Direction Control bit for pin RE1/WR/AN6 1 = Input 0 = Output									
bit 0:	Bit0 : Direc 1 = Input 0 = Output		ol bit for pin RI	E0/RD/AN	5					

7.3 <u>Prescaler</u> Applicable Devices 72|73|73A|74|74A|76|77

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

NOTES:

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)/CCP2CON REGISTER (ADDRESS 1Dh)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit		
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset		
bit 7-6:	Unim	plemente	d: Read a	s '0'						
bit 5-4:	CCPxX:CCPxY : PWM Least Significant bits Capture Mode: Unused Compare Mode: Unused PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.									
bit 3-0:	PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL. CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/Compare/PWM off (resets CCPx module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every falling edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCPxIF bit is set) 1001 = Compare mode, clear output on match (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected) 1011 = Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)) 11xx = PWM mode									

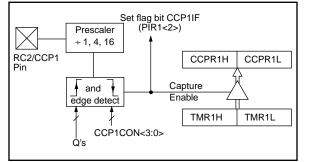
10.1 <u>Capture Mode</u>

Applicable Devices

72 73 73A 74 74A 76 77

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

11.3 SPI Mode for PIC16C76/77

Γ

This section contains register definitions and operational characteristics of the SPI module on the PIC16C76 and PIC16C77 only.

FIGURE 11-7: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)(PIC16C76/77)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE	D/Ā	Р	S	R/W	UA	BF	R = Readable bit			
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7:	SMP: SPI data input sample phase SPI Master Mode 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave Mode SMP must be cleared when SPI is used in slave mode CKE: SPI Clask Edge Calent (Figure 44.44, Figure 44.42, and Figure 44.42)										
bit 6:	CKE : SPI Clock Edge Select (Figure 11-11, Figure 11-12, and Figure 11-13) $\frac{CKP = 0}{1 = \text{Data transmitted on rising edge of SCK}}$ $0 = \text{Data transmitted on falling edge of SCK}$ $\frac{CKP = 1}{1 = \text{Data transmitted on falling edge of SCK}}$ $0 = \text{Data transmitted on falling edge of SCK}$										
bit 5:	 D/A: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 										
bit 4:	detecte 1 = Indi	d last, SS cates tha	SPEN is cl	eared) t has been	cleared whe			lisabled, or when the Start bit is			
bit 3:	detecte 1 = Indi	d last, SS cates tha	SPEN is clo it a start bi	eared) t has been	cleared whe			lisabled, or when the Stop bit is			
bit 2:	 0 = Start bit was not detected last R/W: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next start bit, stop bit, or ACK bit. 1 = Read 0 = Write 										
bit 1:	1 = Indi	cates tha	t the user	it I ² C mode needs to u I to be upda	pdate the ad	dress in the	e SSPADD re	egister			
bit 0:	BF: Buf	fer Full S	tatus bit								
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty										
	1 = Trar		rogress, S	SPBUF is t PBUF is en							

12.4 USART Synchronous Slave Mode

Applicable Devices 72 73 73A 74 74A 76 77

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

TABLE 15-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	9	Status	Notes
Operands				MSb	I		LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS						_	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AI	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO, PD	
		Subtract W from literal	1	11	110x	kkkk	1-1-1-1-	C,DC,Z	
SUBLW	k			L T T	TTOX	KKKK	кккк	0,DC,Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

RETLW	Return with Literal in W					RETURN	Return f	Return from Subroutine					
Syntax:	[label]	RETLW	k			Syntax:	[label]	RETUR	N				
Operands:	$0 \le k \le 2$	55				Operands:	None						
Operation:	$k \rightarrow (W);$					Operation:	$TOS \to PC$						
	$TOS \to F$	$TOS \to PC$				Status Affected:	None	None					
Status Affected:	None					Encoding:	00	0000	0000	1000			
Encoding:	11	01xx	kkkk	kkkk		Description:	Return fro	m subrout	ine. The st	ack is			
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the					POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.							
	return address). This is a two cycle instruction.					Words:	1						
Words:	1					Cycles:	2						
Cycles:	2					Q Cycle Activity:	Q1	Q2	Q3	Q4			
Q Cycle Activity:	2 Q1	Q2	Q3	Q4		1st Cycle	Decode	No- Operation	No- Operation	Pop from the Stack			
1st Cycle	Decode	Read literal 'k'	No- Operation	Write to W, Pop from the Stack		2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation			
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation		Example	RETURN						
	Operation	Operation	Operation	Operation			After Inte	errupt					
Example	CALL TABL	;offset	tains tabl t value 7 has tabl					PC =	TOS				
TABLE	ADDWF PC RETLW k1 RETLW k2	;W = off ;Begin t ;											
	RETLW kn	; End of	f table										
	Before In												
			0x07										
	After Instruction W = value of k8												

SUBWF	Subtract W from f							
Syntax:	[<i>label</i>] SUBWF f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	(f) - (W) \rightarrow (destination)							
Status Affected:	C, DC, Z							
Encoding:	00 0010 dfff ffff							
Description:	Subtract (2's complement method) W reg- ister from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1 Q2 Q3 Q4							
	Decode Read register 'f' Process Write to destination							
Example 1:	SUBWF REG1, I Before Instruction REG1 = 3							
	W = 2							
	C = ? Z = ?							
	After Instruction							
	REG1 = 1 W = 2 C = 1; result is positive							
	Z = 0							
Example 2:	Before Instruction							
	REG1 = 2 W = 2 C = ? Z = ?							
	After Instruction							
	REG1 = 0 W = 2 C = 1; result is zero Z = 1							
Example 3:	Before Instruction							
	REG1 = 1 W = 2 C = ? Z = ?							
	After Instruction							
	$\begin{array}{rcl} REG1 &=& 0xFF \\ W &=& 2 \\ C &=& 0; \text{ result is negative} \\ Z &=& 0 \end{array}$	•						

SWAPF	Swap Ni	bbles in	f						
Syntax:	[label]	SWAPF	i,d						
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27							
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$								
Status Affected:	None								
Encoding:	00	1110	dfff	ffff					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	SWAPF	REG,	0						
	Before In	struction							
		REG1	= 0x	A5					
	After Inst	ruction							
		REG1 W	•••	:A5 :5A					

TRIS	Load TRIS Register								
Syntax:	[<i>label</i>] TRIS f								
Operands:	$5 \le f \le 7$								
Operation:	(W) \rightarrow TRIS register f;								
Status Affected:	None								
Encoding:	00 0000 0110 0fff								
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.								
Words:	1								
Cycles:	1								
Example									
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.								

Applicable Devices 72 73 73A 74 74A 76 77

19.1 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended)

DC CHA		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +125^{\circ}$ C for extended, -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ Ibor	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3,5)	IPD	- - - -	10.5 1.5 1.5 2.5	42 16 19 19	μΑ μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +125^\circC \end{array}$
D023*	Brown-out Reset Current (Note 6)	Δ Ibor	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

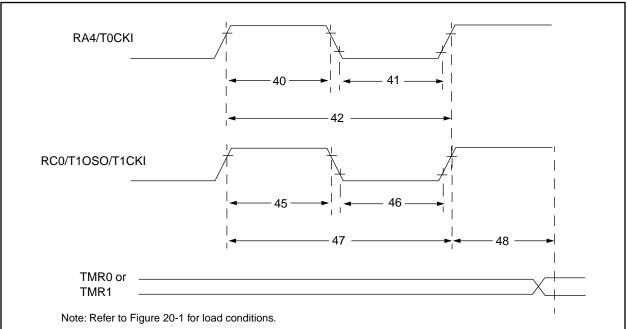
Applicable Devices 72 73 73A 74 74A 76 77

		Standa	rd Opera	ting	Conditio	ons (un	less otherwise stated)			
		Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended,								
	ARACTERISTICS	-40° C \leq TA \leq +85°C for industrial and								
	ARACTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial								
		Operati	ing voltage	e Vdi	D range a	as desc	ribed in DC spec Section 19.1 and			
		Section	i 19.2.							
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions			
No.				†						
	Output High Voltage									
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С			
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С			
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С			
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С			
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on Output Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when exter nal clock is used to drive OSC1.			
D101	All I/O pins and OSC2 (in RC	Сю	-	-	50	pF				
D102	mode) SCL, SDA in I ² C mode	Св	-	-	400	pF				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

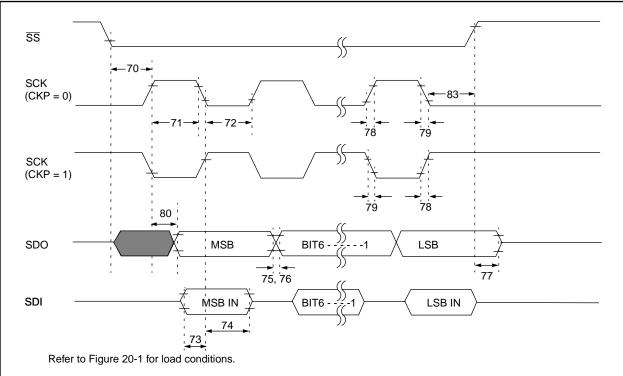

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

PIC16C7X

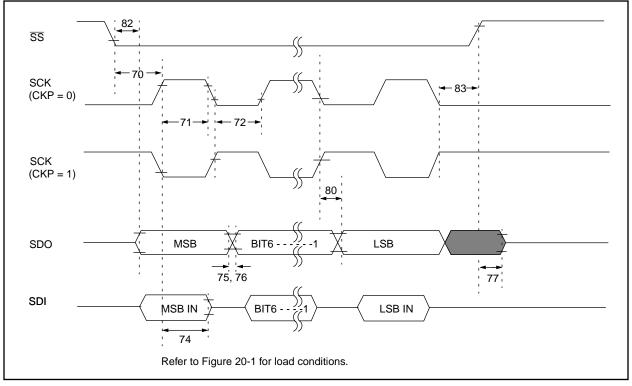
Applicable Devices 72 73 73A 74 74A 76 77

TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Param No.	Sym	Characteristic			Min	Тур†	Мах	Units	Conditions
40*	Tt0H T0CKI High Pulse Width		Vidth	No Prescaler 0.5Tcy + 20		- 1	—	ns	Must also meet
			With Prescaler	10	_	_	ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42* Tt0P		T0CKI Period		No Prescaler	Tcy + 40	-	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale valu (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	rescaler = 1	0.5TCY + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	-	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	-	ns	
			Asynchronous	PIC16 C 7X	30	-	—	ns	
				PIC16 LC 7X	50	-	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	_	_	ns	N = prescale valu (1, 2, 4, 8)
				PIC16 LC 7X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale valu (1, 2, 4, 8)
			Asynchronous	PIC16 C 7X	60	-	—	ns	
				PIC16 LC 7X	100	-	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b		DC	-	200	kHz		
48	TCKEZtmr ²	1 Delay from external	2Tosc	—	7Tosc	—			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

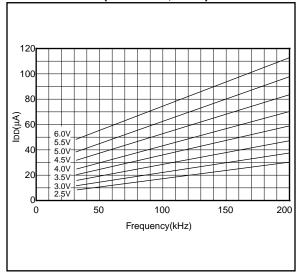
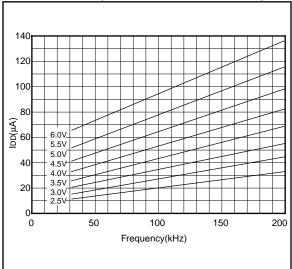
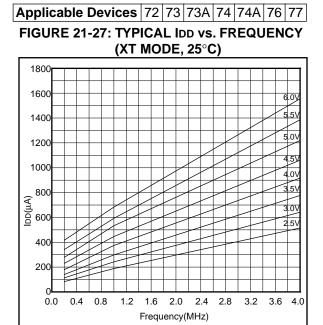
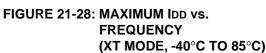
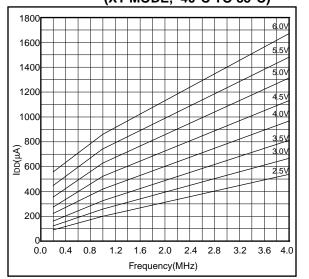


FIGURE 20-11: SPI SLAVE MODE TIMING (CKE = 0)


FIGURE 20-12: SPI SLAVE MODE TIMING (CKE = 1)




FIGURE 21-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C)



LIST OF FIGURES

Figure 3-1:	PIC16C72 Block Diagram10
Figure 3-2:	PIC16C73/73A/76 Block Diagram 11
Figure 3-3:	PIC16C74/74A/77 Block Diagram
Figure 3-4:	Clock/Instruction Cycle17
Figure 4-1:	PIC16C72 Program Memory Map
	and Stack
Figure 4-2:	PIC16C73/73A/74/74A Program
rigure 4 2.	Memory Map and Stack
Figure 4.2	PIC16C76/77 Program Memory
Figure 4-3:	Map and Stack
E :	
Figure 4-4:	PIC16C72 Register File Map
Figure 4-5:	PIC16C73/73A/74/74A Register
-	File Map
Figure 4-6:	PIC16C76/77 Register File Map22
Figure 4-7:	Status Register (Address 03h,
	83h, 103h, 183h)30
Figure 4-8:	OPTION Register (Address 81h,
	181h)31
Figure 4-9:	INTCON Register
	(Address 0Bh, 8Bh, 10bh, 18bh)
Figure 4-10:	PIE1 Register PIC16C72
-	(Address 8Ch)
Figure 4-11:	PIE1 Register PIC16C73/73A/
0	74/74A/76/77 (Address 8Ch)
Figure 4-12:	PIR1 Register PIC16C72
-	(Address 0Ch)
Figure 4-13:	PIR1 Register PIC16C73/73A/
-	74/74A/76/77 (Address 0Ch)
Figure 4-14:	PIE2 Register (Address 8Dh)
Figure 4-15:	PIR2 Register (Address 0Dh)
Figure 4-16:	PCON Register (Address 8Eh)
Figure 4-17:	Loading of PC In Different
0	Situations
Figure 4-18:	Direct/Indirect Addressing41
Figure 5-1:	Block Diagram of RA3:RA0
5	and RA5 Pins43
Figure 5-2:	Block Diagram of RA4/T0CKI Pin43
Figure 5-3:	Block Diagram of RB3:RB0 Pins45
Figure 5-4:	Block Diagram of RB7:RB4 Pins
5	(PIC16C73/74)46
Figure 5-5:	Block Diagram of
0	RB7:RB4 Pins (PIC16C72/73A/
	74A/76/77)
Figure 5-6:	PORTC Block Diagram
-	(Peripheral Output Override)
Figure 5-7:	PORTD Block Diagram
-	(in I/O Port Mode)50
Figure 5-8:	PORTE Block Diagram
0	(in I/O Port Mode)51
Figure 5-9:	TRISE Register (Address 89h)51
Figure 5-10:	Successive I/O Operation53
Figure 5-11:	PORTD and PORTE Block Diagram
-	(Parallel Slave Port)54
Figure 5-12:	Parallel Slave Port Write Waveforms 55
Figure 5-13:	Parallel Slave Port Read Waveforms 55
Figure 7-1:	Timer0 Block Diagram59
Figure 7-2:	Timer0 Timing: Internal Clock/No
<u> </u>	Prescale
Figure 7-3:	Timer0 Timing: Internal
0	Clock/Prescale 1:2 60
Figure 7-4:	Timer0 Interrupt Timing60
Figure 7-5:	Timer0 Timing with External Clock61
Figure 7-6:	Block Diagram of the Timer0/WDT
3	Prescaler

Figure 8-1:	T1CON: Timer1 Control Register
	(Address 10h) 65
Figure 8-2:	Timer1 Block Diagram 66
Figure 9-1:	Timer2 Block Diagram 69
Figure 9-2:	T2CON: Timer2 Control Register
	(Address 12h) 70
Figure 10-1:	CCP1CON Register (Address 17h)/
	CCP2CON Register (Address 1Dh)
Figure 10-2:	Capture Mode Operation
	Block Diagram
Figure 10-3:	Compare Mode Operation
	Block Diagram
Figure 10-4:	Simplified PWM Block Diagram
Figure 10-5:	PWM Output74
Figure 11-1:	SSPSTAT: Sync Serial Port Status
F : 44.0	Register (Address 94h)
Figure 11-2:	SSPCON: Sync Serial Port Control
F ilment 11 O	Register (Address 14h)
Figure 11-3:	SSP Block Diagram (SPI Mode) 80
Figure 11-4:	SPI Master/Slave Connection
Figure 11-5:	SPI Mode Timing, Master Mode
E '	or Slave Mode w/o SS Control
Figure 11-6:	SPI Mode Timing, Slave Mode with
Eigener 44 7	SS Control
Figure 11-7:	SSPSTAT: Sync Serial Port Status
Eigener 11 0:	Register (Address 94h)(PIC16C76/77) 83
Figure 11-8:	SSPCON: Sync Serial Port Control
Figure 11 Or	Register (Address 14h)(PIC16C76/77) 84
Figure 11-9:	SSP Block Diagram (SPI Mode)
Figure 11-10:	(PIC16C76/77)85 SPI Master/Slave Connection
Figure 11-10.	PIC16C76/77)
Figuro 11 11:	SPI Mode Timing, Master Mode
Figure 11-11:	(PIC16C76/77)
Figure 11-12:	SPI Mode Timing (Slave Mode
riguie i i - i z.	With CKE = 0) (PIC16C76/77)
Figure 11-13:	SPI Mode Timing (Slave Mode
riguro i i io.	With CKE = 1) (PIC16C76/77)
Figure 11-14:	Start and Stop Conditions
Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
0.	(Two Masters)92
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram
0	(I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
-	(7-bit Address)
Figure 11-26:	I ² C Waveforms for Transmission
-	(7-bit Address)
Figure 11-27:	Operation of the I ² C Module in
-	IDLE_MODE, RCV_MODE or
	XMIT_MODE
Figure 12-1:	TXSTA: Transmit Status and
	Control Register (Address 98h) 99
Figure 12-2:	RCSTA: Receive Status and
	Control Register (Address 18h) 100
Figure 12-3:	RX Pin Sampling Scheme. BRGH = 0
	(PIC16C73/73A/74/74A)104
Figure 12-4:	RX Pin Sampling Scheme, BRGH = 1
	(PIC16C73/73A/74/74A) 104