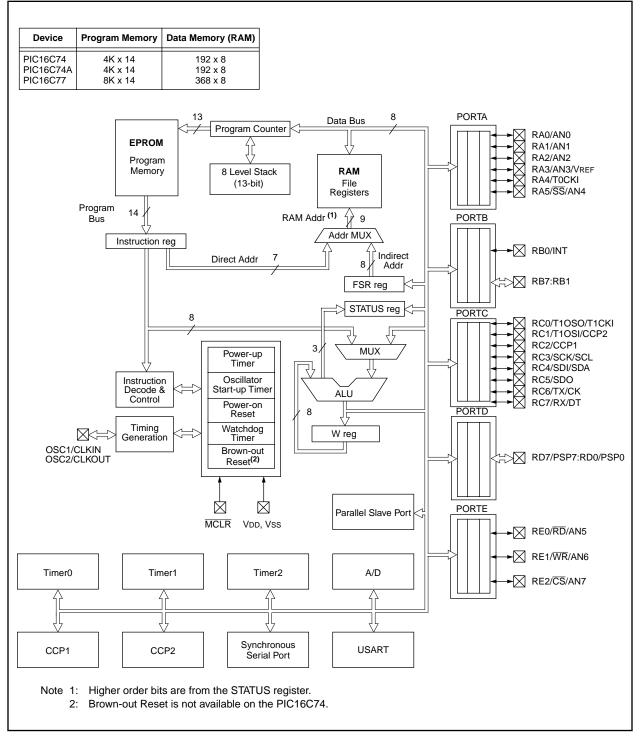


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc77t-04-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-3: PIC16C74/74A/77 BLOCK DIAGRAM

TABLE 3-2:PIC16C73/73A/76 PINOUT DESCRIPTION

Pin Name	Name DIP SOIC I/O/P Buffer Pin# Pin# Type Type			Description			
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.		
OSC2/CLKOUT	10	10	0	-	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.		
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.		
					PORTA is a bi-directional I/O port.		
RA0/AN0	2	2	I/O	TTL	RA0 can also be analog input0		
RA1/AN1	3	3	I/O	TTL	RA1 can also be analog input1		
RA2/AN2	4	4	I/O	TTL	RA2 can also be analog input2		
RA3/AN3/VREF	5	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage		
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.		
RA5/ SS /AN4	7	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.		
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.		
RB0/INT	21	21	I/O	TTL/ST(1)	RB0 can also be the external interrupt pin.		
RB1	22	22	I/O	TTL			
RB2	23	23	I/O	TTL			
RB3	24	24	I/O	TTL			
RB4	25	25	I/O	TTL	Interrupt on change pin.		
RB5	26	26	I/O	TTL	Interrupt on change pin.		
RB6	27	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.		
RB7	28	28	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.		
					PORTC is a bi-directional I/O port.		
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.		
RC1/T1OSI/CCP2	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.		
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.		
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.		
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).		
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).		
RC6/TX/CK	17	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit of Synchronous Clock.		
RC7/RX/DT	18	18	I/O	ST	RC7 can also be the USART Asynchronous Receive of Synchronous Data.		
Vss	8, 19	8, 19	Р	<u> </u>	Ground reference for logic and I/O pins.		
VDD	20	20	P	<u> </u>	Positive supply for logic and I/O pins.		
Legend: I = input	O = outp			input/output	P = power		

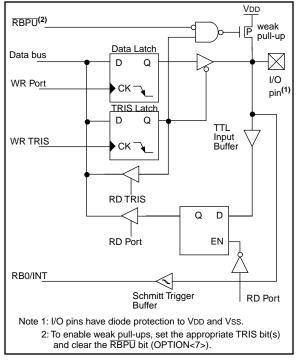
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

5.2 PORTB and TRISB Registers

Applicable Devices
72 73 73A 74 74A 76 77


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C73/74, if a change on the
	I/O pin should occur when the read opera-
	tion is being executed (start of the Q2
	cycle), then interrupt flag bit RBIF may not
	get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)/CCP2CON REGISTER (ADDRESS 1Dh)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7-6:	Unim	plemente	d: Read a	s '0'								
bit 5-4:	CCPxX:CCPxY : PWM Least Significant bits Capture Mode: Unused Compare Mode: Unused PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.											
bit 3-0:	 CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/Compare/PWM off (resets CCPx module) 0100 = Capture mode, every falling edge 0110 = Capture mode, every rising edge 0111 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCPxIF bit is set) 1001 = Compare mode, clear output on match (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected) 1011 = Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)) 11xx = PWM mode 											

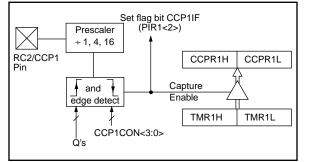
10.1 <u>Capture Mode</u>

Applicable Devices

72 73 73A 74 74A 76 77

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

Applicable Devices

72 73 73A 74 74A 76 77

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to be set in order to configure pins RC6/TX/CK and RC7/ RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	CSRC: Clo	ck Source	Select bit					
	Asynchrone Don't care	<u>ous mode</u>						
	$\frac{\text{Synchrono}}{1 = \text{Master}}$ $0 = \text{Slave n}$	mode (Clo				.G)		
bit 6:	TX9 : 9-bit 7 1 = Selects 0 = Selects	9-bit trans	mission					
bit 5:	TXEN : Tran 1 = Transm 0 = Transm Note: SREI	it enabled it disabled		EN in SYN	NC mode.			
bit 4:	SYNC: US/ 1 = Synchr 0 = Asynch	onous mod	le					
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	BRGH: Hig	h Baud Ra	te Select b	it				
	Asynchrone 1 = High sp							
	Note:	rience a h baud rate	igh rate of	receive er H = 0 can	rors. It is re	commende	ed that BRG	ode (BRGH = 1) may expe- H = 0. If you desire a higher a for additional information,
	0 = Low sp	eed						
	Synchrono Unused in t							
bit 1:	TRMT : Trar 1 = TSR en 0 = TSR ful	npty	Register St	atus bit				
bit 0:	TX9D : 9th I	bit of transi	mit data. Ca	an be pari	ty bit.			

12.4 USART Synchronous Slave Mode

Applicable Devices 72 73 73A 74 74A 76 77

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

13.4 A/D Conversions

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

Example 13-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0).

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 13-2: A/D CONVERSION

;

; ;

BSF	STATUS,	RP0	;	Select Bank 1
BCF	STATUS,	RP1	;	PIC16C76/77 only
CLRF	ADCON1		;	Configure A/D inputs
BSF	PIE1,	ADIE	;	Enable A/D interrupts
BCF	STATUS,	RP0	;	Select Bank 0
MOVLW	0xC1		;	RC Clock, A/D is on, Channel 0 is selected
MOVWF	ADCON0		;	
BCF	PIR1,	ADIF	;	Clear A/D interrupt flag bit
BSF	INTCON,	PEIE	;	Enable peripheral interrupts
BSF	INTCON,	GIE	;	Enable all interrupts
Enquiro th	at the m	oquirod gamp	14.	ng time for the selected input channel has elapsed.
		on may be sta		

BSF	ADCON0,	GO	;	; Start A/D Conversion	
:			;	; The ADIF bit will be set and the GO/DONE bit	
:			;	; is cleared upon completion of the A/D Conversion.	

TABLE 14-6:	STATUS BITS AND THEIR SIGNIFICANCE, PIC16C72/73A/74A/76/77
-------------	--

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 14-7: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register PIC16C73/74	PCON Register PIC16C72/73A/74A/76/77
Power-on Reset	000h	0001 1xxx	0-	0x
MCLR Reset during normal operation	000h	000u uuuu	u-	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	u-	uu
WDT Reset	000h	0000 luuu	u-	uu
WDT Wake-up	PC + 1	uuu0 Ouuu	u-	uu
Brown-out Reset	000h	0001 luuu	N/A	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	u-	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 14-8:	INITIALIZATION CONDITIONS FOR ALL REGISTERS
-------------	---

Register		Α	pplica	ble	Devices			Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
W	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
INDF	72	73	73A	74	74A	76	77	N/A	N/A	N/A	
TMR0	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PCL	72	73	73A	74	74A	76	77	0000h	0000h	PC + 1 ⁽²⁾	
STATUS	72	73	73A	74	74A	76	77	0001 1xxx	000q quuu (3)	uuuq quuu (3)	
FSR	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTA	72	73	73A	74	74A	76	77	0x 0000	0u 0000	uu uuuu	
PORTB	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTC	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTD	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTE	72	73	73A	74	74A	76	77	xxx	uuu	uuu	
PCLATH	72	73	73A	74	74A	76	77	0 0000	0 0000	u uuuu	

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', <math>q = value depends on condition

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-7 for reset value for specific condition.

Register		Applicable Devices				Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt		
SSPADD	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	72	73	73A	74	74A	76	77	00 0000	00 0000	uu uuuu
TXSTA	72	73	73A	74	74A	76	77	0000 -010	0000 -010	uuuu -uuu
SPBRG	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
ADCON1	72	73	73A	74	74A	76	77	000	000	uuu

TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-7 for reset value for specific condition.

14.8 Power-down Mode (SLEEP) Applicable Devices 727373A7474A7677

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

14.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/ l^2 C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. A/D conversion (when A/D clock source is RC).
- 7. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 8. USART TX or RX (synchronous slave mode).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

14.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

CLRF	Clear f						
Syntax:	[<i>label</i>] C	LRF f					
Operands:	$0 \le f \le 127$						
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$						
Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	CLRF	FLAG	G_REG				
	Before Instruction						
	After Inst	FLAG_RE	EG =	0x5A			
		FLAG RE	EG =	0x00			
		Ζ	=	1			

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	00 0001 0xxx xxxx
Description:	W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode No- Operation Process Write to W
Example	CLRW
	Before Instruction
	W = 0x5A
	After Instruction W = 0x00
	Z = 1
CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
-	None $00h \rightarrow WDT$
Operands:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler,
Operands:	None $00h \rightarrow WDT$
Operands:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$
Operands: Operation:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$
Operands: Operation: Status Affected:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Operands: Operation: Status Affected: Encoding:	None $00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ OU 0000 0110 0100 CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are
Operands: Operation: Status Affected: Encoding: Description:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.
Operands: Operation: Status Affected: Encoding: Description: Words:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ OO 0000 0110 0100 CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set. 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $00h \rightarrow WDT$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $Oldsymbol{ODD} Ollolololololololololololololololololol$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watch-dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. 1 1 2 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 3 4 3 3 3 4 3 3 5 3 5 5 5 5 5 5 5 5 5
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watch-dog Timer. It also resets the Vatch-dog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set. 1 1 2 2 2 2 2 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 2 3 2 4 2 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 2 3 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \end{array}$ CLRWDT instruction resets the Watch-dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. 1 1 2 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 3 4 3 3 3 4 3 3 5 3 5 5 5 5 5 5 5 5 5
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline CLRWDT \ instruction \ resets \ the \ Watch-dog \ Timer. \ It \ also \ resets \ the \ prescaler \ of \ the \ WDT \ instruction \ resets \ the \ prescaler \ of \ the \ WDT. \ Status \ bits \ \overline{TO} \ and \ \overline{PD} \ are \ set. \\ \hline 1 \\ 1 \\ \hline \hline Q1 Q2 Q3 Q4 \\ \hline \hline Decode No- \ Operation \ Process \ Clear \ WDT \ Counter \\ \hline CLRWDT \\ \hline CLRWDT \\ \hline Before \ Instruction \\ WDT \ counter \ = \ ? \\ After \ Instruction \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	None $\begin{array}{l} \text{None} \\ \text{O0h} \rightarrow \text{WDT} \\ \text{O} \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \\ \hline \overline{\text{TO}}, \overline{\text{PD}} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ \hline \text{CLRWDT instruction resets the Watch-dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. \\ 1 \\ 1 \\ \hline \\ Q1 & Q2 & Q3 & Q4 \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ Before Instruction \\ WDT counter = ? \\ \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	None $\begin{array}{c} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \overline{PD} \\ \hline \hline 00 & 0000 & 0110 & 0100 \\ \hline \\ CLRWDT \ instruction \ resets \ the \ Watch-dog \ Timer. It also \ resets \ the \ Watch-dog \ Timer. It also \ resets \ the \ prescaler \ of \ the \ WDT. \ Status \ bits \ \overline{TO} \ and \ \overline{PD} \ are \ set. \\ \hline 1 \\ 1 \\ \hline \\ \hline \\ Q1 & Q2 & Q3 & Q4 \\ \hline \hline \\ \hline \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ CLRWDT \\ \hline \\ Before \ Instruction \\ \qquad WDT \ counter \ = \ ? \\ After \ Instruction \\ \qquad WDT \ counter \ = \ 0x00 \\ \hline \end{array}$

16.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

16.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

16.8 <u>PICDEM-3 Low-Cost PIC16CXXX</u> Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

16.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

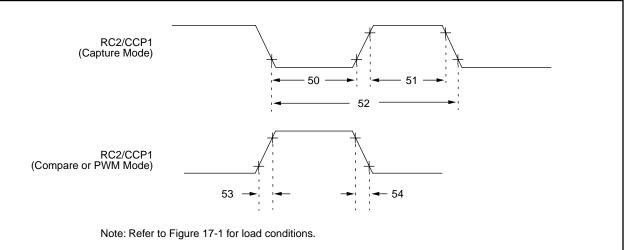
Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

16.10 Assembler (MPASM)

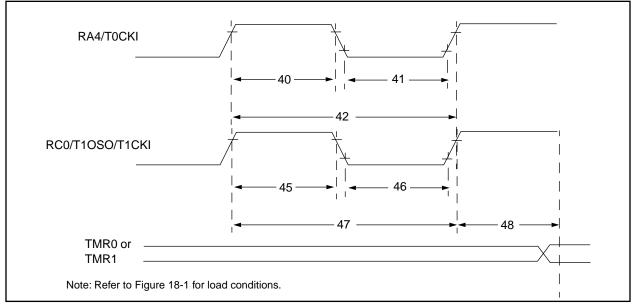

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

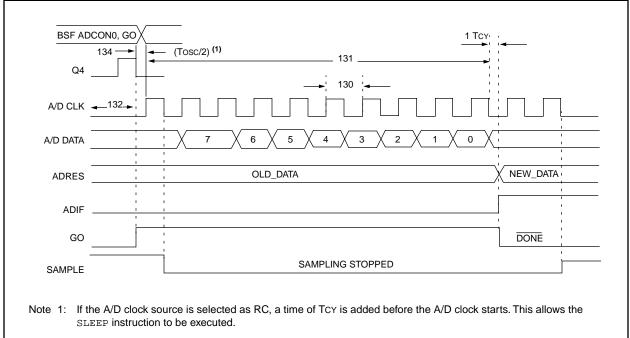

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low time	No Prescaler		0.5Tcy + 20	—		ns	
			With Prescaler	PIC16 C 72	10	—	_	ns	
				PIC16 LC 72	20	—	_	ns	
51*	TccH	CCP1 input high time	No Prescaler		0.5Tcy + 20	—	—	ns	
			With Prescaler	PIC16 C 72	10	—	_	ns	
				PIC16 LC 72	20	—	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise time		PIC16 C 72	_	10	25	ns	
				PIC16 LC 72	—	25	45	ns	
54*	TccF	CCP1 output fall time		PIC16 C 72	_	10	25	ns	
				PIC16 LC 72	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 76 77

FIGURE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H T1CKI High Time		Synchronous, F	Prescaler = 1	0.5TCY + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F		0.5Tcy + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	-	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 7X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 7X	60	—	—	ns	
				PIC16 LC 7X	100	—	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b	by setting bit T1C	SCEN)	DC	-	200	kHz	
48	TCKEZtmr	1 Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc	-	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Applicable Devices
 72
 73
 73A
 74
 74A
 76
 77

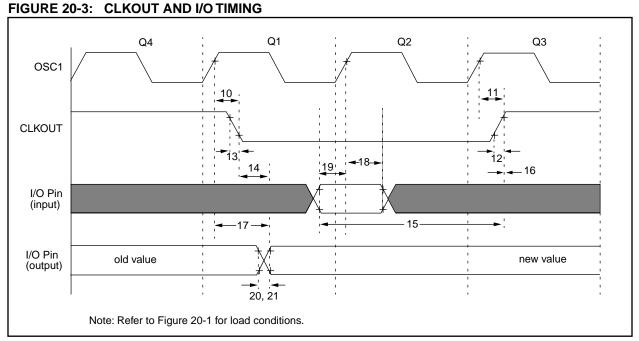
FIGURE 19-14: A/D CONVERSION TIMING

TABLE 19-14: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 73A/74A	1.6	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16 LC 73A/74A	2.0	—	_	μs	Tosc based, VREF full range
			PIC16 C 73A/74A	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16 LC 73A/74A	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV Conversion time (not including S/H time) (Note 1)		_	9.5		TAD		
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock sta	rt	_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from con-	vert \rightarrow sample time	1.5 §	_	_	TAD	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

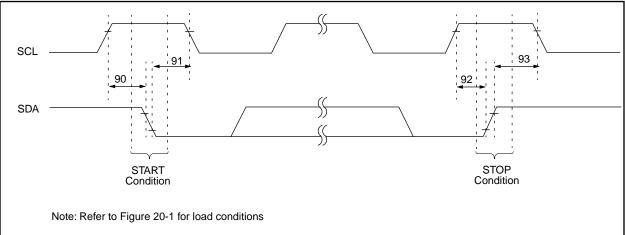
*

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 20-3:	CLKOUT AND I/O TIMING REQUIREMENTS
IADEE 20-3.	

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out value	d	_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	Σ Τ 1	Tosc + 200	—	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0	—	—	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	_	50	150	ns		
18*	TosH2iol	OSC1↑ (Q2 cycle) to	PIC16 C 76/77	100	_	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 76/77	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16 C 76/77	_	10	40	ns	
			PIC16 LC 76/77	_	—	80	ns	
21*	TioF	Port output fall time	PIC16 C 76/77	_	10	40	ns	
			PIC16LC76/77	_	—	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	—	—	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	—	—	ns	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 72 73 73A 74 74A 76 77

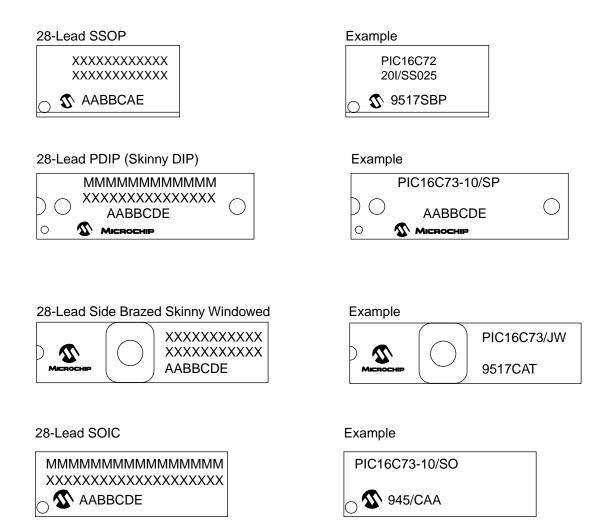


TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions	
90	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated START	
		Setup time	400 kHz mode	600	-	—		condition	
91	THD:STA	START condition	100 kHz mode	4000	—	—	ns	After this period the first clock pulse is generated	
		Hold time	400 kHz mode	600	—	—	115		
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	ns		
		Setup time	400 kHz mode	600	—	—			
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns		
		Hold time	400 kHz mode	600	—	—	113		

22.10 Package Marking Information

Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will	ent the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Cont'd)

44-Lead TQFP

Example

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.	

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Table 18-2:	external Clock Timing
	Requirements
Table 18-3:	CLKOUT and I/O Timing Requirements190
Table 18-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Requirements 191
Table 18-5:	Timer0 and Timer1 External Clock
	Requirements
Table 18-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 18-7:	Parallel Slave Port Requirements
	(PIC16C74) 194
Table 18-8:	SPI Mode Requirements 195
Table 18-9:	I ² C Bus Start/Stop Bits
	Requirements196
Table 18-10:	I ² C Bus Data Requirements197
Table 18-11:	USART Synchronous Transmission
	Requirements198
Table 18-12:	usart Synchronous Receive
	Requirements
Table 18-13:	A/D Converter Characteristics:
	PIC16C73/74-04
	(Commercial, Industrial)
	PIC16C73/74-10
	(Commercial, Industrial)
	PIC16C73/74-20
	(Commercial, Industrial)
	PIC16LC73/74-04
Table 18-14:	(Commercial, Industrial)199 A/D Conversion Requirements
Table 19-14.	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices)
Table 19-2:	External Clock Timing
10010 10 2.	Requirements
Table 19-3:	CLKOUT and I/O Timing
	Requirements208
Table 19-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer, Power-up Timer,
	and brown-out reset Requirements
Table 19-5:	Timer0 and Timer1 External Clock
	Requirements210
Table 19-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 19-7:	Parallel Slave Port Requirements
	(PIC16C74A)212
Table 19-8:	SPI Mode Requirements
Table 19-9:	I ² C Bus Start/Stop Bits Requirements 214
Table 19-10:	I ² C Bus Data Requirements215
Table 19-11:	USART Synchronous Transmission
	Requirements
Table 19-12:	USART Synchronous Receive
	Requirements
Table 19-13:	A/D Converter Characteristics:
	PIC16C73A/74A-04
	(Commercial, Industrial, Extended)
	PIC16C73A/74A-10
	(Commercial, Industrial, Extended) PIC16C73A/74A-20
	(Commercial, Industrial, Extended)
	PIC16LC73A/74A-04
	(Commercial, Industrial)
Table 19-14:	A/D Conversion Requirements
	210

Table 20-1:	Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation
T 00 0	(Commercial Devices) 220
Table 20-2:	External Clock Timing Requirements
Table 20-3:	CLKOUT and I/O Timing
	Requirements
Table 20-4:	Reset, Watchdog Timer,
	Oscillator Start-up Timer, Power-up Timer, and brown-out reset
	Requirements
Table 20-5:	Timer0 and Timer1 External Clock
	Requirements 229
Table 20-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 20-7:	Parallel Slave Port Requirements
	(PIC16C77)
Table 20-8:	SPI Mode requirements 234
Table 20-9:	I ² C Bus Start/Stop Bits Requirements 235
Table 20-10:	I ² C Bus Data Requirements
Table 20-11:	USART Synchronous Transmission
T 11 00 40	Requirements
Table 20-12:	USART Synchronous Receive
T-1-1-00.40	Requirements
Table 20-13:	A/D Converter Characteristics:
	(Commercial, Industrial, Extended)
	PIC16C76/77-10
	(Commercial, Industrial, Extended)
	PIC16C76/77-20
	(Commercial, Industrial, Extended)
	PIC16LC76/77-04
	(Commercial, Industrial) 238
Table 20-14:	A/D Conversion Requirements 239
Table 21-1:	RC Oscillator Frequencies 247
Table 21-2:	Capacitor Selection for Crystal
	Oscillators 248
Table E-1:	Pin Compatible Devices