



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                           |
|----------------------------|---------------------------------------------------------------------------|
| Product Status             | Active                                                                    |
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 4MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 22                                                                        |
| Program Memory Size        | 14KB (8K x 14)                                                            |
| Program Memory Type        | ОТР                                                                       |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 368 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 6V                                                                 |
| Data Converters            | A/D 5x8b                                                                  |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                            |
| Supplier Device Package    | 28-SOIC                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc76-04-so |
|                            |                                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C7X device.

| Device    | Program<br>Memory | Data Memory |
|-----------|-------------------|-------------|
| PIC16C72  | 2K x 14           | 128 x 8     |
| PIC16C73  | 4K x 14           | 192 x 8     |
| PIC16C73A | 4K x 14           | 192 x 8     |
| PIC16C74  | 4K x 14           | 192 x 8     |
| PIC16C74A | 4K x 14           | 192 x 8     |
| PIC16C76  | 8K x 14           | 368 x 8     |
| PIC16C77  | 8K x 14           | 386 x 8     |

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

## 5.0 I/O PORTS Applicable Devices 72 73 73A 74 74A 76 77

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

## 5.1 PORTA and TRISA Registers Applicable Devices 72 73 73A 74 74A 76 77

#### PORTA is a 6-bit latch.

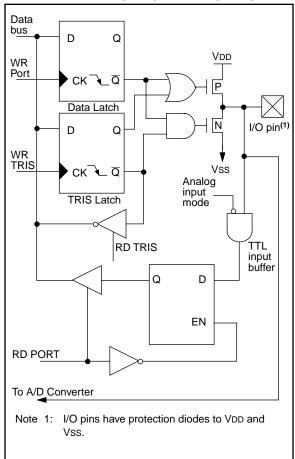
The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

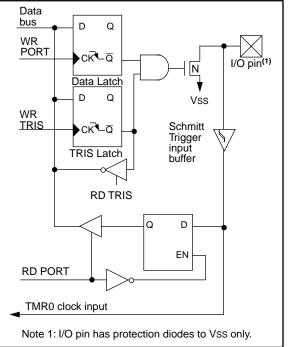
Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.


## EXAMPLE 5-1: INITIALIZING PORTA

| BCF   | STATUS, | RP0 | ; |                       |
|-------|---------|-----|---|-----------------------|
| BCF   | STATUS, | RP1 | ; | PIC16C76/77 only      |
| CLRF  | PORTA   |     | ; | Initialize PORTA by   |
|       |         |     | ; | clearing output       |
|       |         |     | ; | data latches          |
| BSF   | STATUS, | RP0 | ; | Select Bank 1         |
| MOVLW | 0xCF    |     | ; | Value used to         |
|       |         |     | ; | initialize data       |
|       |         |     | ; | direction             |
| MOVWF | TRISA   |     | ; | Set RA<3:0> as inputs |
|       |         |     | ; | RA<5:4> as outputs    |
|       |         |     | ; | TRISA<7:6> are always |
|       |         |     | ; | read as '0'.          |
|       |         |     |   |                       |

#### FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS



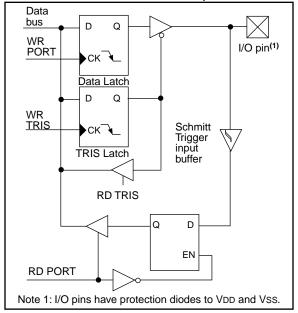
### FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN



# 5.5 PORTE and TRISE Register Applicable Devices 72/73/73A/74/74A/76/77

PORTE has three pins RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs) and that register ADCON1 is configured for digital I/O. In this mode the input buffers are TTL.


Figure 5-9 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. The operation of these pins is selected by control bits in the ADCON1 register. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.



## FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)



## FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

|                                                                                                                                                        | Б.а                                                                                                    | D AAA A     | <b>D</b> 444 a    |             |       | <b>D</b> 444 4 | <b>D</b> 444 4 |                                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------|-------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| R-0                                                                                                                                                    | R-0                                                                                                    | R/W-0       | R/W-0             | U-0         | R/W-1 | R/W-1          | R/W-1          |                                                                                                                                                  |  |  |
| IBF<br>bit7                                                                                                                                            | OBF                                                                                                    | IBOV        | PSPMODE           | _           | bit2  | bit1           | bit0<br>bit0   | <ul> <li>R = Readable bit</li> <li>W = Writable bit</li> <li>U = Unimplemented bit,<br/>read as '0'</li> <li>- n = Value at POR reset</li> </ul> |  |  |
| bit 7 : <b>IBF:</b> Input Buffer Full Status bit<br>1 = A word has been received and is waiting to be read by the CPU<br>0 = No word has been received |                                                                                                        |             |                   |             |       |                |                |                                                                                                                                                  |  |  |
| bit 6:                                                                                                                                                 |                                                                                                        |             |                   |             |       |                |                |                                                                                                                                                  |  |  |
| bit 5:                                                                                                                                                 |                                                                                                        | occurred    |                   |             |       | ,              | (must be cle   | ared in software)                                                                                                                                |  |  |
| bit 4:                                                                                                                                                 | PSPMODE<br>1 = Paralle<br>0 = Genera                                                                   | I slave por |                   | de Select b | bit   |                |                |                                                                                                                                                  |  |  |
| bit 3:                                                                                                                                                 | Unimplem                                                                                               | ented: Re   | ad as '0'         |             |       |                |                |                                                                                                                                                  |  |  |
| bit 2:                                                                                                                                                 | PORTE Data Direction Bits<br>Bit2: Direction Control bit for pin RE2/CS/AN7<br>1 = Input<br>0 = Output |             |                   |             |       |                |                |                                                                                                                                                  |  |  |
| bit 1:                                                                                                                                                 | Bit1: Direction Control bit for pin RE1/WR/AN6<br>1 = Input<br>0 = Output                              |             |                   |             |       |                |                |                                                                                                                                                  |  |  |
| bit 0:                                                                                                                                                 | <b>Bit0</b> : Direc<br>1 = Input<br>0 = Output                                                         |             | ol bit for pin RI | E0/RD/AN    | 5     |                |                |                                                                                                                                                  |  |  |

## 8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

## Applicable Devices

The CCP2 module is not implemented on the PIC16C72 device.

If the CCP1 or CCP2 module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

| Note: | The special event triggers from the CCP1 |
|-------|------------------------------------------|
|       | and CCP2 modules will not set interrupt  |
|       | flag bit TMR1IF (PIR1<0>).               |

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

## 8.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L) Applicable Devices 72|73|73A|74|74A|76|77

TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other resets, the register is unaffected.

## 8.7 <u>Timer1 Prescaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

| Address               | Name   | Bit 7                  | Bit 6                                                                      | Bit 5               | Bit 4               | Bit 3     | Bit 2  | Bit 1  | Bit 0  | Value on:<br>POR,<br>BOR | Value on<br>all other<br>resets |
|-----------------------|--------|------------------------|----------------------------------------------------------------------------|---------------------|---------------------|-----------|--------|--------|--------|--------------------------|---------------------------------|
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON | GIE                    | PEIE                                                                       | TOIE                | INTE                | RBIE      | TOIF   | INTF   | RBIF   | 0000 000x                | 0000 000u                       |
| 0Ch                   | PIR1   | PSPIF <sup>(1,2)</sup> | ADIF                                                                       | RCIF <sup>(2)</sup> | TXIF <sup>(2)</sup> | SSPIF     | CCP1IF | TMR2IF | TMR1IF | 0000 0000                | 0000 0000                       |
| 8Ch                   | PIE1   | PSPIE <sup>(1,2)</sup> | ADIE                                                                       | RCIE <sup>(2)</sup> | TXIE <sup>(2)</sup> | SSPIE     | CCP1IE | TMR2IE | TMR1IE | 0000 0000                | 0000 0000                       |
| 0Eh                   | TMR1L  | Holding reg            | jister fo                                                                  |                     | XXXX XXXX           | uuuu uuuu |        |        |        |                          |                                 |
| 0Fh                   | TMR1H  | Holding reg            | Holding register for the Most Significant Byte of the 16-bit TMR1 register |                     |                     |           |        |        |        |                          | uuuu uuuu                       |
| 10h                   | T1CON  | _                      | _                                                                          | T1CKPS1             | T1CKPS0             | T1OSCEN   | T1SYNC | TMR1CS | TMR10N | 00 0000                  | uu uuuu                         |

## TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

### 12.4 USART Synchronous Slave Mode

## Applicable Devices 72 73 73A 74 74A 76 77

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

#### 12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

#### 12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

#### 14.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.8 for details on SLEEP mode.

#### 14.5.2 TMR0 INTERRUPT

An overflow (FFh  $\rightarrow$  00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 7.0)

#### 14.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

| Note: | For the PIC16C73/74, if a change on the      |  |  |  |  |  |  |
|-------|----------------------------------------------|--|--|--|--|--|--|
|       | I/O pin should occur when the read opera-    |  |  |  |  |  |  |
|       | tion is being executed (start of the Q2      |  |  |  |  |  |  |
|       | cycle), then the RBIF interrupt flag may not |  |  |  |  |  |  |
|       | get set.                                     |  |  |  |  |  |  |

### 14.6 <u>Context Saving During Interrupts</u> Applicable Devices

## 72 73 73A 74 74A 76 77

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 14-1 stores and restores the STATUS, W, and PCLATH registers. The register, W\_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W\_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the ISR code.
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

#### EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

| MOVWF<br>SWAPF<br>CLRF | W_TEMP<br>STATUS,W<br>STATUS | ;Copy W to TEMP register, could be bank one or zero<br>;Swap status to be saved into W<br>;bank 0, regardless of current bank, Clears IRP,RP1,RP0 |
|------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| MOVWF                  | STATUS_TEMP                  | ;Save status to bank zero STATUS_TEMP register                                                                                                    |
| MOVF                   | PCLATH, W                    | ;Only required if using pages 1, 2 and/or 3                                                                                                       |
| MOVWF                  | PCLATH_TEMP                  | ;Save PCLATH into W                                                                                                                               |
| CLRF                   | PCLATH                       | ;Page zero, regardless of current page                                                                                                            |
| BCF                    | STATUS, IRP                  | ;Return to Bank 0                                                                                                                                 |
| MOVF                   | FSR, W                       | ;Copy FSR to W                                                                                                                                    |
| MOVWF                  | FSR_TEMP                     | ;Copy FSR from W to FSR_TEMP                                                                                                                      |
| :                      |                              |                                                                                                                                                   |
| :(ISR)                 |                              |                                                                                                                                                   |
| :                      |                              |                                                                                                                                                   |
| MOVF                   | PCLATH_TEMP, W               | ;Restore PCLATH                                                                                                                                   |
| MOVWF                  | PCLATH                       | ;Move W into PCLATH                                                                                                                               |
| SWAPF                  | STATUS_TEMP,W                | ;Swap STATUS_TEMP register into W                                                                                                                 |
|                        |                              | ;(sets bank to original state)                                                                                                                    |
| MOVWF                  | STATUS                       | ;Move W into STATUS register                                                                                                                      |
| SWAPF                  | W_TEMP,F                     | ;Swap W_TEMP                                                                                                                                      |
| SWAPF                  | W_TEMP,W                     | ;Swap W_TEMP into W                                                                                                                               |
|                        |                              |                                                                                                                                                   |

### TABLE 15-2: PIC16CXX INSTRUCTION SET

| Mnemonic,  |        | Description                  | Cycles |       | 14-Bit | )    | Status   | Notes  |       |
|------------|--------|------------------------------|--------|-------|--------|------|----------|--------|-------|
| Operands   |        |                              | MSb    | I     |        | LSb  | Affected |        |       |
| BYTE-ORIE  | NTED   | FILE REGISTER OPERATIONS     |        |       |        |      |          |        |       |
| ADDWF      | f, d   | Add W and f                  | 1      | 00    | 0111   | dfff | ffff     | C,DC,Z | 1,2   |
| ANDWF      | f, d   | AND W with f                 | 1      | 00    | 0101   | dfff | ffff     | Z      | 1,2   |
| CLRF       | f      | Clear f                      | 1      | 00    | 0001   | lfff | ffff     | Z      | 2     |
| CLRW       | -      | Clear W                      | 1      | 00    | 0001   | 0xxx | xxxx     | Z      |       |
| COMF       | f, d   | Complement f                 | 1      | 00    | 1001   | dfff | ffff     | Z      | 1,2   |
| DECF       | f, d   | Decrement f                  | 1      | 00    | 0011   | dfff | ffff     | Z      | 1,2   |
| DECFSZ     | f, d   | Decrement f, Skip if 0       | 1(2)   | 00    | 1011   | dfff | ffff     |        | 1,2,3 |
| INCF       | f, d   | Increment f                  | 1      | 00    | 1010   | dfff | ffff     | Z      | 1,2   |
| INCFSZ     | f, d   | Increment f, Skip if 0       | 1(2)   | 00    | 1111   | dfff | ffff     |        | 1,2,3 |
| IORWF      | f, d   | Inclusive OR W with f        | 1      | 00    | 0100   | dfff | ffff     | Z      | 1,2   |
| MOVF       | f, d   | Move f                       | 1      | 00    | 1000   | dfff | ffff     | Z      | 1,2   |
| MOVWF      | f      | Move W to f                  | 1      | 00    | 0000   | lfff | ffff     |        |       |
| NOP        | -      | No Operation                 | 1      | 00    | 0000   | 0xx0 | 0000     |        |       |
| RLF        | f, d   | Rotate Left f through Carry  | 1      | 00    | 1101   | dfff | ffff     | С      | 1,2   |
| RRF        | f, d   | Rotate Right f through Carry | 1      | 00    | 1100   | dfff | ffff     | С      | 1,2   |
| SUBWF      | f, d   | Subtract W from f            | 1      | 00    | 0010   | dfff | ffff     | C,DC,Z | 1,2   |
| SWAPF      | f, d   | Swap nibbles in f            | 1      | 00    | 1110   | dfff | ffff     |        | 1,2   |
| XORWF      | f, d   | Exclusive OR W with f        | 1      | 00    | 0110   | dfff | ffff     | Z      | 1,2   |
| BIT-ORIENT | ED FIL | E REGISTER OPERATIONS        |        |       |        |      |          | _      |       |
| BCF        | f, b   | Bit Clear f                  | 1      | 01    | 00bb   | bfff | ffff     |        | 1,2   |
| BSF        | f, b   | Bit Set f                    | 1      | 01    | 01bb   | bfff | ffff     |        | 1,2   |
| BTFSC      | f, b   | Bit Test f, Skip if Clear    | 1 (2)  | 01    | 10bb   | bfff | ffff     |        | 3     |
| BTFSS      | f, b   | Bit Test f, Skip if Set      | 1 (2)  | 01    | 11bb   | bfff | ffff     |        | 3     |
| LITERAL AI | ND CO  | NTROL OPERATIONS             |        |       |        |      |          |        |       |
| ADDLW      | k      | Add literal and W            | 1      | 11    | 111x   | kkkk | kkkk     | C,DC,Z |       |
| ANDLW      | k      | AND literal with W           | 1      | 11    | 1001   | kkkk | kkkk     | Z      |       |
| CALL       | k      | Call subroutine              | 2      | 10    | 0kkk   | kkkk | kkkk     |        |       |
| CLRWDT     | -      | Clear Watchdog Timer         | 1      | 00    | 0000   | 0110 | 0100     | TO,PD  |       |
| GOTO       | k      | Go to address                | 2      | 10    | 1kkk   | kkkk | kkkk     |        |       |
| IORLW      | k      | Inclusive OR literal with W  | 1      | 11    | 1000   | kkkk | kkkk     | Z      |       |
| MOVLW      | k      | Move literal to W            | 1      | 11    | 00xx   | kkkk | kkkk     |        |       |
| RETFIE     | -      | Return from interrupt        | 2      | 00    | 0000   | 0000 | 1001     |        |       |
| RETLW      | k      | Return with literal in W     | 2      | 11    | 01xx   | kkkk | kkkk     |        |       |
| RETURN     | -      | Return from Subroutine       | 2      | 00    | 0000   | 0000 | 1000     |        |       |
| SLEEP      | -      | Go into standby mode         | 1      | 00    | 0000   | 0110 | 0011     | TO, PD |       |
|            |        | Subtract W from literal      | 1      | 11    | 110x   | kkkk | 1-1-1-1- | C,DC,Z |       |
| SUBLW      | k      |                              |        | L T T | TTOX   | KKKK | кккк     | U,DU,Z |       |

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

| CLRF              | Clear f                                                               |                                |       |                       |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--------------------------------|-------|-----------------------|--|--|--|--|
| Syntax:           | [ <i>label</i> ] CLRF f                                               |                                |       |                       |  |  |  |  |
| Operands:         | $0 \le f \le 12$                                                      | 27                             |       |                       |  |  |  |  |
| Operation:        | $\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$ |                                |       |                       |  |  |  |  |
| Status Affected:  | Z                                                                     |                                |       |                       |  |  |  |  |
| Encoding:         | 00                                                                    | 0001                           | lfff  | ffff                  |  |  |  |  |
| Description:      | The contents of register 'f' are cleared and the Z bit is set.        |                                |       |                       |  |  |  |  |
| Words:            | 1                                                                     |                                |       |                       |  |  |  |  |
| Cycles:           | 1                                                                     |                                |       |                       |  |  |  |  |
| Q Cycle Activity: | Q1                                                                    | Q2                             | Q3    | Q4                    |  |  |  |  |
|                   | Decode                                                                | Decode Read<br>register<br>'f' |       | Write<br>register 'f' |  |  |  |  |
| Example           | CLRF                                                                  | FLAG                           | G_REG |                       |  |  |  |  |
|                   | Before Instruction                                                    |                                |       |                       |  |  |  |  |
|                   | After Inst                                                            | FLAG_RE                        | EG =  | 0x5A                  |  |  |  |  |
|                   |                                                                       | FLAG RE                        | EG =  | 0x00                  |  |  |  |  |
|                   |                                                                       | Ζ                              | =     | 1                     |  |  |  |  |

| CLRW                                                                                                               | Clear W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:                                                                                                            | [label] CLRW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Operands:                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operation:                                                                                                         | $\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Status Affected:                                                                                                   | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Encoding:                                                                                                          | 00 0001 0xxx xxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Description:                                                                                                       | W register is cleared. Zero bit (Z) is set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Words:                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cycles:                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Q Cycle Activity:                                                                                                  | Q1 Q2 Q3 Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                    | Decode No-<br>Operation Process Write to<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Example                                                                                                            | CLRW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                    | Before Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                    | W = 0x5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                    | After Instruction<br>W = 0x00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                    | Z = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CLRWDT                                                                                                             | Clear Watchdog Timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Syntax:                                                                                                            | [label] CLRWDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Operands:                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                  | None $00h \rightarrow WDT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Operands:                                                                                                          | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT$ prescaler,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Operands:                                                                                                          | None $00h \rightarrow WDT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Operands:                                                                                                          | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT$ prescaler,<br>$1 \rightarrow \overline{TO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operands:<br>Operation:                                                                                            | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT$ prescaler,<br>$1 \rightarrow \overline{TO}$<br>$1 \rightarrow \overline{PD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Operands:<br>Operation:<br>Status Affected:                                                                        | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT$ prescaler,<br>$1 \rightarrow \overline{TO}$<br>$1 \rightarrow \overline{PD}$<br>$\overline{TO}, \overline{PD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:                                                           | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT$ prescaler,<br>$1 \rightarrow \overline{TO}$<br>$1 \rightarrow \overline{PD}$<br>$\overline{TO}, \overline{PD}$<br>OU 0000 0110 0100<br>CLRWDT instruction resets the Watch-<br>dog Timer. It also resets the prescaler<br>of the WDT. Status bits TO and PD are                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:                                           | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT prescaler,$<br>$1 \rightarrow \overline{TO}$<br>$1 \rightarrow \overline{PD}$<br>$\overline{TO}, \overline{PD}$<br>CLRWDT instruction resets the Watch-<br>dog Timer. It also resets the prescaler<br>of the WDT. Status bits TO and PD are<br>set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:                                 | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT prescaler,$<br>$1 \rightarrow \overline{TO}$<br>$1 \rightarrow \overline{PD}$<br>$\overline{TO}, \overline{PD}$<br>OO 0000 0110 0100<br>CLRWDT instruction resets the Watch-<br>dog Timer. It also resets the prescaler<br>of the WDT. Status bits $\overline{TO}$ and $\overline{PD}$ are<br>set.<br>1                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:                      | None<br>$00h \rightarrow WDT$<br>$0 \rightarrow WDT prescaler,$<br>$1 \rightarrow \overline{TO}$<br>$1 \rightarrow \overline{PD}$<br>$\overline{TO}, \overline{PD}$<br>$Oldsymbol{ODD} Ollolololololololololololololololololol$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity: | None<br>$\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watch-dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.<br>1 1 2 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 3 3 4 3 3 3 4 3 3 3 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:                      | None<br>$\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watch-dog Timer. It also resets the Vatch-dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{TO}$ and $\overline{PD}$ are set.<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>4<br>2<br>2<br>2<br>3<br>2<br>4<br>2<br>2<br>2<br>2<br>3<br>2<br>4<br>2<br>2<br>2<br>2<br>3<br>2<br>4<br>2<br>2<br>2<br>2<br>3<br>2<br>4<br>2<br>2<br>2<br>2<br>3<br>2<br>4<br>2<br>2<br>2<br>2<br>3<br>2<br>4<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity: | None<br>$\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watch-dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.<br>1 1 2 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 3 3 4 3 3 3 4 3 3 3 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity: | None<br>$\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline CLRWDT \ instruction \ resets \ the \ Watch-dog \ Timer. \ It \ also \ resets \ the \ prescaler \ of \ the \ WDT \ instruction \ resets \ the \ prescaler \ of \ the \ WDT. \ Status \ bits \ \overline{TO} \ and \ \overline{PD} \ are \ set. \\ \hline 1 \\ 1 \\ \hline \hline Q1  Q2  Q3  Q4 \\ \hline \hline Decode  No- \ Operation \ Process \ Clear \ WDT \ Counter \\ \hline CLRWDT \\ \hline CLRWDT \\ \hline Before \ Instruction \\ WDT \ counter \ = \ ? \\ After \ Instruction \end{array}$                                    |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity: | None<br>$\begin{array}{l} \text{None} \\ \text{O0h} \rightarrow \text{WDT} \\ \text{O} \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \\ \hline \overline{\text{TO}}, \overline{\text{PD}} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ \hline \text{CLRWDT instruction resets the Watch-dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. \\ 1 \\ 1 \\ \hline \\ Q1 & Q2 & Q3 & Q4 \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ Before Instruction \\ \hline \\ WDT counter = ? \\ \end{array}$                                                                                                |
| Operands:<br>Operation:<br>Status Affected:<br>Encoding:<br>Description:<br>Words:<br>Cycles:<br>Q Cycle Activity: | None<br>$\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \ instruction \ resets \ the \ Watch-dog \ Timer. It also \ resets \ the \ Watch-dog \ Timer. It also \ resets \ the \ prescaler \ of \ the \ WDT. \ Status \ bits \ \overline{TO} \ and \ \overline{PD} \ are \ set. \\ \hline 1 \\ 1 \\ \hline \\ \hline \\ Q1 & Q2 & Q3 & Q4 \\ \hline \hline \\ \hline \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ Before \ Instruction \\ \qquad WDT \ counter \ = \ ? \\ After \ Instruction \\ \qquad WDT \ counter \ = \ 0x00 \\ \hline \end{array}$         |

## Applicable Devices 72 73 73A 74 74A 76 77

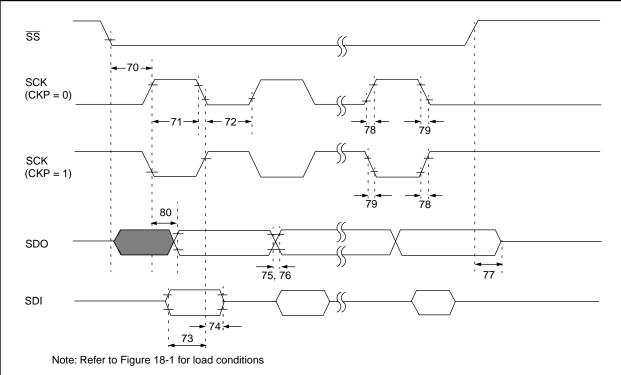
## 17.2 DC Characteristics: PIC16LC72-04 (Commercial, Industrial)

| DC CHA                | ARACTERISTICS                                                    |               |             | ard Ope<br>ing tem |              |                | itions (unless otherwise stated)<br>$0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and<br>$C \leq TA \leq +70^{\circ}C$ for commercial                           |
|-----------------------|------------------------------------------------------------------|---------------|-------------|--------------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param<br>No.          | Characteristic                                                   | Sym           | Min         | Тур†               | Max          | Units          | Conditions                                                                                                                                                              |
| D001                  | Supply Voltage                                                   | Vdd           | 2.5         | -                  | 6.0          | V              | LP, XT, RC osc configuration (DC - 4 MHz)                                                                                                                               |
| D002*                 | RAM Data Retention Volt-<br>age (Note 1)                         | Vdr           | -           | 1.5                | -            | V              |                                                                                                                                                                         |
| D003                  | VDD start voltage to<br>ensure internal Power-on<br>Reset signal | VPOR          | -           | Vss                | -            | V              | See section on Power-on Reset for details                                                                                                                               |
| D004*                 | VDD rise rate to ensure<br>internal Power-on Reset<br>signal     | Svdd          | 0.05        | -                  | -            | V/ms           | See section on Power-on Reset for details                                                                                                                               |
| D005                  | Brown-out Reset Voltage                                          | Bvdd          | 3.7         | 4.0                | 4.3          | V              | BODEN bit in configuration word enabled                                                                                                                                 |
| D010                  | Supply Current<br>(Note 2,5)                                     | IDD           | -           | 2.0                | 3.8          | mA             | XT, RC osc configuration<br>Fosc = 4 MHz, VDD = 3.0V (Note 4)                                                                                                           |
| D010A                 |                                                                  |               | -           | 22.5               | 48           | μA             | LP osc configuration<br>Fosc = 32 kHz, VDD = 3.0V, WDT disabled                                                                                                         |
| D015*                 | Brown-out Reset Current (Note 6)                                 | $\Delta$ IBOR | -           | 350                | 425          | μA             | BOR enabled VDD = 5.0V                                                                                                                                                  |
| D020<br>D021<br>D021A | Power-down Current<br>(Note 3,5)                                 | IPD           | -<br>-<br>- | 7.5<br>0.9<br>0.9  | 30<br>5<br>5 | μΑ<br>μΑ<br>μΑ | $VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$ |
| D023*                 | Brown-out Reset Current<br>(Note 6)                              | $\Delta$ IBOR | -           | 350                | 425          | μA             | BOR enabled VDD = 5.0V                                                                                                                                                  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.


 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

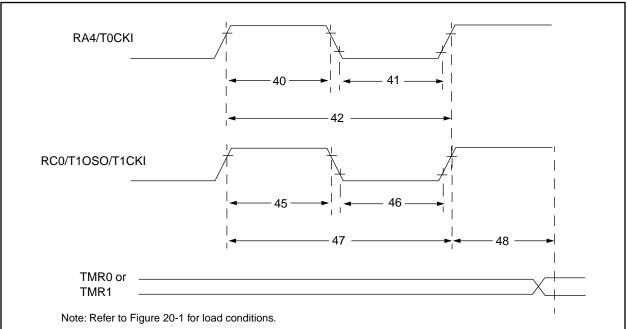
 $OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD <math>\overline{MCLR} = VDD; WDT$  enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

## Applicable Devices 72 73 73A 74 74A 76 77






## TABLE 18-8: SPI MODE REQUIREMENTS

| Parameter<br>No. | Sym                   | Characteristic                                                        | Min      | Тур† | Max | Units | Conditions |
|------------------|-----------------------|-----------------------------------------------------------------------|----------|------|-----|-------|------------|
| 70               | TssL2scH,<br>TssL2scL | $\overline{SS}\downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ input | Тсү      | —    | -   | ns    |            |
| 71               | TscH                  | SCK input high time (slave mode)                                      | Tcy + 20 | _    | _   | ns    |            |
| 72               | TscL                  | SCK input low time (slave mode)                                       | Tcy + 20 | —    | _   | ns    |            |
| 73               | TdiV2scH,<br>TdiV2scL | Setup time of SDI data input to SCK edge                              | 50       | —    | _   | ns    |            |
| 74               | TscH2diL,<br>TscL2diL | Hold time of SDI data input to SCK edge                               | 50       | —    | _   | ns    |            |
| 75               | TdoR                  | SDO data output rise time                                             |          | 10   | 25  | ns    |            |
| 76               | TdoF                  | SDO data output fall time                                             | _        | 10   | 25  | ns    |            |
| 77               | TssH2doZ              | SS↑ to SDO output hi-impedance                                        | 10       | _    | 50  | ns    |            |
| 78               | TscR                  | SCK output rise time (master mode)                                    | -        | 10   | 25  | ns    |            |
| 79               | TscF                  | SCK output fall time (master mode)                                    |          | 10   | 25  | ns    |            |
| 80               | TscH2doV,<br>TscL2doV | SDO data output valid after SCK edge                                  | _        | _    | 50  | ns    |            |

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77





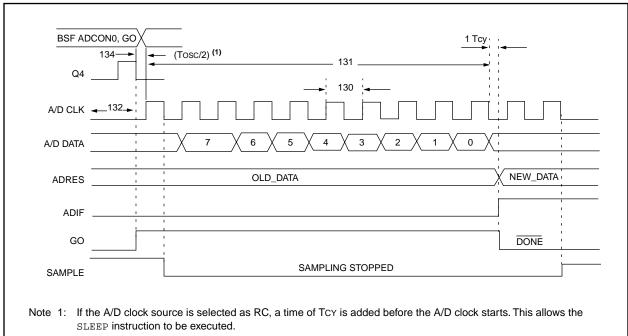
## TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

| Param<br>No. | Sym      | Characteristic                                                                         |                      |                    | Min                                              | Тур† | Max   | Units          | Conditions                         |
|--------------|----------|----------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------------------|------|-------|----------------|------------------------------------|
| 40*          | Tt0H     | <b>J J J J J J J J J J</b>                                                             |                      | No Prescaler       | 0.5TCY + 20                                      | -    | -     | ns             | Must also meet                     |
|              |          |                                                                                        |                      | With Prescaler     | 10                                               | _    | _     | ns             | parameter 42                       |
| 41*          | Tt0L     | T0CKI Low Pulse W                                                                      | /idth                | No Prescaler       | 0.5TCY + 20                                      | -    | —     | ns             | Must also meet                     |
|              |          |                                                                                        |                      | With Prescaler     | 10                                               | —    | —     | ns             | parameter 42                       |
| 42*          | Tt0P     | T0CKI Period                                                                           |                      | No Prescaler       | Tcy + 40                                         | —    | —     | ns             |                                    |
|              |          |                                                                                        |                      | With Prescaler     | Greater of:<br>20 or <u>Tcy + 40</u><br>N        | -    | -     | ns             | N = prescale value<br>(2, 4,, 256) |
| 45*          | Tt1H     | T1CKI High Time                                                                        | Synchronous, F       | Prescaler = 1      | 0.5TCY + 20                                      | -    | —     | ns             | Must also meet                     |
|              |          |                                                                                        | Synchronous,         | PIC16 <b>C</b> 7X  | 15                                               | -    | —     | ns             | parameter 47                       |
|              |          | Prescaler =<br>2,4,8                                                                   | PIC16 <b>LC</b> 7X   | 25                 | -                                                | —    | ns    |                |                                    |
|              |          |                                                                                        | Asynchronous         | PIC16 <b>C</b> 7X  | 30                                               | —    | —     | ns             |                                    |
|              |          |                                                                                        |                      | PIC16 <b>LC</b> 7X | 50                                               | —    | —     | ns             |                                    |
| 46* Tt1L     |          | Synchronous, F                                                                         |                      | 0.5Tcy + 20        | —                                                | —    | ns    | Must also meet |                                    |
|              |          |                                                                                        | Synchronous,         | PIC16 <b>C</b> 7X  | 15                                               | —    | —     | ns             | parameter 47                       |
|              |          |                                                                                        | Prescaler =<br>2,4,8 | PIC16 <b>LC</b> 7X | 25                                               | —    | -     | ns             |                                    |
|              |          |                                                                                        | Asynchronous         | PIC16 <b>C</b> 7X  | 30                                               | —    | —     | ns             | ]                                  |
|              |          |                                                                                        |                      | PIC16 <b>LC</b> 7X | 50                                               | —    | —     | ns             |                                    |
| 47*          | Tt1P     | T1CKI input period                                                                     | Synchronous          | PIC16 <b>C</b> 7X  | <u>Greater of:</u><br>30 OR <u>TCY + 40</u><br>N | -    | _     | ns             | N = prescale valu<br>(1, 2, 4, 8)  |
|              |          |                                                                                        |                      | PIC16 <b>LC</b> 7X | <u>Greater of:</u><br>50 or <u>Tcy + 40</u><br>N |      |       |                | N = prescale value<br>(1, 2, 4, 8) |
|              |          |                                                                                        | Asynchronous         | PIC16 <b>C</b> 7X  | 60                                               | -    | -     | ns             |                                    |
|              |          |                                                                                        |                      | PIC16 <b>LC</b> 7X | 100                                              | —    | —     | ns             |                                    |
|              | Ft1      | Timer1 oscillator input frequency range<br>(oscillator enabled by setting bit T1OSCEN) |                      |                    | DC                                               | -    | 200   | kHz            |                                    |
| 48           | TCKEZtmr | 1 Delay from external                                                                  | clock edge to tir    | ner increment      | 2Tosc                                            | - 1  | 7Tosc | <u> </u>       |                                    |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

## Applicable Devices 72 73 73A 74 74A 76 77


## TABLE 20-8: SPI MODE REQUIREMENTS

| Parameter<br>No. | Sym                   | Characteristic                                                        | Min         | Тур† | Max | Units | Conditions |
|------------------|-----------------------|-----------------------------------------------------------------------|-------------|------|-----|-------|------------|
| 70*              | TssL2scH,<br>TssL2scL | $\overline{SS}\downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ input | Тсү         | —    | —   | ns    |            |
| 71*              | TscH                  | SCK input high time (slave mode)                                      | Tcy + 20    | _    | —   | ns    |            |
| 72*              | TscL                  | SCK input low time (slave mode)                                       | Tcy + 20    | _    | _   | ns    |            |
| 73*              | TdiV2scH,<br>TdiV2scL | Setup time of SDI data input to SCK edge                              | 100         | —    | —   | ns    |            |
| 74*              | TscH2diL,<br>TscL2diL | Hold time of SDI data input to SCK edge                               | 100         | —    | —   | ns    |            |
| 75*              | TdoR                  | SDO data output rise time                                             | —           | 10   | 25  | ns    |            |
| 76*              | TdoF                  | SDO data output fall time                                             | —           | 10   | 25  | ns    |            |
| 77*              | TssH2doZ              | SS↑ to SDO output hi-impedance                                        | 10          | —    | 50  | ns    |            |
| 78*              | TscR                  | SCK output rise time (master mode)                                    | —           | 10   | 25  | ns    |            |
| 79*              | TscF                  | SCK output fall time (master mode)                                    | —           | 10   | 25  | ns    |            |
| 80*              | TscH2doV,<br>TscL2doV | SDO data output valid after SCK edge                                  | —           | —    | 50  | ns    |            |
| 81*              | TdoV2scH,<br>TdoV2scL | SDO data output setup to SCK edge                                     | Тсү         | —    | —   | ns    |            |
| 82*              | TssL2doV              | SDO data output valid after $\overline{SS}\downarrow$ edge            | —           | —    | 50  | ns    |            |
| 83*              | TscH2ssH,<br>TscL2ssH | SS ↑ after SCK edge                                                   | 1.5Tcy + 40 | —    | _   | ns    |            |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

## Applicable Devices 72 73 73A 74 74A 76 77

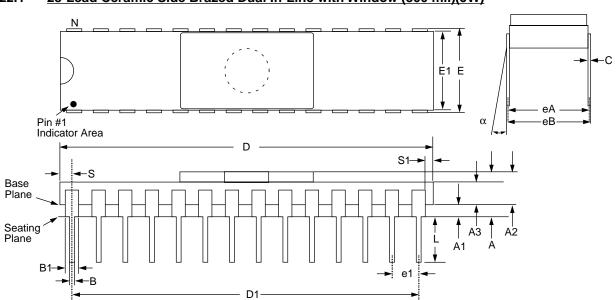


#### FIGURE 20-17: A/D CONVERSION TIMING

### TABLE 20-14: A/D CONVERSION REQUIREMENTS

| Param<br>No. | Sym  | Characteristic                |                              | Min    | Тур†     | Мах | Units | Conditions                                                                                                                                                                                                                    |
|--------------|------|-------------------------------|------------------------------|--------|----------|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130          | TAD  | A/D clock period              | PIC16 <b>C</b> 76/77         | 1.6    | —        | _   | μs    | Tosc based, VREF ≥ 3.0V                                                                                                                                                                                                       |
|              |      |                               | PIC16LC76/77                 | 2.0    | —        |     | μs    | Tosc based, VREF full range                                                                                                                                                                                                   |
|              |      |                               | PIC16 <b>C</b> 76/77         | 2.0    | 4.0      | 6.0 | μs    | A/D RC Mode                                                                                                                                                                                                                   |
|              |      |                               | PIC16LC76/77                 | 3.0    | 6.0      | 9.0 | μs    | A/D RC Mode                                                                                                                                                                                                                   |
| 131          | TCNV | Conversion time (not (Note 1) | including S/H time)          | _      | 9.5      | _   | TAD   |                                                                                                                                                                                                                               |
| 132          | TACQ | Acquisition time              |                              | Note 2 | 20       |     | μs    |                                                                                                                                                                                                                               |
|              |      |                               |                              | 5*     | _        | _   | μs    | The minimum time is the amplifier<br>settling time. This may be used if<br>the "new" input voltage has not<br>changed by more than 1 LSb (i.e.,<br>20.0 mV @ 5.12V) from the last<br>sampled voltage (as stated on<br>CHOLD). |
| 134          | TGO  | Q4 to A/D clock start         |                              | _      | Tosc/2 § | _   | -     | If the A/D clock source is selected<br>as RC, a time of TcY is added<br>before the A/D clock starts. This<br>allows the SLEEP instruction to be<br>executed.                                                                  |
| 135          | Tswc | Switching from conve          | $rt \rightarrow sample time$ | 1.5 §  | _        |     | TAD   |                                                                                                                                                                                                                               |

\* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

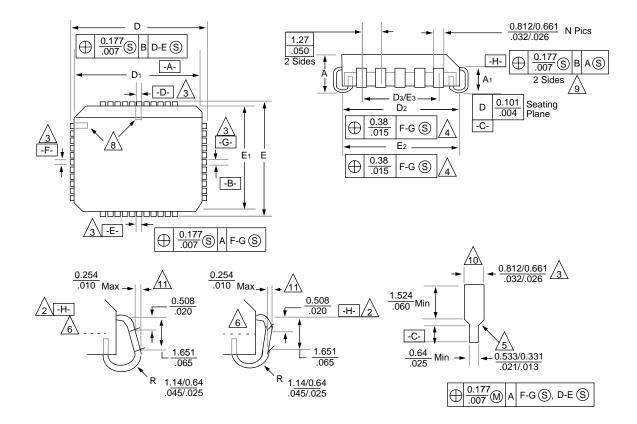
Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.


## 22.0 PACKAGING INFORMATION



## 22.1 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)


| Package Group: Ceramic Side Brazed Dual In-Line (CER) |            |             |           |            |       |       |
|-------------------------------------------------------|------------|-------------|-----------|------------|-------|-------|
| Cumhal                                                |            | Millimeters |           | Inches     |       |       |
| Symbol                                                | Min        | Мах         | Notes     | Min        | Max   | Notes |
| α                                                     | <b>0</b> ° | 10°         |           | <b>0</b> ° | 10°   |       |
| А                                                     | 3.937      | 5.030       |           | 0.155      | 0.198 |       |
| A1                                                    | 1.016      | 1.524       |           | 0.040      | 0.060 |       |
| A2                                                    | 2.921      | 3.506       |           | 0.115      | 0.138 |       |
| A3                                                    | 1.930      | 2.388       |           | 0.076      | 0.094 |       |
| В                                                     | 0.406      | 0.508       |           | 0.016      | 0.020 |       |
| B1                                                    | 1.219      | 1.321       | Typical   | 0.048      | 0.052 |       |
| С                                                     | 0.228      | 0.305       | Typical   | 0.009      | 0.012 |       |
| D                                                     | 35.204     | 35.916      |           | 1.386      | 1.414 |       |
| D1                                                    | 32.893     | 33.147      | Reference | 1.295      | 1.305 |       |
| E                                                     | 7.620      | 8.128       |           | 0.300      | 0.320 |       |
| E1                                                    | 7.366      | 7.620       |           | 0.290      | 0.300 |       |
| e1                                                    | 2.413      | 2.667       | Typical   | 0.095      | 0.105 |       |
| eA                                                    | 7.366      | 7.874       | Reference | 0.290      | 0.310 |       |
| eB                                                    | 7.594      | 8.179       |           | 0.299      | 0.322 |       |
| L                                                     | 3.302      | 4.064       |           | 0.130      | 0.160 |       |
| Ν                                                     | 28         | 28          |           | 28         | 28    |       |
| S                                                     | 1.143      | 1.397       |           | 0.045      | 0.055 |       |
| S1                                                    | 0.533      | 0.737       |           | 0.021      | 0.029 |       |

## 22.6 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)



|        | Package Group: Plastic SSOP |             |           |       |            |           |  |
|--------|-----------------------------|-------------|-----------|-------|------------|-----------|--|
|        |                             | Millimeters |           |       | Inches     |           |  |
| Symbol | Min                         | Max         | Notes     | Min   | Max        | Notes     |  |
| α      | 0°                          | <b>8</b> °  |           | 0°    | <b>8</b> ° |           |  |
| А      | 1.730                       | 1.990       |           | 0.068 | 0.078      |           |  |
| A1     | 0.050                       | 0.210       |           | 0.002 | 0.008      |           |  |
| В      | 0.250                       | 0.380       |           | 0.010 | 0.015      |           |  |
| С      | 0.130                       | 0.220       |           | 0.005 | 0.009      |           |  |
| D      | 10.070                      | 10.330      |           | 0.396 | 0.407      |           |  |
| E      | 5.200                       | 5.380       |           | 0.205 | 0.212      |           |  |
| е      | 0.650                       | 0.650       | Reference | 0.026 | 0.026      | Reference |  |
| Н      | 7.650                       | 7.900       |           | 0.301 | 0.311      |           |  |
| L      | 0.550                       | 0.950       |           | 0.022 | 0.037      |           |  |
| N      | 28                          | 28          |           | 28    | 28         |           |  |
| CP     | -                           | 0.102       |           | -     | 0.004      |           |  |

## 22.7 44-Lead Plastic Leaded Chip Carrier (Square)(PLCC)



|        | Package Group: Plastic Leaded Chip Carrier (PLCC) |             |           |       |       |           |  |
|--------|---------------------------------------------------|-------------|-----------|-------|-------|-----------|--|
|        |                                                   | Millimeters |           |       |       |           |  |
| Symbol | Min                                               | Max         | Notes     | Min   | Max   | Notes     |  |
| А      | 4.191                                             | 4.572       |           | 0.165 | 0.180 |           |  |
| A1     | 2.413                                             | 2.921       |           | 0.095 | 0.115 |           |  |
| D      | 17.399                                            | 17.653      |           | 0.685 | 0.695 |           |  |
| D1     | 16.510                                            | 16.663      |           | 0.650 | 0.656 |           |  |
| D2     | 15.494                                            | 16.002      |           | 0.610 | 0.630 |           |  |
| D3     | 12.700                                            | 12.700      | Reference | 0.500 | 0.500 | Reference |  |
| E      | 17.399                                            | 17.653      |           | 0.685 | 0.695 |           |  |
| E1     | 16.510                                            | 16.663      |           | 0.650 | 0.656 |           |  |
| E2     | 15.494                                            | 16.002      |           | 0.610 | 0.630 |           |  |
| E3     | 12.700                                            | 12.700      | Reference | 0.500 | 0.500 | Reference |  |
| Ν      | 44                                                | 44          |           | 44    | 44    |           |  |
| CP     | -                                                 | 0.102       |           | _     | 0.004 |           |  |
| LT     | 0.203                                             | 0.381       |           | 0.008 | 0.015 |           |  |

| Registers                                                          |
|--------------------------------------------------------------------|
| FSR 20                                                             |
| Summary29<br>INDF                                                  |
| Summary                                                            |
| INTCON                                                             |
| Summary29<br>Maps                                                  |
| PIC16C7221                                                         |
| PIC16C73                                                           |
| PIC16C73A                                                          |
| PIC16C74                                                           |
| PIC16C76                                                           |
| PIC16C77                                                           |
| OPTION                                                             |
| Summary                                                            |
| PCL<br>Summary29                                                   |
| PCLATH                                                             |
| Summary                                                            |
| PORTB                                                              |
| Summary                                                            |
| Reset Conditions136<br>SSPBUF                                      |
| SCROF<br>Section                                                   |
| SSPCON                                                             |
| Diagram79                                                          |
| SSPSR                                                              |
| Section                                                            |
| SSPSTAT                                                            |
| Section                                                            |
| STATUS                                                             |
| Summary29                                                          |
| Summary                                                            |
| TMR0<br>Summary29                                                  |
| TRISB                                                              |
| Summary                                                            |
| Reset 129, 133                                                     |
| Reset Conditions for Special Registers                             |
| RP0 bit20, 30<br>RP1 bit                                           |
| RP1 bit                                                            |
| RX9D bit                                                           |
| S                                                                  |
| S                                                                  |
| SCK                                                                |
| SCL                                                                |
| SDI                                                                |
| SDO                                                                |
| Serial Communication Interface (SCI) Module, See USART<br>Services |
| One-Time-Programmable (OTP)7                                       |
| Quick-Turnaround-Production (QTP)7                                 |
| Serialized Quick-Turnaround Production (SQTP)7                     |
| Slave Mode                                                         |
| SCL                                                                |
| SLEEP                                                              |
| SMP                                                                |
| Software Simulator (MPSIM) 165                                     |
| SPBRG                                                              |

| SPBRG Register                                                                                                                                         | 26 28                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                        |                      |
| Special Event Trigger                                                                                                                                  |                      |
| Special Features of the CPU                                                                                                                            | 129                  |
| Special Function Registers                                                                                                                             |                      |
| PIC16C72                                                                                                                                               | 23                   |
| PIC16C73                                                                                                                                               | 25. 27               |
| PIC16C73A                                                                                                                                              | 25 27                |
| PIC16C74                                                                                                                                               |                      |
|                                                                                                                                                        |                      |
| PIC16C74A                                                                                                                                              | ,                    |
| PIC16C76                                                                                                                                               | 27                   |
| PIC16C77                                                                                                                                               | 27                   |
| Special Function Registers, Section                                                                                                                    | 23                   |
| SPEN bit                                                                                                                                               |                      |
| SPI                                                                                                                                                    |                      |
|                                                                                                                                                        | ~~~~                 |
| Block Diagram                                                                                                                                          |                      |
| Master Mode                                                                                                                                            |                      |
| Master Mode Timing                                                                                                                                     | 87                   |
| Mode                                                                                                                                                   | 80                   |
| Serial Clock                                                                                                                                           | 85                   |
| Serial Data In                                                                                                                                         |                      |
|                                                                                                                                                        |                      |
| Serial Data Out                                                                                                                                        |                      |
| Slave Mode Timing                                                                                                                                      |                      |
| Slave Mode Timing Diagram                                                                                                                              | 87                   |
| Slave Select                                                                                                                                           | 85                   |
| SPI clock                                                                                                                                              | 86                   |
| SPI Mode                                                                                                                                               |                      |
|                                                                                                                                                        |                      |
| SSPCON                                                                                                                                                 |                      |
| SSPSTAT                                                                                                                                                |                      |
| SPI Clock Edge Select bit, CKE                                                                                                                         | 83                   |
| SPI Data Input Sample Phase Select bit, SMP                                                                                                            | 83                   |
| SPI Mode                                                                                                                                               |                      |
| SREN bit                                                                                                                                               |                      |
| SS                                                                                                                                                     |                      |
| 55                                                                                                                                                     | 80                   |
|                                                                                                                                                        |                      |
| SSP                                                                                                                                                    |                      |
| SSP<br>Module Overview                                                                                                                                 | 77                   |
|                                                                                                                                                        |                      |
| Module Overview<br>Section                                                                                                                             | 77                   |
| Module Overview<br>Section<br>SSPBUF                                                                                                                   | 77<br>86             |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON                                                                                                         | 77<br>86<br>84       |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR                                                                                                | 77<br>86<br>84<br>86 |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT                                                                                     | 77<br>86<br>84<br>86 |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT<br>SSP in I <sup>2</sup> C Mode - See I <sup>2</sup> C                              |                      |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT<br>SSP in I <sup>2</sup> C Mode - See I <sup>2</sup> C<br>SSPADD                    |                      |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT<br>SSP in I <sup>2</sup> C Mode - See I <sup>2</sup> C<br>SSPADD                    |                      |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT<br>SSP in I <sup>2</sup> C Mode - See I <sup>2</sup> C<br>SSPADD<br>SSPADD Register |                      |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT<br>SSP in I <sup>2</sup> C Mode - See I <sup>2</sup> C<br>SSPADD<br>SSPADD Register |                      |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT<br>SSP in I <sup>2</sup> C Mode - See I <sup>2</sup> C<br>SSPADD<br>SSPADD Register |                      |
| Module Overview<br>Section                                                                                                                             |                      |
| Module Overview<br>Section<br>SSPBUF<br>SSPCON<br>SSPSR<br>SSPSTAT<br>SSP in I <sup>2</sup> C Mode - See I <sup>2</sup> C<br>SSPADD<br>SSPADD Register |                      |
| Module Overview<br>Section                                                                                                                             |                      |
| Module Overview<br>Section                                                                                                                             |                      |
| Module Overview<br>Section                                                                                                                             |                      |
| Module Overview                                                                                                                                        |                      |
| Module Overview<br>Section                                                                                                                             |                      |
| Module Overview<br>Section                                                                                                                             |                      |
| Module Overview                                                                                                                                        |                      |

## U

| UA78, 83<br>Universal Synchronous Asynchronous Receiver Transmitter<br>(USART)99<br>Update Address bit, UA78, 83<br>USART |
|---------------------------------------------------------------------------------------------------------------------------|
| Asynchronous Mode106                                                                                                      |
| Asynchronous Receiver 108                                                                                                 |
| Asynchronous Reception109                                                                                                 |
| Asynchronous Transmission                                                                                                 |
| Asynchronous Transmitter                                                                                                  |
| Baud Rate Generator (BRG)101                                                                                              |
| Receive Block Diagram108                                                                                                  |
| Sampling104                                                                                                               |
| Synchronous Master Mode110                                                                                                |
| Synchronous Master Reception                                                                                              |
| Synchronous Master Transmission                                                                                           |
| Synchronous Slave Mode114                                                                                                 |
| Synchronous Slave Reception114                                                                                            |
| Synchronous Slave Transmit114                                                                                             |
| Transmit Block Diagram106                                                                                                 |
| UV Erasable Devices7                                                                                                      |

## W

| W Register                       |                   |
|----------------------------------|-------------------|
| ALU                              | 9                 |
| Wake-up from SLEEP               | 145               |
| Watchdog Timer (WDT)1            | 29, 133, 136, 144 |
| WCOL                             |                   |
| WDT                              |                   |
| Block Diagram                    | 144               |
| Period                           | 144               |
| Programming Considerations       |                   |
| Timeout                          |                   |
| Word                             | 129               |
| WR pin                           | 54                |
| Write Collision Detect bit, WCOL |                   |

## Х

| XMIT_MODE |  |
|-----------|--|
| 7         |  |

| Z bit |     | ) |
|-------|-----|---|
| Zero  | bit | ) |

## LIST OF EXAMPLES

| Evernale 2.1   | Instruction Dinaling Flow             |
|----------------|---------------------------------------|
| Example 3-1:   | Instruction Pipeline Flow17           |
| Example 4-1:   | Call of a Subroutine in Page 1        |
| <b>F</b> 1 4 0 | from Page 041                         |
| Example 4-2:   | Indirect Addressing41                 |
| Example 5-1:   | Initializing PORTA43                  |
| Example 5-2:   | Initializing PORTB45                  |
| Example 5-3:   | Initializing PORTC48                  |
| Example 5-4:   | Read-Modify-Write Instructions        |
|                | on an I/O Port53                      |
| Example 7-1:   | Changing Prescaler (Timer0→WDT)63     |
| Example 7-2:   | Changing Prescaler (WDT→Timer0)63     |
| Example 8-1:   | Reading a 16-bit Free-Running Timer67 |
| Example 10-1:  | Changing Between Capture              |
|                | Prescalers73                          |
| Example 10-2:  | PWM Period and Duty Cycle             |
|                | Calculation                           |
| Example 11-1:  | Loading the SSPBUF (SSPSR)            |
| •              | Register                              |
| Example 11-2:  | Loading the SSPBUF (SSPSR)            |
|                | Register (PIC16C76/77)85              |
| Example 12-1:  | Calculating Baud Rate Error101        |
| Equation 13-1: | A/D Minimum Charging Time120          |
| Example 13-1:  | Calculating the Minimum Required      |
|                | Acquisition Time120                   |
| Example 13-2:  | A/D Conversion122                     |
| Example 13-3:  | 4-bit vs. 8-bit Conversion Times      |
| Example 14-1:  | Saving STATUS, W, and PCLATH          |
|                | Registers in RAM143                   |

| Table 18-2:  | external Clock Timing                                      |
|--------------|------------------------------------------------------------|
|              | Requirements                                               |
| Table 18-3:  | CLKOUT and I/O Timing<br>Requirements190                   |
| Table 18-4:  | Reset, Watchdog Timer, Oscillator                          |
|              | Start-up Timer and Power-up Timer                          |
|              | Requirements 191                                           |
| Table 18-5:  | Timer0 and Timer1 External Clock                           |
|              | Requirements                                               |
| Table 18-6:  | Capture/Compare/PWM                                        |
|              | Requirements (CCP1 and CCP2)                               |
| Table 18-7:  | Parallel Slave Port Requirements                           |
|              | (PIC16C74) 194                                             |
| Table 18-8:  | SPI Mode Requirements 195                                  |
| Table 18-9:  | I <sup>2</sup> C Bus Start/Stop Bits                       |
|              | Requirements196                                            |
| Table 18-10: | I <sup>2</sup> C Bus Data Requirements197                  |
| Table 18-11: | USART Synchronous Transmission                             |
|              | Requirements198                                            |
| Table 18-12: | usart Synchronous Receive                                  |
|              | Requirements                                               |
| Table 18-13: | A/D Converter Characteristics:                             |
|              | PIC16C73/74-04                                             |
|              | (Commercial, Industrial)                                   |
|              | PIC16C73/74-10                                             |
|              | (Commercial, Industrial)                                   |
|              | PIC16C73/74-20                                             |
|              | (Commercial, Industrial)                                   |
|              | PIC16LC73/74-04                                            |
| Table 18-14: | (Commercial, Industrial)199<br>A/D Conversion Requirements |
| Table 19-14. | Cross Reference of Device Specs                            |
|              | for Oscillator Configurations and                          |
|              | Frequencies of Operation                                   |
|              | (Commercial Devices)                                       |
| Table 19-2:  | External Clock Timing                                      |
| 10010 10 2.  | Requirements                                               |
| Table 19-3:  | CLKOUT and I/O Timing                                      |
|              | Requirements208                                            |
| Table 19-4:  | Reset, Watchdog Timer, Oscillator                          |
|              | Start-up Timer, Power-up Timer,                            |
|              | and brown-out reset Requirements                           |
| Table 19-5:  | Timer0 and Timer1 External Clock                           |
|              | Requirements210                                            |
| Table 19-6:  | Capture/Compare/PWM                                        |
|              | Requirements (CCP1 and CCP2)                               |
| Table 19-7:  | Parallel Slave Port Requirements                           |
|              | (PIC16C74A)212                                             |
| Table 19-8:  | SPI Mode Requirements                                      |
| Table 19-9:  | I <sup>2</sup> C Bus Start/Stop Bits Requirements 214      |
| Table 19-10: | I <sup>2</sup> C Bus Data Requirements215                  |
| Table 19-11: | USART Synchronous Transmission                             |
|              | Requirements                                               |
| Table 19-12: | USART Synchronous Receive                                  |
|              | Requirements                                               |
| Table 19-13: | A/D Converter Characteristics:                             |
|              | PIC16C73A/74A-04                                           |
|              | (Commercial, Industrial, Extended)                         |
|              | PIC16C73A/74A-10                                           |
|              | (Commercial, Industrial, Extended)<br>PIC16C73A/74A-20     |
|              | (Commercial, Industrial, Extended)                         |
|              | PIC16LC73A/74A-04                                          |
|              | (Commercial, Industrial)                                   |
| Table 19-14: | A/D Conversion Requirements                                |
|              | 210                                                        |

| Table 20-1:         | Cross Reference of Device Specs<br>for Oscillator Configurations and<br>Frequencies of Operation |
|---------------------|--------------------------------------------------------------------------------------------------|
| <b>T</b>       00 0 | (Commercial Devices) 220                                                                         |
| Table 20-2:         | External Clock Timing<br>Requirements                                                            |
| Table 20-3:         | CLKOUT and I/O Timing                                                                            |
|                     | Requirements                                                                                     |
| Table 20-4:         | Reset, Watchdog Timer,                                                                           |
|                     | Oscillator Start-up Timer, Power-up<br>Timer, and brown-out reset                                |
|                     | Requirements                                                                                     |
| Table 20-5:         | Timer0 and Timer1 External Clock                                                                 |
|                     | Requirements 229                                                                                 |
| Table 20-6:         | Capture/Compare/PWM                                                                              |
|                     | Requirements (CCP1 and CCP2)                                                                     |
| Table 20-7:         | Parallel Slave Port Requirements                                                                 |
|                     | (PIC16C77)                                                                                       |
| Table 20-8:         | SPI Mode requirements 234                                                                        |
| Table 20-9:         | I <sup>2</sup> C Bus Start/Stop Bits Requirements 235                                            |
| Table 20-10:        | I <sup>2</sup> C Bus Data Requirements                                                           |
| Table 20-11:        | USART Synchronous Transmission                                                                   |
| <b>T</b> 11 00 40   | Requirements                                                                                     |
| Table 20-12:        | USART Synchronous Receive                                                                        |
| T-1-1-00.40         | Requirements                                                                                     |
| Table 20-13:        | A/D Converter Characteristics:                                                                   |
|                     | (Commercial, Industrial, Extended)                                                               |
|                     | PIC16C76/77-10                                                                                   |
|                     | (Commercial, Industrial, Extended)                                                               |
|                     | PIC16C76/77-20                                                                                   |
|                     | (Commercial, Industrial, Extended)                                                               |
|                     | PIC16LC76/77-04                                                                                  |
|                     | (Commercial, Industrial) 238                                                                     |
| Table 20-14:        | A/D Conversion Requirements 239                                                                  |
| Table 21-1:         | RC Oscillator Frequencies 247                                                                    |
| Table 21-2:         | Capacitor Selection for Crystal                                                                  |
|                     | Oscillators 248                                                                                  |
| Table E-1:          | Pin Compatible Devices                                                                           |

#### **ON-LINE SUPPORT**

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

#### Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

#### www.microchip.com

The file transfer site is available by using an FTP service to connect to:

#### ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
   Questions
- Design Tips
- Device Errata
- Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

#### **Connecting to the Microchip BBS**

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe<sup>®</sup> communications network.

#### Internet:

You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com

#### CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the **<Enter>** key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the **<Enter>** key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the **<Enter>** key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

#### Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

970301

**Trademarks:** The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.