

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc77-04i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	5
2.0	PIC16C7X Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	. 19
5.0	I/O Ports	. 43
6.0	Overview of Timer Modules	. 57
7.0	Timer0 Module	. 59
8.0	Timer1 Module	. 65
9.0	Timer2 Module	. 69
10.0	Capture/Compare/PWM Module(s)	. 71
11.0	Synchronous Serial Port (SSP) Module	. 77
12.0	Universal Synchronous Asynchronous Receiver Transmitter (USART)	. 99
13.0	Analog-to-Digital Converter (A/D) Module	117
14.0	Special Features of the CPU	129
15.0	Instruction Set Summary	147
16.0	Development Support	163
17.0	Electrical Characteristics for PIC16C72	167
18.0	Electrical Characteristics for PIC16C73/74	183
19.0	Electrical Characteristics for PIC16C73A/74A	201
20.0	Electrical Characteristics for PIC16C76/77	219
21.0	DC and AC Characteristics Graphs and Tables	241
22.0	Packaging Information	251
Appe	ndix A:	263
Appe	ndix B: Compatibility	263
Appe	ndix C: What's New	264
Appe	ndix D: What's Changed	264
Appe	ndix E: PIC16/17 Microcontrollers	265
Pin C	Compatibility	271
Index	<	273
List o	f Examples	279
List o	f Figures	280
List o	f Tables	283
Read	ler Response	286
PIC1	6C7X Product Identification System	287

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. As an example, the legend below would mean that the following section applies only to the PIC16C72, PIC16C73A and PIC16C74A devices.

Applicable Devices 72 73 73A 74 74A 76 77

12|13|13A|14|14A|16|11

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

4.2.2.1 STATUS REGISTER Applicable Devices 72|73|73A|74|74A|76|77

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	<u>R-1</u>	<u>R-1</u>	R/W-x	R/W-x	R/W-x					
IRP bit7	RP1	RP0	TO	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7:	IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)											
bit 6-5:	RP1:RP0 : 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	Register I 3 (180h - 2 (100h - 3 (80h - F 3 (0 (00h - 7 4 is 128 by	3ank Sele 1FFh) 17Fh) FFh) 7Fh) ⁄tes	ct bits (use	ed for direct	addressin	g)					
bit 4:	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred											
bit 3:	PD : Power 1 = After p 0 = By exe	r-down bit ower-up c ecution of t	or by the C the SLEEF	LRWDT ins	truction n							
bit 2:	Z : Zero bit 1 = The re 0 = The re	sult of an	arithmetic arithmetic	or logic or or logic or	peration is z	ero not zero						
bit 1:	DC : Digit of 1 = A carry 0 = No car	carry/borrc y-out from rry-out froi	w bit (ADD the 4th lo m the 4th ł	WF, ADDLW W order bit	N, SUBLW, S t of the resu bit of the res	UBWF instr Ilt occurred Sult	uctions) (fo I	r $\overline{\mathrm{borrow}}$ the polarity is reversed)				
bit 0:	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.											

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

NOTES:

7.0 TIMER0 MODULE Applicable Devices 727373A7474A7677

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0

FIGURE 7-1: TIMER0 BLOCK DIAGRAM

Source Edge Select bit TOSE (OPTION<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

Applicable Devices

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

NOTES:

9.0 TIMER2 MODULE

Applicable Devices 72|73|73A|74|74A|76|77

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for PWM mode of the CCP module(s). The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 9-2 shows the Timer2 control register.

9.1 <u>Timer2 Prescaler and Postscaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 9-1: TIMER2 BLOCK DIAGRAM

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz TMR2 prescale = 1

1/78.125 kHz= [(PR2) + 1] • 4 • 1/20 MHz • 1

12.8 $\mu s = [(PR2) + 1] \cdot 4 \cdot 50 \text{ ns} \cdot 1$

PR2 = 63

Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator:

12.8 μ s = 2^{PWM RESOLUTION} • 50 ns • 1

 $256 = 2^{\text{PWM RESOLUTION}}$

 $log(256) = (PWM Resolution) \cdot log(2)$

8.0 = PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \le CCPR1L:CCP1CON<5:4> \le 255$. Any value greater than 255 will result in a 100% duty cycle. In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. The TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 10-4: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POF BOI	on: R, R	Valu all o res	e on ther ets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 (000x	0000	000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	0000	0000	0000
0Dh ⁽²⁾	PIR2	—	—	-	—	—	—	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	0000	0000	0000
8Dh ⁽²⁾	PIE2	—	—	_	—	—	—	—	CCP2IE		0		0
87h	TRISC	PORTC Da	ata Dire	ction Regis	ster	•	•		•	1111 1	1111	1111	1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	1 register		XXXX X	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the ?	16-bit TMR	1register		XXXX >	xxxx	uuuu	uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0	0000	uu	uuuu
15h	CCPR1L	Capture/Co	ompare	PWM regi	ster1 (LSB)					XXXX X	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Co	ompare	PWM regi	ster1 (MSB))				XXXX X	xxxx	uuuu	uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0	0000	00	0000
1Bh ⁽²⁾	CCPR2L	Capture/Co	Capture/Compare/PWM register2 (LSB)										uuuu
1Ch ⁽²⁾	CCPR2H	Capture/Co	ompare	PWM regi	ster2 (MSB))				XXXX >	xxxx	uuuu	uuuu
1Dh ⁽²⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.

11.3 SPI Mode for PIC16C76/77

Γ

This section contains register definitions and operational characteristics of the SPI module on the PIC16C76 and PIC16C77 only.

FIGURE 11-7: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)(PIC16C76/77)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0					
SMP	CKE	D/Ā	Р	S	R/W	UA	BF	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7:	 SMP: SPI data input sample phase <u>SPI Master Mode</u> Input data sampled at end of data output time Input data sampled at middle of data output time SPI Slave Mode SMP must be cleared when SPI is used in slave mode 											
bit 6:	CKE : S <u>CKP = 0</u> 1 = Data 0 = Data CKP = 2 1 = Data 0 = Data	PI Clock <u>0</u> a transmi a transmi <u>1</u> a transmi a transmi	Edge Sele itted on ris itted on fal itted on fal itted on ris	ct (Figure ing edge of ling edge o ling edge o ing edge of	11-11, Figure SCK f SCK f SCK SCK	e 11-12, and	d Figure 11-	13)				
bit 5:	 D/A: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 											
bit 4:	P: Stop detecter 1 = Indi 0 = Stop	bit (I ² C r d last, SS cates tha o bit was	mode only SPEN is clo it a stop bi not detect	This bit is eared) t has been ed last	cleared whe	en the SSP t (this bit is	module is d '0' on RESE	isabled, or when the Start bit is				
bit 3:	S : Start detecter 1 = Indi 0 = Star	bit (I ² C) d last, SS cates tha rt bit was	mode only SPEN is clo it a start bi not detect	. This bit is eared) t has been ted last	cleared whe	en the SSP at (this bit is	module is o	lisabled, or when the Stop bit is				
bit 2:	R/W : Re This bit address 1 = Rea 0 = Writ	ead/Write holds th match to id	e bit inform ne R/W bit o the next	ation (I ² C r informatio start bit, sto	node only) n following t op bit, or AC	the last add K bit.	dress match	. This bit is only valid from the				
bit 1:	UA : Upo 1 = Indi 0 = Add	date Add cates tha lress doe	ress (10-b it the user is not need	it I ² C mode needs to u I to be upda	only) pdate the ad ated	dress in the	e SSPADD re	egister				
bit 0:	BF: Buf	fer Full S	tatus bit									
	<u>Receive</u> 1 = Rec 0 = Rec	e (SPI an eive com eive not	d I ² C mod plete, SSI complete,	es) PBUF is ful SSPBUF is	l s empty							
	<u>Transmi</u> 1 = Trar 0 = Trar	i <u>t</u> (I ² C mo Ismit in p Ismit con	ode only) rogress, S nplete, SSI	SPBUF is t PBUF is en	full npty							

Г

FIGURE 11-8: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)(PIC16C76/77)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit				
bit7		· ·					bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7:	WCOL: We 1 = The SS (must be c 0 = No col	rite Collisic SPBUF reg leared in s lision	on Detect l jister is wi oftware)	bit itten while	it is still tr	ansmitting	the previou	is word				
bit 6:	SSPOV: Receive Overflow Indicator bit											
	$\frac{\text{In SPI mod}}{1 = A \text{ new}}$ the data in if only tran new recep 0 = No over	de byte is rece SSPSR is smitting da tion (and to erflow	eived while lost. Over ata, to avo ransmissio	e the SSPE flow can o bid setting bn) is initia	BUF regist nly occur overflow. I ted by wri	er is still ho in slave mo n master r ting to the	olding the pr ode. The use mode the ov SSPBUF re	evious data. In case of overflow, er must read the SSPBUF, even verflow bit is not set since each egister.				
	$\frac{\ln l^2 C \mod}{1 = A \text{ byte}}$ in transmit 0 = No over	<u>le</u> is received mode. SS erflow	while the POV mus	SSPBUF i t be cleare	register is d in softwa	still holding are in eithe	g the previou er mode.	us byte. SSPOV is a "don't care"				
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit							
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	<u>de</u> es serial po es serial po	ort and cor	nfigures So nfigures th	CK, SDO, lese pins a	and SDI as as I/O port	s serial port pins	pins				
	$\frac{\ln l^2 C \mod}{1 = \text{Enable}}$ $0 = \text{Disable}$ $\ln \text{ both model}$	<u>le</u> es the seria es serial po odes, when	al port and ort and co enabled,	l configure nfigures th these pins	s the SDA lese pins a s must be	and SCL as I/O port properly co	pins as seri pins onfigured as	al port pins s input or output.				
bit 4:	CKP : Cloc In SPI mod 1 = Idle sta 0 = Idle sta In I^2 C mod SCK relea 1 = Enable 0 = Holds	k Polarity \$ de ate for cloc ate for cloc de se control e clock clock low (Select bit k is a high k is a low clock stre	n level level tch) (Used	to ensure	data setu	p time)					
bit 3-0:	$\begin{array}{l} \textbf{SSPM3:S3} \\ 0000 = SF \\ 0001 = SF \\ 0010 = SF \\ 0100 = SF \\ 0100 = SF \\ 0101 = SF \\ 0110 = I^2 \\ 0111 = I^2 \\ 1011 = I^2 \\ 1110 = I^2 \\ 1111 = I^2 \\ \end{array}$	SPM0: Syn PI master n PI master n PI master n PI master n PI slave mc CI slave mc CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo	chronous node, cloc node, cloc node, cloc ode, clock ode, clock de, 7-bit a de, 10-bit controlled de, 7-bit a de, 10-bit	Serial Por k = Fosc/ ² k = Fosc/ ² k = Fosc/ ⁶ k = TMR2 = SCK pin = SCK pin ddress address t master m ddress wit address w	t Mode Se 4 16 64 0. <u>SS</u> pin c 1. <u>SS</u> pin c 1. <u>SS</u> pin c 1. th start an vith start a	elect bits ontrol enat ontrol disa e idle) d stop bit i nd stop bit	bled. bled. SS ca nterrupts er interrupts e	n be used as I/O pin nabled enabled				

NOTES:

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W					
Syntax:	[label] INCFSZ f,d	Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$					
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0	Status Affected:	Z					
Status Affected:	None	Encoding:	11 1000 kkkk kkkk					
Encoding:	00 1111 dfff ffff	Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The					
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in		result is placed in the vv register.					
	the W register. If 'd' is 1 the result is placed back in register 'f'.	vvords:	1					
	If the result is 1, the next instruction is executed. If the result is 0, a NOP is	Cycles:						
	executed instead making it a 2TCY instruction.	Q Cycle Activity:	Q1 Q2 Q3 Q4					
Words:	1		literal 'k' data W					
Cycles:	1(2)	- ·						
Q Cycle Activity:	Q1 Q2 Q3 Q4	Example						
	Decode Read Process Write to		Before Instruction $W = 0x9A$					
			After Instruction W = 0xBF Z = 1					
If Skip:	(2nd Cycle)							
	NO- NO- NO- Operation Operation Operation Operation							
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • • Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE +1							

16.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

16.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

16.8 <u>PICDEM-3 Low-Cost PIC16CXXX</u> Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

16.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

16.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

PIC16C7X

Applicabl	e Devices 72 73 73A 74 74A 76	6 77								
17.3 DC	Characteristics: PIC16C72-0 PIC16C72-1 PIC16C72-2 PIC16C72-2 PIC16LC72-	4 (Co 0 (Co 0 (Co 04 (Co	mmercia mmercia mmercia mmercia	ul, In ul, In ul, In ul, In al, In	dustrial dustrial dustrial dustrial	, Exte , Exte , Exte)	nded) nded) nded)			
		Standa	rd Opera	ting	Conditio	ns (un	less otherwise stated)			
DC CHARA	CTERISTICS	-40°C \leq TA \leq +72°C for industrial and 0°C \leq TA \leq +70°C for commercial								
		and Section 17.2								
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions			
	Input Low Voltage I/O ports	VIL								
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range			
D030A			Vss	-	0.8V	V	$4.5 \le VDD \le 5.5V$			
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V				
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V				
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1			
	Input High Voltage									
	I/O ports	Vih		-						
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$			
D040A			0.25VDD + 0.8V	-	VDD	V	For entire VDD range			
D041	with Schmitt Trigger buffer		0.8VDD	-	VDD	V	For entire VDD range			
D042	MCLR		0.8VDD	-	VDD	v				
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1			
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V				
D070	PORTB weak pull-up current	I PURB	50	250	†400	μA	VDD = 5V, VPIN = VSS			
	Input Leakage Current (Notes 2, 3)									
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance			
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$			
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			
	Output Low Voltage									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C			
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C			
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 18-13: A/D CONVERTER CHARACTERISTICS:

PIC16C73/74-04 (Commercial, Industrial) PIC16C73/74-10 (Commercial, Industrial) PIC16C73/74-20 (Commercial, Industrial) PIC16LC73/74-04 (Commercial, Industrial)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution		_	—	8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	Eabs	Total Absolute error			_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error	—	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$	
A04	Edl	Differential linearity error	—	_	< ± 1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A05	Efs	Full scale error	—	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A06	EOFF	Offset error		—	—	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	_	Monotonicity		—	guaranteed	_	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V		Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	_	Vref + 0.3	V	
A30	Zain	Recommended impedan analog voltage source	ce of	_	—	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 73/74	—	180	—	μΑ	Average current consump-
		(VDD)	PIC16 LC 73/74	—	90		μA	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)		10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.
				—	—	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 72 73 73A 74 74A 76 77

					<u> </u>					
		Standard Operating Conditions (unless otherwise stated)								
		Operati	ng tempe	ratur	e -40	°C ≤	\leq TA \leq +125°C for extended,			
					-4(\leq TA \leq +85°C for industrial and				
DC CHA	RACIERISTICS				0°0	< TA < +70°C for commercial				
		Operati	na voltaa	ribed in DC spec Section 19 1 and						
		Section	19 70 109	0.0	e runge e	.0 0000				
Derem	Characteristic				Max	L lusito	Conditions			
Param	Characteristic	Sym	IVIIN	тур	wax	Units	Conditions			
No.				1						
	Output High Voltage									
D090	I/O ports (Note 3)	Voh	VDD - 0.7	- 1	-	V	IOH = -3.0 mA, VDD = 4.5V,			
							-40°C to +85°C			
			Vpp - 0 7	- I	_	V	10H = -2.5 mA VDD = 4.5V			
Booon			100 0.1			Ů	-40° C to $\pm 125^{\circ}$ C			
Dooo										
D092	OSCZ/CLKOUT (RC osc coniig)		VDD - 0.7	-	-	V	10H = -1.3 mA, VDD = 4.5 V,			
							-40°C to +85°C			
D092A			Vdd - 0.7	1 -	-	V	IOH = -1.0 mA, VDD = 4.5V,			
							-40°C to +125°C			
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on									
	Output Pins									
D100	OSC2 nin	Cosca	_	- I	15	nF	In XT HS and I P modes when exter-			
	0002 pm	00002			10		nal clock is used to drive OSC1			
Dia		0.5			50	_				
101	All I/O pins and OSC2 (in RC	CIO	-	-	50	p⊢				
D102	mode) SCL, SDA in I ² C mode	Св	-	-	400	pF				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 20-13: A/D CONVERTER CHARACTERISTICS:

PIC16C76/77-04 (Commercial, Industrial, Extended) PIC16C76/77-10 (Commercial, Industrial, Extended) PIC16C76/77-20 (Commercial, Industrial, Extended) PIC16LC76/77-04 (Commercial, Industrial)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution			_	8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	Eabs	Total Absolute error			_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A04	Edl	Differential linearity error		_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A05	Efs	Full scale error		_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A06	Eoff	Offset error	_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A10	_	Monotonicity	—	guaranteed	_	_	$VSS \leq VAIN \leq VREF$	
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	Zain	Recommended impedar analog voltage source	nce of	—	—	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 76/77	—	180	_	μΑ	Average current consump-
		(VDD)	PIC16 LC 76/77	—	90	_	μΑ	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)		10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.
					_	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-17: A/D CONVERSION TIMING

TABLE 20-14: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 76/77	1.6	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16LC76/77	2.0	_	—	μs	Tosc based, VREF full range
			PIC16 C 76/77	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LC76/77	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H time) (Note 1)		_	9.5		TAD	
132	TACQ	Acquisition time		Note 2	20		μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert	\rightarrow sample time	1.5 §	—	—	TAD	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

PIC16C7X

Table 18-2:	external Clock Timing
	Requirements
Table 18-3:	CLKOUT and I/O Timing
Table 18-4	Reset Watchdog Timer Oscillator
	Start-up Timer and Power-up Timer
	Requirements 191
Table 18-5:	Timer() and Timer1 External Clock
	Requirements
Table 18-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 18-7:	Parallel Slave Port Requirements
	(PIC16C74) 194
Table 18-8:	SPI Mode Requirements 195
Table 18-9:	I ² C Bus Start/Stop Bits
	Requirements196
Table 18-10:	I ² C Bus Data Requirements197
Table 18-11:	USART Synchronous Transmission
	Requirements198
Table 18-12:	usart Synchronous Receive
	Requirements
Table 18-13:	A/D Converter Characteristics:
	PIC16C73/74-04
	(Commercial, Industrial)
	PIC16C73/74-10
	(Commercial, Industrial)
	PIC16C73/74-20
	PIC16LC73/74-04
Table 18-14.	A/D Conversion Requirements 200
Table 10-14.	Cross Pateronce of Davise Space
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices) 201
Table 19-2	External Clock Timing
10010 10 2.	Requirements
Table 19-3:	CLKOUT and I/O Timing
	Requirements208
Table 19-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer, Power-up Timer,
	and brown-out reset Requirements 209
Table 19-5:	Timer0 and Timer1 External Clock
	Requirements210
Table 19-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 19-7:	Parallel Slave Port Requirements
	(PIC16C74A)212
Table 19-8:	SPI Mode Requirements
Table 19-9:	I ² C Bus Start/Stop Bits Requirements 214
Table 19-10:	I ² C Bus Data Requirements215
Table 19-11:	USART Synchronous Transmission
	Requirements
Table 19-12:	USART Synchronous Receive
	Requirements
Table 19-13:	A/D Converter Characteristics:
	MUIDU/JA/14A-U4
	(Commercial, industrial, Extended)
	FIGIOUIDAVIAA-IU
	(Commercial Industrial Extended)
	PIC16I C73A/74A-04
	(Commercial, Industrial) 217
Table 19-14	A/D Conversion Requirements 218
	210

Table 20-1:	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices)
Table 20-2:	External Clock Timing
	Requirements
Table 20-3:	CLKOUT and I/O Timing
	Requirements 227
Table 20-4:	Reset, Watchdog Timer.
	Oscillator Start-up Timer, Power-up
	Timer, and brown-out reset
	Requirements 228
Table 20-5:	Timer0 and Timer1 External Clock
	Requirements 229
Table 20-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 20-7:	Parallel Slave Port Requirements
	(PIC16C77)
Table 20-8:	SPI Mode requirements 234
Table 20-9:	I ² C Bus Start/Stop Bits Requirements 235
Table 20-10:	I ² C Bus Data Requirements
Table 20-11:	USART Synchronous Transmission
	Requirements
Table 20-12:	USART Synchronous Receive
	Requirements
Table 20-13:	A/D Converter Characteristics:
	PIC16C76/77-04
	(Commercial, Industrial, Extended)
	PIC16C76/77-10
	(Commercial, Industrial, Extended)
	PIC16C76/77-20
	(Commercial, Industrial, Extended)
	PIC16LC76/77-04
	(Commercial, Industrial) 238
Table 20-14:	A/D Conversion Requirements 239
Table 21-1:	RC Oscillator Frequencies 247
Table 21-2:	Capacitor Selection for Crystal
	Oscillators 248
Table E-1:	Pin Compatible Devices 271

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe[®] communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the **<Enter>** key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the **<Enter>** key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the **<Enter>** key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

970301

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.