

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc77-04-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 0	D										
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	ldress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read		0x 0000	0u 0000
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	RTB pins wl	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	—	Unimpleme	nted							—	—
09h	—	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	r for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	—	Unimpleme	nted					•		—	_
0Eh	TMR1L	Holding register for the Least Significant Byte of the 16-bit TMR1 register							xxxx xxxx	uuuu uuuu	
0Fh	TMR1H	Holding reg	ister for the N	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	ffer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	SB)			-		xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	—	Unimpleme	nted							_	_
19h	—	Unimpleme	nted							—	—
1Ah	—	Unimplemented						—	_		
1Bh	_	Unimplemented								_	_
1Ch	—	Unimpleme	nted							_	—
1Dh	—	Unimpleme	nted							—	—
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

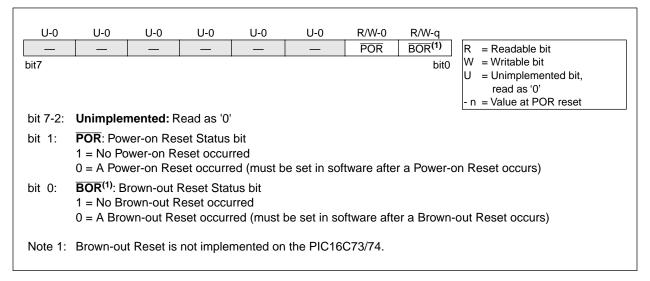
TABLE 4-1: PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

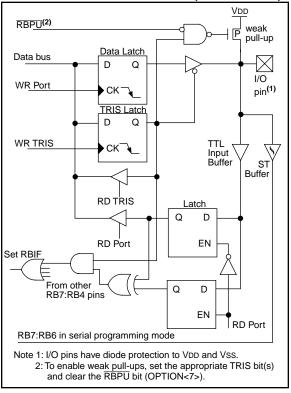
Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.


4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.

4.2.2.8 PCON REGISTER Applicable Devices 72/73/73A/74/74A/76/77


The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external $\overline{\text{MCLR}}$ Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-16: PCON REGISTER (ADDRESS 8Eh)

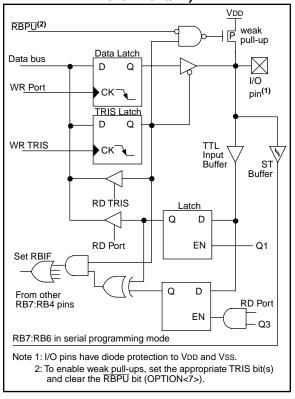


TABLE 5-3: PORTB FUNCTIONS

FIGURE 5-5: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C72/ 73A/74A/76/77)

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

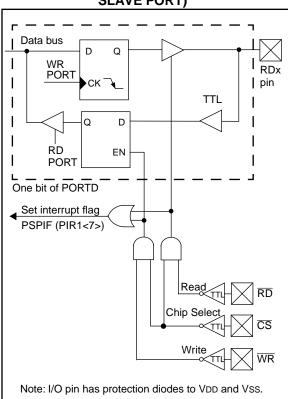
2: This buffer is a Schmitt Trigger input when used in serial programming mode.

5.7 Parallel Slave Port Applicable Devices 72 73 73 74 74 76 77

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin RE0/ \overline{RD} /AN5 and \overline{WR} control input pin RE1/ \overline{WR} /AN6.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/ WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

11.4 <u>I²C[™] Overview</u>

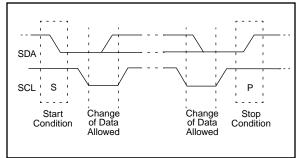
This section provides an overview of the Inter-Integrated Circuit (I^2C) bus, with Section 11.5 discussing the operation of the SSP module in I^2C mode.

The l^2C bus is a two-wire serial interface developed by the Philips Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. The enhanced specification (fast mode) is also supported. This device will communicate with both standard and fast mode devices if attached to the same bus. The clock will determine the data rate.

The l^2C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-3 defines some of the l^2C bus terminology. For additional information on the l^2C interface specification, refer to the Philips document "*The* l^2C bus and how to use it."#939839340011, which can be obtained from the Philips Corporation.

In the I²C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of as operating in either of these two relations:

- Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver


In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I²C bus is limited only by the maximum bus loading specification of 400 pF.

11.4.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

FIGURE 11-14: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

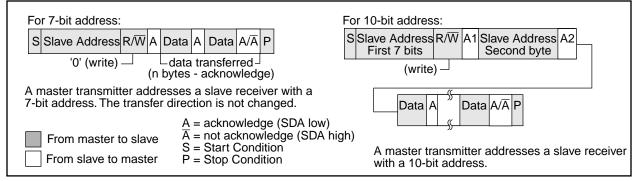

TABLE 11-3: I²C BUS TERMINOLOGY

Figure 11-19 and Figure 11-20 show Master-transmitter and Master-receiver data transfer sequences.

When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while

SCL is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-21.

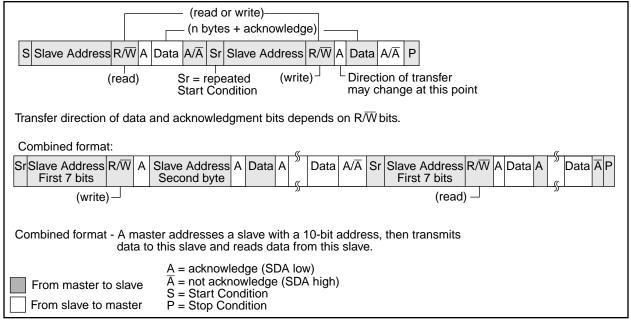

FIGURE 11-19: MASTER-TRANSMITTER SEQUENCE

FIGURE 11-20: MASTER-RECEIVER SEQUENCE

For 7-bit address:	Fc	or 10-bit address:
S Slave Address R/W A D	ata A Data A P S	Slave Address R/W A1 Slave Address A2 First 7 bits Second byte
	data transferred- rtes - acknowledge)	(write)
A master reads a slave imm	ediately after the first byte.	
From master to slave	$\begin{array}{l} A = acknowledge (SDA low) \\ \overline{A} = not acknowledge (SDA high) \\ S = Start Condition \\ P = Stop Condition \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

FIGURE 11-21: COMBINED FORMAT

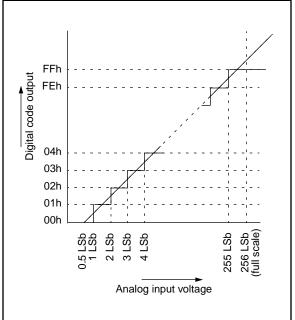
13.8 Use of the CCP Trigger Applicable Devices 72 73 73A 74 74A 76 77

Note: In the PIC16C72, the "special event trigger" is implemented in the CCP1 module.

An A/D conversion can be started by the "special event trigger" of the CCP2 module (CCP1 on the PIC16C72 only). This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

13.9 Connection Considerations Applicable Devices 72/73/73A/74/74A/76/77


If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

13.10 Transfer Function Applicable Devices 72 73 73 74 74 76 77

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 13-5).

FIGURE 13-5: A/D TRANSFER FUNCTION

13.11 References

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

14.8 Power-down Mode (SLEEP) Applicable Devices 727373A7474A7677

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

14.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/ l^2 C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. A/D conversion (when A/D clock source is RC).
- 7. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 8. USART TX or RX (synchronous slave mode).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

14.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

BTFSS	Bit Test	f, Skip if S	Set		CALL		Call Sub	routine		
Syntax:	[<i>label</i>] B1	TFSS f,b			Syntax:		[<i>label</i>] CALL k			
Operands:	$0 \le f \le 127$		Operands:		$0 \le k \le 2047$					
	0 ≤ b < 7				Operation:		(PC)+ 1-	→ TOS,		
Operation:	skip if (f<	:b>) = 1					$k \rightarrow PC <$,	DO 40	
Status Affected:	None				.			1<4:3>) -	→ PC<12	:11>
Encoding:	01	11bb	bfff	ffff	Status Affe	ected:	None		1	
Description:		register 'f' i		he next	Encoding:		10	0kkk	kkkk	kkkk
	instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2Tcy instruction.		Descriptior	n:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of			k. The s loaded bits of		
Words:	1						is a two cy		rom PCLAT ction.	H. CALL
Cycles:	1(2)				Words:		1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:		2			
	Decode	Read register 'f'	Process data	No- Operation	Q Cycle Ad	ctivity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	le)			15	st Cycle	Decode	Read literal 'k',	Process data	Write to PC
·	Q1	Q2	Q3	Q4				Push PC to Stack		
	No- Operation	No- Operation	No- Operation	No- Operation	2n	d Cycle	No- Operation	No- Operation	No- Operation	No- Operation
Example	HERE FALSE	BTFSC GOTO	FLAG,1 PROCESS_	_CODE	Example		HERE Before Ir	CALL	THERE	
	TRUE	•					Delote II		। ∖ddress н≘	RE
		•					After Inst	truction		
	Before In								Address TH Address HE	
	After Inst	ruction if FLAG<1: PC = if FLAG<1:	address F	ALSE				103 = 7		RE+1

PIC16C7X

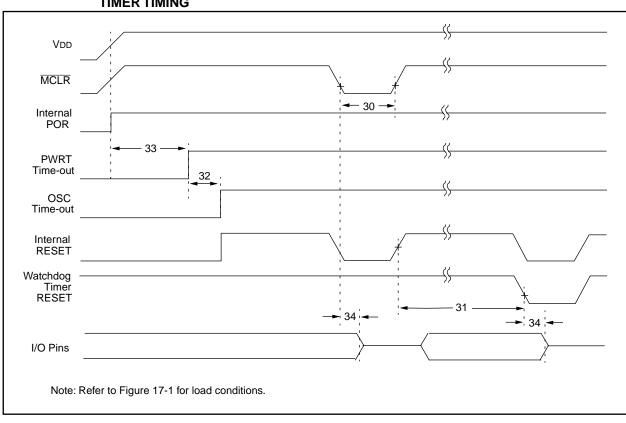
XORLW	Exclusive OR Literal with W						
Syntax:	[label]	XORL	V k				
Operands:	$0 \le k \le 2$	55					
Operation:	(W) .XO	$R.k \rightarrow (N)$	N)				
Status Affected:	Z						
Encoding:	11	1010	kkkk	kkkk			
Description:	XOR'ed v	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read literal 'k'	Process data	Write to W			
Example:	XORLW	0xAF					
	Before II	nstructio	n				
	W = 0xB5						
	After Ins	truction					
		W =	0x1A				

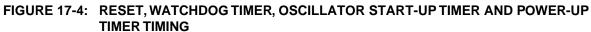
XORWF	Exclusiv	e OR W	with f				
Syntax:	[label]	XORWF	f,d				
Operands:	$0 \le f \le 12$ $d \in [0,1]$	7					
Operation:	(W) .XOF	$R.\left(f\right)\to(o$	destinatio	on)			
Status Affected:	Z						
Encoding:	00	0110	dfff	ffff			
Description:	register wi result is st	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to destination			
Example	XORWF		1				
	Before In	struction					
	$\begin{array}{rcl} REG &=& 0xAF \\ W &=& 0xB5 \end{array}$						
	After Inst	ruction					
		REG W	= 0x = 0x	1A B5			

17.2 DC Characteristics: PIC16LC72-04 (Commercial, Industrial)

DC CHA	itions (unless otherwise stated) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: This is the limit to which VDD can be lowered without losing RAM data.

 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

 $OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD <math>\overline{MCLR} = VDD; WDT$ enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 17-5: BROWN-OUT RESET TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	—	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	—	μs	$VDD \le BVDD (D005)$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

18.0 ELECTRICAL CHARACTERISTICS FOR PIC16C73/74

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	
Output clamp current, loк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD -	Voh) x Ioh} + Σ (Vol x Iol)
Note 0 , λ (alternative balance) (as a table $\overline{\mathbf{MOLD}}$ are inducting summation matching the 0 or 0	

- **Note 2:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
- Note 3: PORTD and PORTE are not implemented on the PIC16C73.

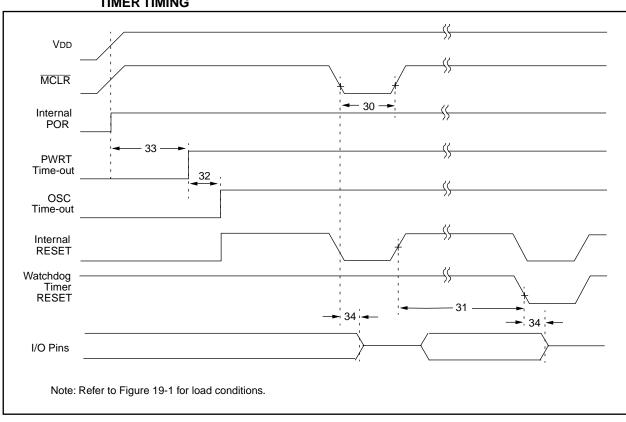
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 18-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C73-04 PIC16C74-04	PIC16C73-10 PIC16C74-10	PIC16C73-20 PIC16C74-20	PIC16LC73-04 PIC16LC74-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 13.5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 13.5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 15 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz 3.0V	

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

		Standa	rd Opera	ting	Conditio	ons (un	less otherwise stated)	
			ing tempe	-		•	\leq TA \leq +125°C for extended,	
	ARACTERISTICS	-40° C \leq TA \leq +85°C for industrial and						
	ARACTERISTICS		\leq TA \leq +70°C for commercial					
		Operati	ing voltage	e Vdi	D range a	as desc	ribed in DC spec Section 19.1 and	
		Section	i 19.2.					
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions	
No.				†				
	Output High Voltage							
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С	
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С	
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С	
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin	
	Capacitive Loading Specs on Output Pins							
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when exter nal clock is used to drive OSC1.	
D101	All I/O pins and OSC2 (in RC	Сю	-	-	50	pF		
D102	mode) SCL, SDA in I ² C mode	Св	-	-	400	pF		


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 19-5: BROWN-OUT RESET TIMING

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100		_	μs	$VDD \le BVDD$ (D005)

These parameters are characterized but not tested.

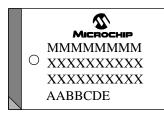
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

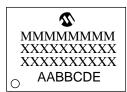
PIC16C7X

 Applicable Devices
 72
 73
 73A
 74
 74A
 76
 77

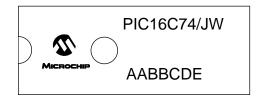
NOTES:

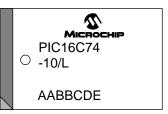
Package Marking Information (Cont'd)


40-Lead PDIP


40-Lead CERDIP Windowed

44-Lead PLCC


44-Lead MQFP


Example

Example

Example

Example

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁	Mask revision number for microcontroller
	E	Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will	nt the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PICSTART Low-Cost Development System	
PIE1 Register	
PIE2 Register	29, 37
Pin Compatible Devices	
Pin Functions	
MCLR/VPP	13, 14, 15
OSC1/CLKIN	13, 14, 15
OSC2/CLKOUT	13, 14, 15
RA0/AN0	13, 14, 15
RA1/AN1	
RA2/AN2	13, 14, 15
RA3/AN3/VREF	
RA4/T0CKI	
RA5/AN4/SS	
RB0/INT	13. 14. 15
RB1	
RB2	13. 14. 15
RB3	13, 14, 15
RB4	
RB5	
RB6	, ,
RB7	
RC0/T1OSO/T1CKI	
RC1/T1OSI	
RC1/T1OSI/CCP2	
RC2/CCP1	
RC3/SCK/SCL	
RC4/SDI/SDA	
RC5/SDO	
RC6	
RC0/1A/CK14,	10, 99-114
D07	. 40
RC7	
RC7/RX/DT14, 1	16, 99–114
RC7/RX/DT14, 1 RD0/PSP0	16, 99–114 16
RC7/RX/DT14, 1 RD0/PSP0 RD1/PSP1	16, 99–114 16 16
RC7/RX/DT	16, 99–114 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16 16 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16 16 16 16 16 16
RC7/RX/DT	16, 99–114
RC7/RX/DT .14, 7 RD0/PSP0	16, 99–114
RC7/RX/DT	16, 99–114
RC7/RX/DT .14, 7 RD0/PSP0	16, 99–114
RC7/RX/DT .14, 7 RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, 7 RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, 7 RD0/PSP0	16, 99–114
RC7/RX/DT .14, 7 RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114 16 16 16 16 16 16 16 16 16 16
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114 16 80-82 80-82 13, 14, 16 13 14 15 14 15 15 15 14 15 15
RC7/RX/DT .14, ' RD0/PSP0	16, 99–114 16 80-82 80-82 13, 14, 16 13, 14, 16 13 14 15 15 14 15 35 38

POR		134	135
Oscillator Start-up Timer (OST)			
Power Control Register (PCON)		123	125
Power-on Reset (POR)	120		136
Power-up Timer (PWRT)			
,			
Power-Up-Timer (PWRT) Time-out Sequence			
Time-out Sequence on Power-up			
POR bit			
Port RB Interrupt			
PORTA			
PORTA Register			
PORTB			
PORTB Register			
PORTC			<i>'</i>
PORTC Register			'
PORTD			
PORTD Register		25, 2	7, 50
PORTE			
PORTE Register		25, 2	7, 51
Power-down Mode (SLEEP)			. 145
PR2			29
PR2 Register		26.2	8 69
		20, Z	0, 00
Prescaler, Switching Between Timer0 and WD			
Prescaler, Switching Between Timer0 and WD	Т		63
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer	Т		63 . 163
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches	Т		63 . 163
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory	T 		63 . 163 9
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging	T 		63 . 163 9
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps	T 		63 . 163 9 40
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72	T 		63 . 163 9 40 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73	T		63 . 163 9 40 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A	T		63 . 163 9 40 19 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74	T		63 . 163 9 40 19 19 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74 PIC16C74A	T		63 . 163 9 40 19 19 19 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 PIC16C74 A Program Verification	T 		63 . 163 9 40 19 19 19 19 19 146
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A PIC16C74A Program Verification PS0 bit	T		63 . 163 9 40 19 19 19 19 19 19 146 31
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 A PIC16C74A Program Verification PS0 bit PS1 bit	T		63 . 163 9 40 19 19 19 19 19 19 31 31
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit	T		63 . 163 9 40 19 19 19 19 19 31 31 31
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS2 bit PSA bit	T		63 . 163 9 40 19 19 19 19 19 31 31 31 31
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSPIE bit	T		63 . 163 9 40 19 19 19 19 19 19 31 31 31 34
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A PIC16C74A Program Verification PS0 bit PS0 bit PS1 bit PS2 bit PSPIE bit	T		63 . 163 9 9 19 19 19 19 . 146 31 31 31 34 36
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSPIE bit PSPIF bit PSPMODE bit	T	50, 5	63 . 163 9 40 19 19 19 19 19 19 146 31 31 31 34 36 36 34 36 36 34 36 36 36 36
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A PIC16C74A Program Verification PS0 bit PS0 bit PS1 bit PS2 bit PSPIE bit	T	50, 5	63 . 163 9 40 19 19 19 19 19 19 146 31 31 31 34 36 36 34 36 36 34 36 36 36 36
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSPIE bit PSPIF bit PSPMODE bit	T	50, 5	63 . 163 9 40 19 19 19 19 19 19 146 31 31 31 34 36 36 34 36 36 34 36 36 36 36

R/W bit 90, 94, 95, 96 RBIF bit 45, 143 RBPU bit 31 RC Oscillator 132, 135 RCIE bit 34 RCIF bit 36 RCREG 29 RCV_MODE 98 RD pin 54 Read/Write bit Information, R/W 78, 83 Receive Overflow Detect bit, SSPOV 75 Receive Overflow Indicator bit, SSPOV 84 Register File 20	R/W	
RBPU bit 31 RC Oscillator 132, 135 RCIE bit 34 RCIF bit 36 RCREG 29 RCSTA Register 29, 100 RCV_MODE 96 RD pin 54 Read/Write bit Information, R/W 78, 83 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84	R/W bit	90, 94, 95, 96
RC Oscillator 132, 135 RCIE bit 34 RCIF bit 36 RCREG 29 RCSTA Register 29, 100 RCV_MODE 96 RD pin 54 Read/Write bit Information, R/W 78, 83 Read-Modify-Write 53 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84	RBIF bit	45, 143
RCIE bit 34 RCIF bit 36 RCREG 29 RCSTA Register 29, 100 RCV_MODE 96 RD pin 54 Read/Write bit Information, R/W 78, 83 Read-Modify-Write 55 Receive Overflow Detect bit, SSPOV 75 Receive Overflow Indicator bit, SSPOV 84	RBPU bit	
RCIF bit 36 RCREG 29 RCSTA Register 29, 100 RCV_MODE 96 RD pin 54 Read/Write bit Information, R/W 78, 83 Read-Modify-Write 55 Receive Overflow Detect bit, SSPOV 75 Receive Overflow Indicator bit, SSPOV 84	RC Oscillator	132, 135
RCREG 29 RCSTA Register 29, 100 RCV_MODE 96 RD pin 52 Read/Write bit Information, R/W 78, 83 Read-Modify-Write 53 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84	RCIE bit	
RCSTA Register 29, 100 RCV_MODE 98 RD pin 54 Read/Write bit Information, R/W 78, 83 Read-Modify-Write 53 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84	RCIF bit	
RCV_MODE 98 RD pin 54 Read/Write bit Information, R/W 78, 83 Read-Modify-Write 53 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84	RCREG	29
RD pin 54 Read/Write bit Information, R/W 78, 83 Read-Modify-Write 53 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84	RCSTA Register	29, 100
Read/Write bit Information, R/W 78, 83 Read-Modify-Write 53 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84		
Read-Modify-Write 53 Receive Overflow Detect bit, SSPOV 79 Receive Overflow Indicator bit, SSPOV 84	RD pin	
Receive Overflow Detect bit, SSPOV	Read/Write bit Information, R/W	
Receive Overflow Indicator bit, SSPOV	Read-Modify-Write	53
	Receive Overflow Detect bit, SSPOV	
Register File	Receive Overflow Indicator bit, SSPOV	
	Register File	20

PIC16C7X

LIST OF TABLES

Table 1-1:	PIC16C7XX Family of Devces6
Table 3-1:	PIC16C72 Pinout Description
Table 3-2:	PIC16C73/73A/76 Pinout Description 14
Table 3-3:	PIC16C74/74A/77 Pinout Description 15
Table 4-1:	PIC16C72 Special Function Register
	Summary
Table 4-2:	PIC16C73/73A/74/74A Special
	Function Register Summary25
Table 4-3:	PIC16C76/77 Special Function
	Register Summary27
Table 5-1:	PORTA Functions 44
Table 5-2:	Summary of Registers Associated
	with PORTA 44
Table 5-3:	PORTB Functions 46
Table 5-4:	Summary of Registers Associated
	with PORTB47
Table 5-5:	PORTC Functions 48
Table 5-6:	Summary of Registers Associated
	with PORTC 49
Table 5-7:	PORTD Functions 50
Table 5-8:	Summary of Registers Associated
	with PORTD 50
Table 5-9:	PORTE Functions 52
Table 5-10:	Summary of Registers Associated
	with PORTE52
Table 5-11:	Registers Associated with
	Parallel Slave Port55
Table 7-1:	Registers Associated with Timer063
Table 8-1:	Capacitor Selection for the
	Timer1 Oscillator 67
Table 8-2:	Registers Associated with Timer1
	as a Timer/Counter68
Table 9-1:	Registers Associated with
	Timer2 as a Timer/Counter
Table 10-1:	CCP Mode - Timer Resource
Table 10-2:	Interaction of Two CCP Modules71
Table 10-3:	Example PWM Frequencies and
Table 10 4	Resolutions at 20 MHz
Table 10-4:	Registers Associated with Capture,
Table 10 Fr	Compare, and Timer1
Table 10-5:	Registers Associated with PWM
Table 11 1.	and Timer276 Registers Associated with SPI
Table 11-1:	- 9
Table 11-2:	Operation
	Registers Associated with SPI Operation (PIC16C76/77)88
Table 11-3:	I ² C Bus Terminology
Table 11-3. Table 11-4:	Data Transfer Received Byte
	Actions
Table 11-5:	Registers Associated with I ² C
	Operation
Table 12-1:	Baud Rate Formula
Table 12-1:	Registers Associated with Baud
	Rate Generator
Table 12-3:	Baud Rates for Synchronous Mode 102
Table 12-3: Table 12-4:	Baud Rates for Asynchronous Mode
	(BRGH = 0)
Table 12-5:	Baud Rates for Asynchronous Mode
	(BRGH = 1)
Table 12-6:	Registers Associated with
	Asynchronous Transmission
Table 12-7:	Registers Associated with
	Asynchronous Reception

Table 12-8:	Registers Associated with Synchronous Mas-
	ter Transmission111
Table 12-9:	Registers Associated with Synchronous Mas-
Table 12-9.	•
	ter Reception112
Table 12-10:	Registers Associated with
	Synchronous Slave Transmission115
Table 12-11:	Registers Associated with
	Synchronous Slave Reception115
Table 13-1:	TAD vs. Device Operating
	Frequencies
Table 40.0	
Table 13-2:	Registers/Bits Associated with A/D,
	PIC16C72126
Table 13-3:	Summary of A/D Registers,
	PIC16C73/73A/74/74A/76/77127
Table 14-1:	Ceramic Resonators131
Table 14-2:	Capacitor Selection for Crystal
	Oscillator
T 11 440	
Table 14-3:	Time-out in Various Situations,
	PIC16C73/74135
Table 14-4:	Time-out in Various Situations,
	PIC16C72/73A/74A/76/77135
Table 14-5:	Status Bits and Their Significance,
	PIC16C73/74
T-1-1- 440	
Table 14-6:	Status Bits and Their Significance,
	PIC16C72/73A/74A/76/77136
Table 14-7:	Reset Condition for Special
	Registers136
Table 14-8:	Initialization Conditions for all
	Registers
Table 15 4.	
Table 15-1:	Opcode Field Descriptions
Table 15-2:	PIC16CXX Instruction Set148
Table 16-1:	Development Tools from Microchip166
Table 17-1:	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices)167
Table 17-2:	External Clock Timing
	Requirements173
Table 17-3:	CLKOUT and I/O Timing
	Requirements174
Table 17-4:	Reset, Watchdog Timer,
	Oscillator Start-up Timer, Power-up
	Timer, and brown-out Reset
	Requirements175
Table 17-5:	Timer0 and Timer1 External
	Clock Requirements176
Table 17-6:	Capture/Compare/PWM
	Requirements (CCP1)177
Table 47.7.	
Table 17-7:	SPI Mode Requirements178
Table 17-8:	I ² C Bus Start/Stop Bits
	Requirements179
Table 17-9:	I ² C Bus Data Requirements
Table 17-10:	A/D Converter Characteristics:
	PIC16C72-04
	(Commercial, Industrial, Extended)
	PIC16C72-10
	(Commercial, Industrial, Extended)
	PIC16C72-20
	(Commercial, Industrial, Extended)
	PIC16LC72-04
T-61. 47.11	(Commercial, Industrial)
Table 17-11:	A/D Conversion Requirements182
Table 18-1:	Cross Reference of Device
	Specs for Oscillator Configurations
	and Frequencies of Operation
	(Commercial Devices)
	(

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.