

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

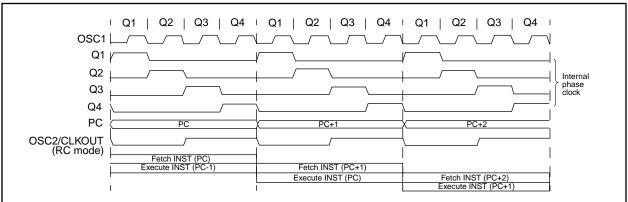
Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc76-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-4.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

	Тсу0	Tcy1	Tcy2	Тсу3	Tcy4	Tcy5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. CALL SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (F	Forced NOP)			Fetch 4	Flush	
5. Instruction @ addres	s SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

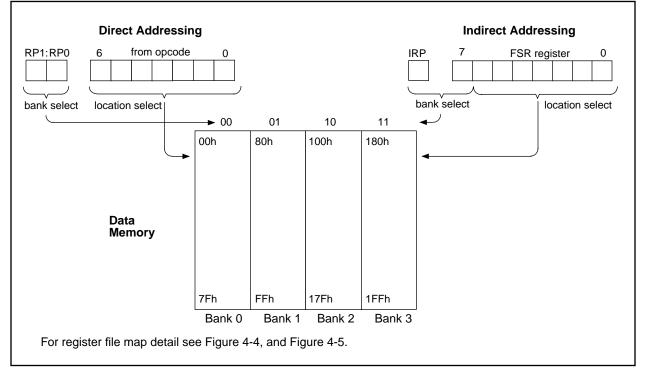
EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine
		;in page 0 (000h-7FFh)

4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

	•	cabl				
72	73	73A	74	74A	76	77

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-18.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movwf clrf incf	INDF FSR,F	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next</pre>
CONTINUE			
	:		;yes continue

FIGURE 4-18: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS Applicable Devices 72 73 73A 74 74A 76 77

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers Applicable Devices 72 73 73A 74 74A 76 77

PORTA is a 6-bit latch.

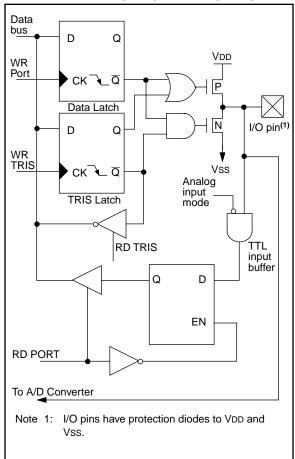
The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

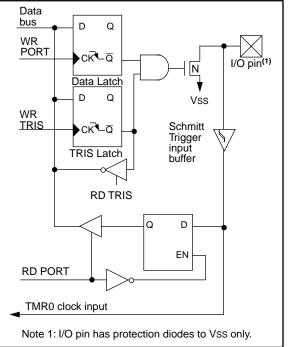
Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.


EXAMPLE 5-1: INITIALIZING PORTA

BCF	STATUS,	RP0	;	
BCF	STATUS,	RP1	;	PIC16C76/77 only
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<5:4> as outputs
			;	TRISA<7:6> are always
			;	read as '0'.

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

NOTES:

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices

The CCP2 module is not implemented on the PIC16C72 device.

If the CCP1 or CCP2 module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

8.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L) Applicable Devices 72|73|73A|74|74A|76|77

TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding reg	Holding register for the Least Significant Byte of the 16-bit TMR1 register								uuuu uuuu
0Fh	TMR1H	Holding reg	Holding register for the Most Significant Byte of the 16-bit TMR1 register								uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

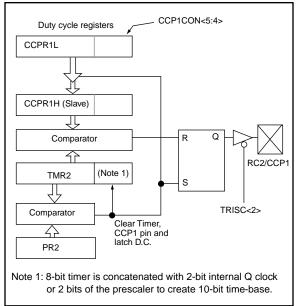
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

10.3 <u>PWM Mode</u>

Applicable Devices


In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

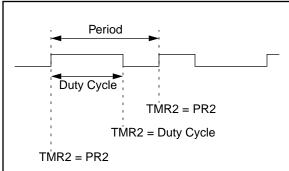

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 9.1) is						
	not used in the determination of the PWM						
	frequency. The postscaler could be used to						
	have a servo update rate at a different fre-						
	quency than the PWM output.						

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

11.3 SPI Mode for PIC16C76/77

Γ

This section contains register definitions and operational characteristics of the SPI module on the PIC16C76 and PIC16C77 only.

FIGURE 11-7: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)(PIC16C76/77)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0						
SMP	CKE	D/Ā	Р	S	R/W	UA	BF	R = Readable bit					
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset					
bit 7:	SMP: SPI data input sample phase SPI Master Mode 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave Mode SMP must be cleared when SPI is used in slave mode												
bit 6:	$\frac{CKP = 0}{1 = Data}$ $0 = Data$ $\frac{CKP = 1}{1 = Data}$	<u>0</u> a transmi a transmi <u>1</u> a transmi	itted on ris itted on fal itted on fal	ing edge of ling edge o ling edge o	f SCK f SCK	e 11-12, and	d Figure 11-	13)					
bit 5:	 0 = Data transmitted on rising edge of SCK D/Ā: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 												
bit 4:	 P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is detected last, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last 												
bit 3:	detecte 1 = Indi	d last, SS cates tha	SPEN is clo it a start bi	eared) t has been	cleared whe			lisabled, or when the Stop bit is					
bit 2:	 0 = Start bit was not detected last R/W: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next start bit, stop bit, or ACK bit. 1 = Read 0 = Write 												
bit 1:	1 = Indi	cates tha	t the user	it I ² C mode needs to u I to be upda	pdate the ad	dress in the	e SSPADD re	egister					
bit 0:	BF: Buf	fer Full S	tatus bit										
	1 = Rec 0 = Rec	eive com eive not	complete,	es) PBUF is ful SSPBUF is									
	1 = Trar		rogress, S	SPBUF is t PBUF is en									

٦

11.5.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set. An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 11-25: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

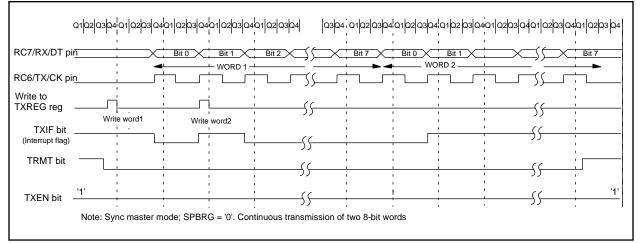
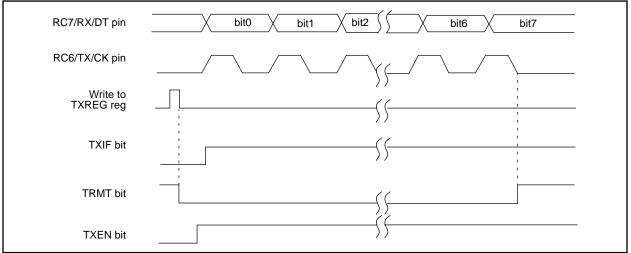

Receiving Address R/W SDA -	=0Receiving Data ' ^{ACK} /D7XD6XD5XD4XD3XD2XD1XE 		
SSPIF (PIR1<3>)	Cleared in software		Bus Master terminates transfer
SSPOV (SSPCON<6>)			
	Bit SSPOV is set b	ecause the SSPBUF register is still free and the second structure of the second second structure of the second sec	

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat		0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

FIGURE 12-12: SYNCHRONOUS TRANSMISSION

FIGURE 12-13: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.4 USART Synchronous Slave Mode

Applicable Devices 72 73 73A 74 74A 76 77

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

14.4 Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST), and Brown-out Reset (BOR) Applicable Devices 72 73 73 74 74 76 77

14.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

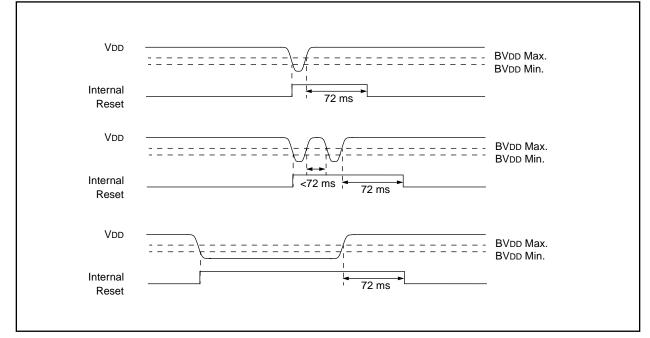
When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting.*"

14.4.2 POWER-UP TIMER (PWRT)

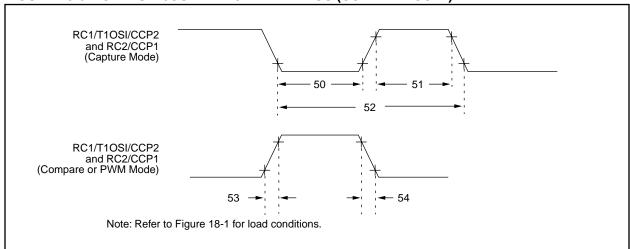
The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.


14.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.


14.4.4 BROWN-OUT RESET (BOR) Applicable Devices 72 73 73 74 74 76 77

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 14-9 shows typical brown-out situations.

FIGURE 14-9: BROWN-OUT SITUATIONS

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

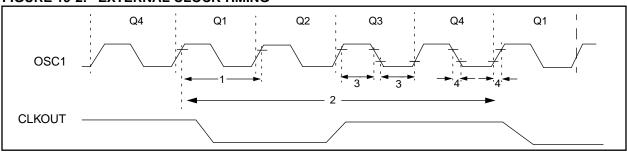
TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	_	ns	
		input low time		PIC16 C 73/74	10	_	_	ns	
			With Prescaler	PIC16 LC 73/74	20	—	_	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	—	ns	
		input high time	With Prescaler	PIC16 C 73/74	10		-	ns	
				PIC16 LC 73/74	20	—	_	ns	
52*	TccP	CCP1 and CCP2 input period			<u>3Tcy + 40</u> N	_	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output fall time	PIC16 C 73/74	_	10	25	ns	
				PIC16 LC 73/74	_	25	45	ns	
54*	54* TccF CCP1 and CCP2 output fall time		PIC16 C 73/74	_	10	25	ns		
				PIC16 LC 73/74	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77


19.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	<u>CS</u>	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st ((I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
L	9-1: LOAD CONDITIONS		
	Load condition 1		Load condition 2
	VDD/2		
	✓ →		
	• • • • • • • • • • • • • • • • • • • •	ſ	"' ↓
	Vss		Vss
	$RL = 464\Omega$		-
	CL = 50 pF for all pins except OSC2, but in ports	ncluaing PORT	D and FORTE outputs as
	15 pF for OSC2 output		
	Note: PORTD and PORTE are not implement	ted on the PIC1	6C73A.

Applicable Devices 72 73 73A 74 74A 76 77

19.5 <u>Timing Diagrams and Specifications</u>

FIGURE 19-2: EXTERNAL CLOCK TIMING

TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

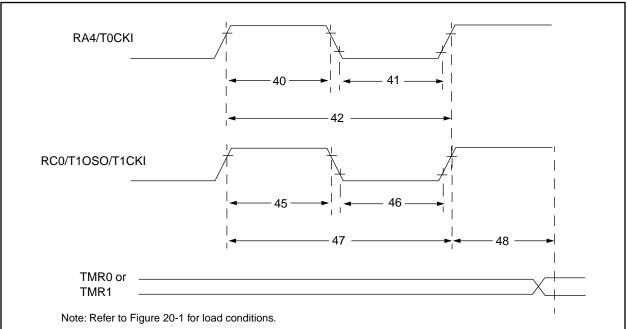
arameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
	(Note 1)		DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	_	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	_	μs	LP oscillator
			15	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 72 73 73A 74 74A 76 77

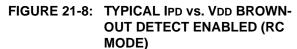
20.4 <u>Timing Parameter Symbology</u>

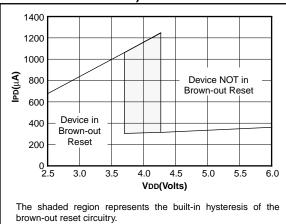

The timing parameter symbols have been created following one of the following formats:

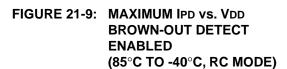
1. TppS2	ppS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck		rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	case letters and their meanings:		
S	F _1		Period
F	Fall	P	
H	High	R V	Rise Valid
	Invalid (Hi-impedance) Low	Z	Hi-impedance
	LOW	2	I II-IIIpedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
	(I ² C specifications only)		
CC		0.1	
HD	Hold	SU	Setup
ST		OTO	
DAT STA	DATA input hold START condition	STO	STOP condition
FIGURE	20-1: LOAD CONDITIONS		
	Load condition 1		Load condition 2
	$VDD/2$ RL Pin CL Vss $RL = 464\Omega$	F	Din CL VSS
	CL = 50 pF for all pins except OSC2, but in ports		
	15 pF for OSC2 output		
	Note: PORTD and PORTE are not implement	ed on the PIC1	16C76.

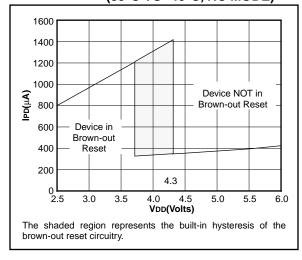
PIC16C7X

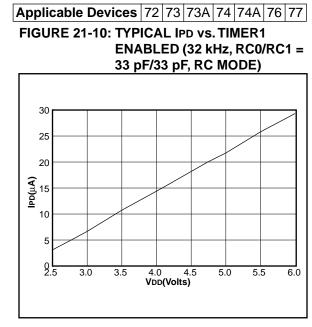
Applicable Devices 72 73 73A 74 74A 76 77

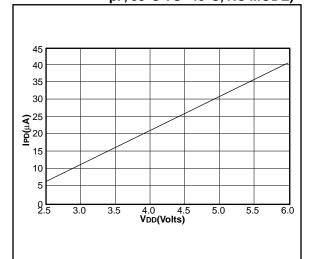



TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

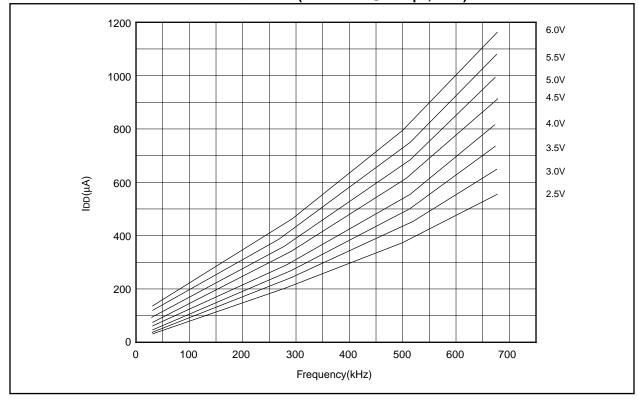
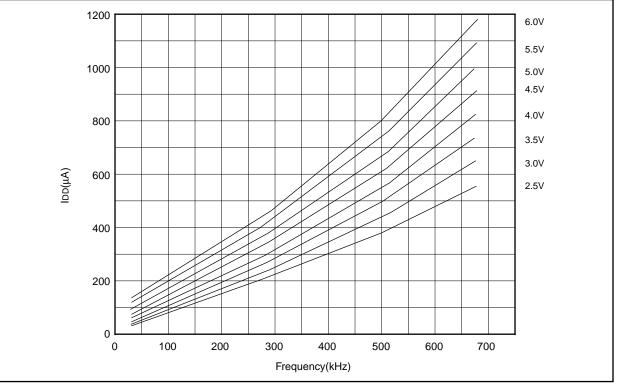

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	-	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	-	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	-	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	—	ns	N = prescale valu (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	- 1	_	ns	Must also meet
		L C	Synchronous,	PIC16 C 7X	15	- 1	_	ns	parameter 47
		Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns		
			Asynchronous	PIC16 C 7X	30	-	—	ns	
				PIC16 LC 7X	50	-	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
47* Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-		ns	N = prescale valu (1, 2, 4, 8)	
				PIC16 LC 7X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale valu (1, 2, 4, 8)
			Asynchronous	PIC16 C 7X	60	- 1	-	ns	
				PIC16 LC 7X	100	-	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	-	200	kHz	
48	TCKEZtmr	1 Delay from external	clock edge to tir	ner increment	2Tosc	_	7Tosc	—	

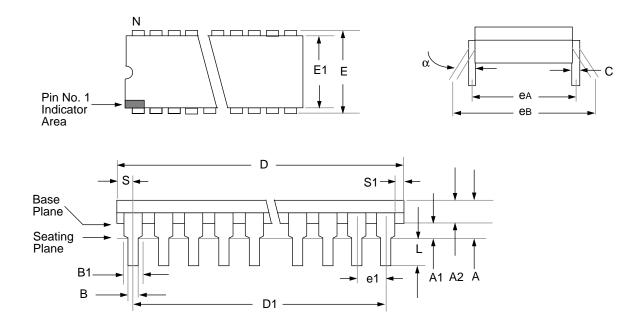

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



Applicable Devices 72 73 73 74 74 76 77 FIGURE 21-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)


FIGURE 21-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

Data based on matrix samples. See first page of this section for details.

PIC16C7X

22.4 40-Lead Plastic Dual In-line (600 mil) (P)

Package Group: Plastic Dual In-Line (PLA)						
	Millimeters					
Symbol	Min	Мах	Notes	Min	Max	Notes
α	0°	10°		0 °	10°	
А	_	5.080		_	0.200	
A1	0.381	_		0.015	-	
A2	3.175	4.064		0.125	0.160	
В	0.355	0.559		0.014	0.022	
B1	1.270	1.778	Typical	0.050	0.070	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.181	52.197		2.015	2.055	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	13.462	13.970		0.530	0.550	
e1	2.489	2.591	Typical	0.098	0.102	Typical
eA	15.240	15.240	Reference	0.600	0.600	Reference
eB	15.240	17.272		0.600	0.680	
L	2.921	3.683		0.115	0.145	
N	40	40		40	40	
S	1.270	_		0.050	_	
S1	0.508	_		0.020	_	

U

UA78, 83 Universal Synchronous Asynchronous Receiver Transmitter (USART)99 Update Address bit, UA78, 83 USART
Asynchronous Mode106
Asynchronous Receiver 108
Asynchronous Reception109
Asynchronous Transmission
Asynchronous Transmitter
Baud Rate Generator (BRG)101
Receive Block Diagram108
Sampling104
Synchronous Master Mode110
Synchronous Master Reception112
Synchronous Master Transmission
Synchronous Slave Mode114
Synchronous Slave Reception114
Synchronous Slave Transmit114
Transmit Block Diagram106
UV Erasable Devices7

W

W Register	
ALU	9
Wake-up from SLEEP	145
Watchdog Timer (WDT) 1	29, 133, 136, 144
WCOL	
WDT	
Block Diagram	144
Period	144
Programming Considerations	
Timeout	
Word	129
WR pin	54
Write Collision Detect bit, WCOL	

Х

XMIT_MODE	
7	

Z bit)
Zero	bit)

LIST OF EXAMPLES

Evernale 2.1	Instruction Dinaling Flow
Example 3-1:	Instruction Pipeline Flow17
Example 4-1:	Call of a Subroutine in Page 1
F 1 4 0	from Page 041
Example 4-2:	Indirect Addressing41
Example 5-1:	Initializing PORTA43
Example 5-2:	Initializing PORTB45
Example 5-3:	Initializing PORTC48
Example 5-4:	Read-Modify-Write Instructions
	on an I/O Port53
Example 7-1:	Changing Prescaler (Timer0→WDT)63
Example 7-2:	Changing Prescaler (WDT→Timer0)63
Example 8-1:	Reading a 16-bit Free-Running Timer67
Example 10-1:	Changing Between Capture
	Prescalers73
Example 10-2:	PWM Period and Duty Cycle
	Calculation75
Example 11-1:	Loading the SSPBUF (SSPSR)
•	Register
Example 11-2:	Loading the SSPBUF (SSPSR)
	Register (PIC16C76/77)85
Example 12-1:	Calculating Baud Rate Error101
Equation 13-1:	A/D Minimum Charging Time120
Example 13-1:	Calculating the Minimum Required
	Acquisition Time120
Example 13-2:	A/D Conversion122
Example 13-3:	4-bit vs. 8-bit Conversion Times
Example 14-1:	Saving STATUS, W, and PCLATH
	Registers in RAM143