

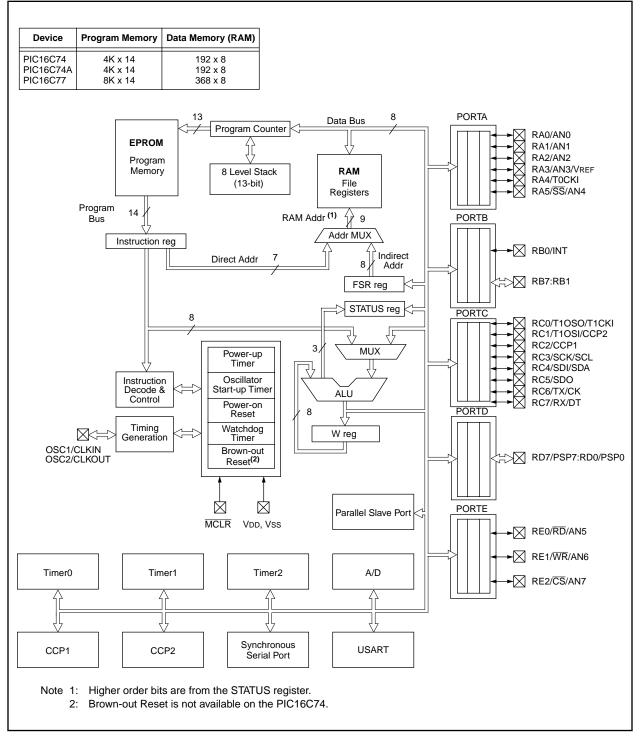
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc76t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-3: PIC16C74/74A/77 BLOCK DIAGRAM

4.2.2.4 PIE1 REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit						
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 						
bit 7:	Unimplemented: Read as '0'													
bit 6:	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt													
bit 5-4:	Unimplemented: Read as '0'													
bit 3:	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt													
bit 2:	CCP1IE : 0 1 = Enabl 0 = Disab	es the CC	P1 interru	pt										
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt													
bit 0:	1 = Enabl	es the TM	erflow Inte R1 overflo IR1 overflo	w interrup	ot									

FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)

PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R	= Readable bit				
bit7	1						bit0	U	 Writable bit Unimplemented bit, read as '0' Value at POR reset 				
bit 7:	1 = Enabl	Parallel S es the PS les the PS	P read/wr	te interrup		Enable bit							
bit 6:	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt												
bit 5:	RCIE : USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt												
bit 4:	TXIE : USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt												
bit 3:	1 = Enabl	ynchronou es the SS les the SS	P interrup	t	pt Enable b	bit							
bit 2:	1 = Enabl	CCP1 Inte es the CC les the CC	P1 interru	pt									
bit 1:	1 = Enabl	TMR2 to F es the TM les the TM	R2 to PR2	2 match in	•								
bit 0:	1 = Enabl	TMR1 Ove es the TM les the TM	R1 overflo	w interrup	ot								
Note 1:	PIC16C73					Slave Port i	mplemente	ed, tl	his bit location is reserved				

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

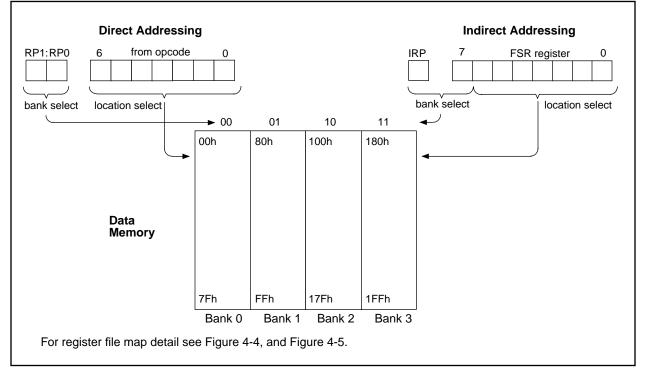
EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine
		;in page 0 (000h-7FFh)

4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

	•	cabl				
72	73	73A	74	74A	76	77

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-18.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movwf clrf incf	INDF FSR,F	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next</pre>
CONTINUE			
	:		;yes continue

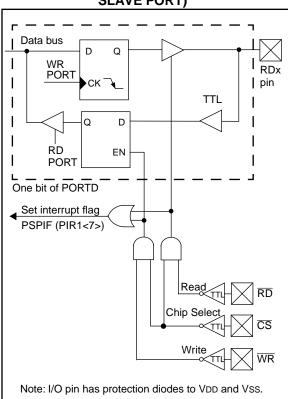
FIGURE 4-18: DIRECT/INDIRECT ADDRESSING

5.7 Parallel Slave Port Applicable Devices 72 73 73 74 74 76 77

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin RE0/ \overline{RD} /AN5 and \overline{WR} control input pin RE1/ \overline{WR} /AN6.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/ WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

NOTES:

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	
<u> </u>	TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 R = Readable bit	
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7:	Unimplemented: Read as '0'	
bit 6-3:	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits 0000 = 1:1 Postscale 0001 = 1:2 Postscale • • 1111 = 1:16 Postscale	
bit 2:	TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off	
bit 1-0:	T2CKPS1:T2CKPS0 : Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16	

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Period Register									1111 1111

 Legend:
 x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

 Note
 1:
 Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

 2:
 The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

11.5.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.5.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

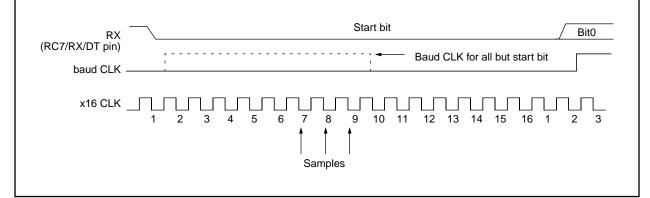
- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

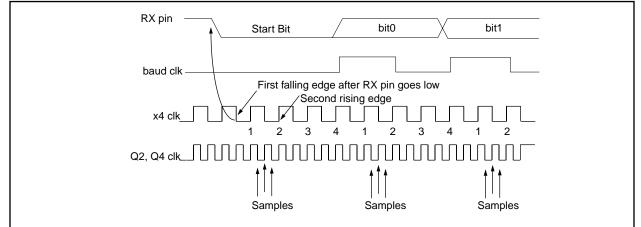
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buffe	r/Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) Ad	ldress Re	gister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	ta Directi	1111 1111	1111 1111						

TABLE 11-5: REGISTERS ASSOCIATED WITH I²C OPERATION

 $\label{eq:Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.$


Note 1: PSPIF and PSPIE are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The SMP and CKE bits are implemented on the PIC16C76/77 only. All other PIC16C7X devices have these two bits unimplemented, read as '0'.


12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

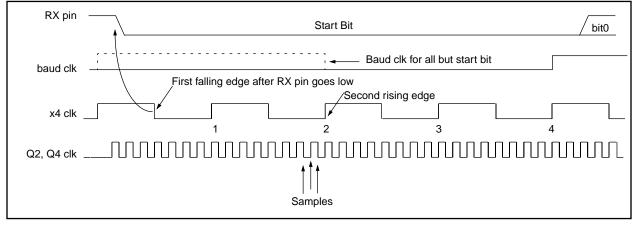

FIGURE 12-3: RX PIN SAMPLING SCHEME. BRGH = 0 (PIC16C73/73A/74/74A)

FIGURE 12-4: RX PIN SAMPLING SCHEME, BRGH = 1 (PIC16C73/73A/74/74A)

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

FIGURE 14-20: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; a1 a2 a3 a4 ; a1 a2 a osc1/^_/_/_/_//	23 Q4 Q1	Q1 Q2 Q3 Q4	; q1 q2 q3 q4 ; ////////////////////////////////////	Q1 Q2 Q3 Q4 ;	Q1 Q2 Q3 Q4; ∕──∕──∕─
CLKOUT(4) ,//	Tost(2)			\'	'
INT pin				1 1 1	
INTF flag (INTCON<1>)	`	1	Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	Processor in SLEEP			ו ו ו ו	1 1 1
INSTRUCTION FLOW				1	1
PC X PC X PC+1	X PC+2	PC+2	PC + 2	X 0004h	0005h
Instruction $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	+ 1)	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction executed I Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1. XT US or Descillator mode on					

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

14.9 <u>Program Verification/Code Protection</u>

Applicable Devices

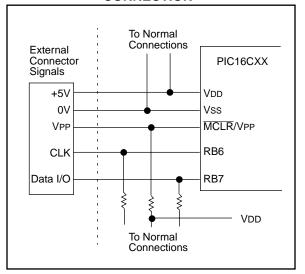
72 73 73A 74 74A 76 77

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

14.10 ID Locations

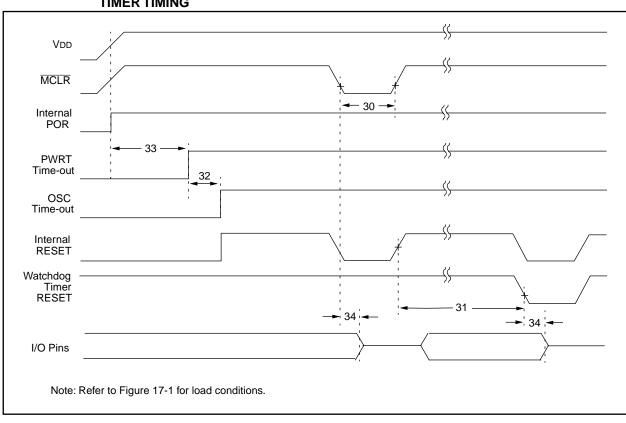
Applicable Devices
72 73 73A 74 74A 76 77

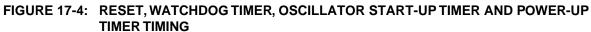

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

14.11 In-Circuit Serial Programming Applicable Devices 72/73/73A/74/74A/76/77

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).


FIGURE 14-21: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION



BTFSS	Bit Test f, S	Skip if S	iet		CALL	Call Sub	oroutine		
Syntax:	[<i>label</i>] BTFS	SS f,b			Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \le f \le 127$			Operands:	$0 \le k \le 2047$				
	0 ≤ b < 7				Operation:	(PC)+ 1-	,		
Operation:	skip if (f)	•) = 1				$k \rightarrow PC <$		DO 40	
Status Affected:	None						1<4:3>) -	→ PC<12:	:11>
Encoding:	01 1	l1bb	bfff	ffff	Status Affected:	None	1		
Description:	If bit 'b' in regi			ne next	Encoding:	10	0kkk	kkkk	kkkk
Words:	instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2Tcy instruction.			Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	t, return ac nto the stac address is The upper om PCLAT	k. The s loaded bits of	
Cycles:	1(2)					is a two cy	cle instruc	ction.	
Q Cycle Activity:	Q1	Q2	Q3	Q4	Words:	1			
Q CYCIE ACTIVITY.		Read	Process	No-	Cycles:	2			
		egister 'f'	data	Operation	Q Cycle Activity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cycle)				1st Cycle	Decode	Read literal 'k',	Process data	Write to PC
	Q1	Q2	Q3	Q4			Push PC to Stack		
	No- Operation Op	No- peration	No- Operation	No- Operation	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation
Example			FLAG,1 PROCESS	CODE	Example	HERE	CALL	THERE	
	TRUE •			_0022		Before Ir	nstruction		
	•					After Ins		ddress HE	RE
	Before Instru	uction						ddress TH	ERE
	PC After Instruc if F PC	ction LAG<1>	address FA				TOS = A	ddress he	RE+1
	PC		address TI	RUE					

RETLW	Return with Literal in W		RETURN	Return f	rom Sub	routine				
Syntax:	[<i>label</i>] RETLW k			Syntax:	[label]	RETUR	N			
Operands:	$0 \le k \le 255$			Operands:	None					
Operation:	$k \rightarrow (W);$				Operation:	$TOS \to PC$				
	$TOS \to F$	С			Status Affected:	None				
Status Affected:	None				Encoding:	00	0000	0000	1000	
Encoding:	11	01xx	kkkk	kkkk	Description:	Return fro	m subrout	ine. The st	ack is	
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the				POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.					
	return add	,	s is a two c	cycle	Words:	1				
Words:	1				Cycles:	2				
Cycles:	2				Q Cycle Activity:	Q1	Q2	Q3	Q4	
Q Cycle Activity:	2 Q1	Q2	Q3	Q4	1st Cycle	Decode	No- Operation	No- Operation	Pop from the Stack	
1st Cycle	Decode	Read literal 'k'	No- Operation	Write to W, Pop from the Stack	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation	
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation	Example	RETURN				
	Operation	Operation	Operation	Operation		After Inte	errupt			
Example	CALL TABL	;offset	tains tabl t value 7 has tabl				PC =	TOS		
TABLE	ADDWF PC RETLW k1 RETLW k2	;W = off ;Begin t ;								
	RETLW kn	; End of	f table							
	Before In									
	After Inst		0x07							
			value of k	8						

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 17-5: BROWN-OUT RESET TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	—	μs	$VDD \le BVDD (D005)$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

18.2 DC Characteristics: PIC16LC73/74-04 (Commercial, Industrial)

DC CHA	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions	
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details	
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D020 D021 D021A	Power-down Current (Note 3,5)	IPD		7.5 0.9 0.9	30 13.5 18	μΑ μΑ μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 72 73 73 74 74 76 77 FIGURE 21-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

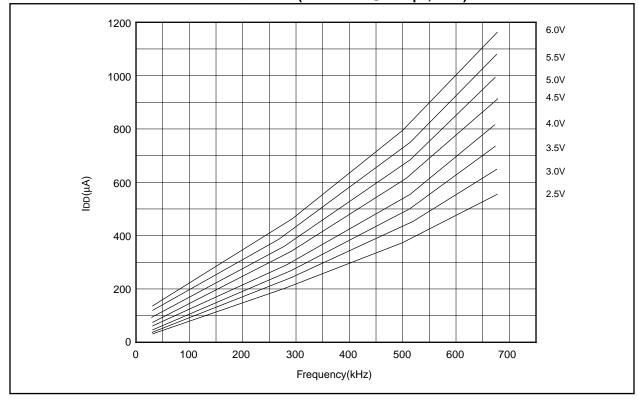
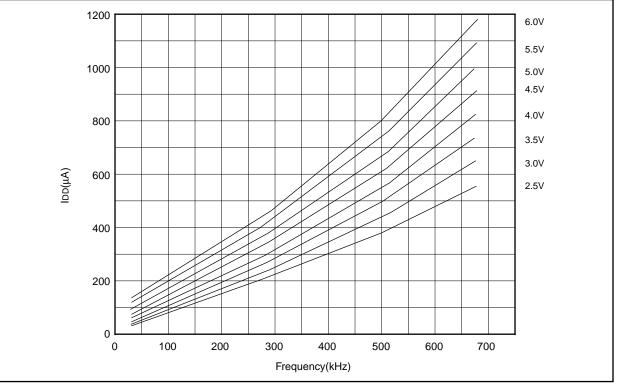
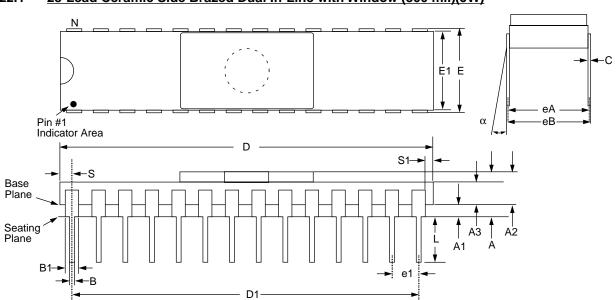




FIGURE 21-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

Data based on matrix samples. See first page of this section for details.

22.0 PACKAGING INFORMATION

22.1 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)

Package Group: Ceramic Side Brazed Dual In-Line (CER)								
Cumhal		Millimeters		Inches				
Symbol	Min	Мах	Notes	Min	Max	Notes		
α	0 °	10°		0°	10°			
А	3.937	5.030		0.155	0.198			
A1	1.016	1.524		0.040	0.060			
A2	2.921	3.506		0.115	0.138			
A3	1.930	2.388		0.076	0.094			
В	0.406	0.508		0.016	0.020			
B1	1.219	1.321	Typical	0.048	0.052			
С	0.228	0.305	Typical	0.009	0.012			
D	35.204	35.916		1.386	1.414			
D1	32.893	33.147	Reference	1.295	1.305			
E	7.620	8.128		0.300	0.320			
E1	7.366	7.620		0.290	0.300			
e1	2.413	2.667	Typical	0.095	0.105			
eA	7.366	7.874	Reference	0.290	0.310			
eB	7.594	8.179		0.299	0.322			
L	3.302	4.064		0.130	0.160			
Ν	28	28		28	28			
S	1.143	1.397		0.045	0.055			
S1	0.533	0.737		0.021	0.029			

E.3 PIC16C15X Family of Devices

		PIC16C154	PIC16CR154	PIC16C156	PIC16CR156	PIC16C158	PIC16CR158
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x12 words)	512		1K		2К	
Memory	ROM Program Memory (x12 words)	—	512	—	1K	—	2К
	RAM Data Memory (bytes)	25	25	25	25	73	73
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	12	12
	Voltage Range (Volts)	3.0-5.5	2.5-5.5	3.0-5.5	2.5-5.5	3.0-5.5	2.5-5.5
Features	Number of Instructions	33	33	33	33	33	33
	Packages	18-pin DIP, SOIC; 20-pin SSOP					

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

E.4 PIC16C5X Family of Devices

		PIC16C52	PIC16C54	PIC16C54A	PIC16CR54A	PIC16C55	PIC16C56
Clock	Maximum Frequency of Operation (MHz)	4	20	20	20	20	20
	EPROM Program Memory (x12 words)	384	512	512	—	512	1K
Memory	ROM Program Memory (x12 words)	-	—	—	512	—	—
	RAM Data Memory (bytes)	25	25	25	25	24	25
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	20	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.0-6.25	2.5-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33	33	33
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP

		PIC16C57	PIC16CR57B	PIC16C58A	PIC16CR58A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
	EPROM Program Memory (x12 words)	2K	-	2К	—
Memory	ROM Program Memory (x12 words)	-	2К	—	2K
	RAM Data Memory (bytes)	72	72	73	73
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
	I/O Pins	20	20	12	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33
	Packages	28-pin DIP, SOIC, SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code protect and high I/O current capability.

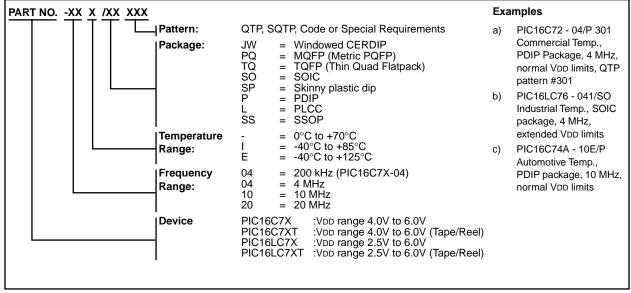

PIC16C7X

Figure 20-9:	SPI Master Mode Timing (CKE = 0)232
Figure 20-10:	SPI Master Mode Timing (CKE = 1)232
Figure 20-11:	SPI Slave Mode Timing (CKE = 0)
Figure 20-12:	SPI Slave Mode Timing (CKE = 1)
Figure 20-13:	I ² C Bus Start/Stop Bits Timing
Figure 20-14:	I ² C Bus Data Timing236
Figure 20-15:	USART Synchronous Transmission
	(Master/Slave) Timing237
Figure 20-16:	USART Synchronous Receive
0	(Master/Slave) Timing 237
Figure 20 17:	
Figure 20-17:	A/D Conversion Timing
Figure 21-1:	Typical IPD vs. VDD (WDT Disabled,
	RC Mode)241
Figure 21-2:	Maximum IPD vs. VDD (WDT
rigaro Er E.	
-	Disabled, RC Mode)
Figure 21-3:	Typical IPD vs. VDD @ 25°C (WDT
	Enabled, RC Mode)242
Figure 21-4:	Maximum IPD vs. VDD (WDT
rigulo 21 4.	
	Enabled, RC Mode)242
Figure 21-5:	Typical RC Oscillator
	Frequency vs. VDD242
Figure 21-6:	Typical RC Oscillator
rigaro Er o.	Frequency vs. VDD
Figure 21-7:	Typical RC Oscillator
	Frequency vs. VDD
Figure 21-8:	Typical IPD vs. VDD Brown-out
rigulo El 0.	
	Detect Enabled (RC Mode)
Figure 21-9:	Maximum IPD vs. VDD Brown-out
	Detect Enabled
	(85°C to -40°C, RC Mode)243
Figure 21 10:	
Figure 21-10:	Typical IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1= 33 pF/33 pF,
	RC Mode)243
Figure 21-11:	Maximum IPD vs. Timer1 Enabled
rigulo 21 11.	
	(32 kHz, RC0/RC1 = 33
	pF/33 pF, 85°C to -40°C, RC Mode) 243
Figure 21-12:	Typical IDD vs. Frequency
0	(RC Mode @ 22 pF, 25°C)244
Figure 01 10.	
Figure 21-13:	Maximum IDD vs. Frequency
	(RC Mode @ 22 pF, -40°C to 85°C) 244
Figure 21-14:	Typical IDD vs. Frequency
0	(RC Mode @ 100 pF, 25°C)245
Figure 01 1E	
Figure 21-15:	Maximum IDD vs. Frequency (
	RC Mode @ 100 pF, -40°C to 85°C) 245
Figure 21-16:	Typical IDD vs. Frequency
0	(RC Mode @ 300 pF, 25°C)246
Figure 04 47	
Figure 21-17:	Maximum IDD vs. Frequency
	(RC Mode @ 300 pF, -40°C to 85°C) 246
Figure 21-18:	Typical IDD vs. Capacitance @
-	500 kHz (RC Mode)247
Figure 21-19:	
Figure 21-19.	Transconductance(gm) of
	HS Oscillator vs. VDD247
Figure 21-20:	Transconductance(gm) of LP
•	Oscillator vs. VDD
Figure 21-21:	Transconductance(gm) of XT
1 igule 21-21.	
	Oscillator vs. VDD247
Figure 21-22:	Typical XTAL Startup Time vs. VDD
-	(LP Mode, 25°C)
Eiguro 21 22:	Typical XTAL Startup Time vs. VDD
Figure 21-23:	
	(HS Mode, 25°C)248
Figure 21-24:	Typical XTAL Startup Time vs. VDD
	(XT Mode, 25°C)
Figure 21-25:	Typical Idd vs. Frequency
1 iyule 21-20.	
	(LP Mode, 25°C)249
Figure 21-26:	Maximum IDD vs. Frequency
	(LP Mode, 85°C to -40°C)249

Figure 21-27:	Typical IDD vs. Frequency
	(XT Mode, 25°C) 249
Figure 21-28:	Maximum IDD vs. Frequency
	(XT Mode, -40°C to 85°C) 249
Figure 21-29:	Typical IDD vs. Frequency
	(HS Mode, 25°C) 250
Figure 21-30:	Maximum IDD vs. Frequency
	(HS Mode, -40°C to 85°C) 250

PIC16C7X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. The Microchip Website at www.microchip.com
- 2. Your local Microchip sales office (see following page)
- 3. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 4. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.