

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc77t-04i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C7X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C7X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C7X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**74. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC74. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C7X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

TABLE 3-2:PIC16C73/73A/76 PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	-	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	2	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	3	I/O	TTL	RA1 can also be analog input1
RA2/AN2	4	4	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	5	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/ SS /AN4	7	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST(1)	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI/CCP2	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	17	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit of Synchronous Clock.
RC7/RX/DT	18	18	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
Vss	8, 19	8, 19	Р	<u> </u>	Ground reference for logic and I/O pins.
VDD	20	20	P	<u> </u>	Positive supply for logic and I/O pins.
Legend: I = input	O = outp			input/output	P = power

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

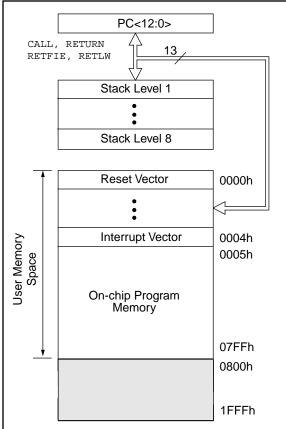
2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

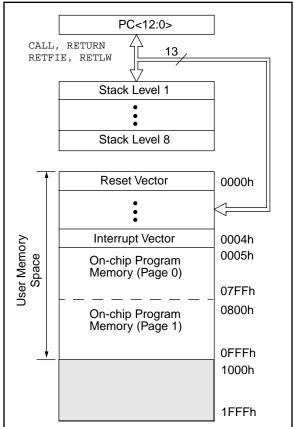
4.0 MEMORY ORGANIZATION Applicable Devices

72 73 73A 74 74A 76 77

4.1 Program Memory Organization


The PIC16C7X family has a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C72	2K x 14	0000h-07FFh
PIC16C73	4K x 14	0000h-0FFFh
PIC16C73A	4K x 14	0000h-0FFFh
PIC16C74	4K x 14	0000h-0FFFh
PIC16C74A	4K x 14	0000h-0FFFh
PIC16C76	8K x 14	0000h-1FFFh
PIC16C77	8K x 14	0000h-1FFFh


For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-2: PIC16C73/73A/74/74A PROGRAM MEMORY MAP AND STACK

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2			,	Value on all other resets
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	—	—	PORTA Data Direction Register						11 1111	11 1111
9Fh	ADCON1	—		—	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

5.6 <u>I/O Programming Considerations</u> Applicable Devices 72 73 73A 74 74A 76 77

5.6.1 BI-DIRECTIONAL I/O PORTS

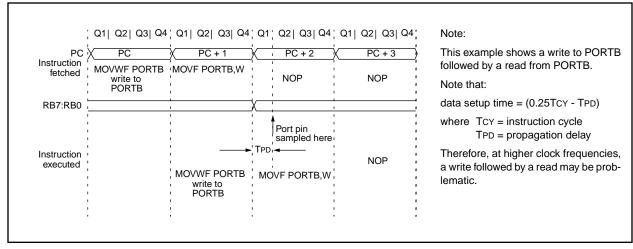
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry

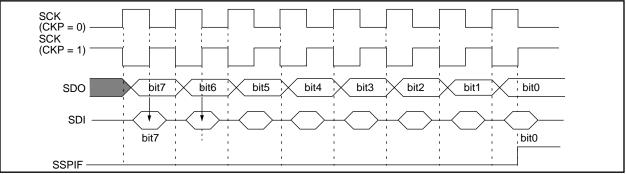

i								
;					PORT	latch	PORT pins	
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp pppp	
	BCF	PORTB,	6	;	10pp	pppp	llpp pppp	
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp pppp	
	BCF	TRISB,	6	;	10pp	pppp	10pp pppp	
;								

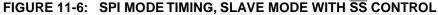
;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

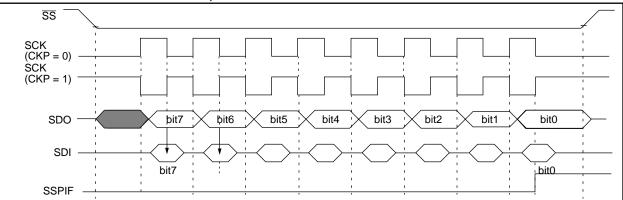
A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/ O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.


FIGURE 5-10: SUCCESSIVE I/O OPERATION


The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the


point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

	TABLE 11-1:	REGISTERS ASSOCIATED WITH SPI OPERATION
--	--------------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Value o all othe resets	
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 0	200x	0000	000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	0000	0000	0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	0000	0000	0000
87h	TRISC	PORTC Da	ta Directio	on Registe	er					1111 1	1111	1111	1111
13h	SSPBUF	Synchronou	us Serial I	Port Rece	ive Buffer	/Transmit	Register			xxxx x	xxxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0	0000	0000	0000
85h	TRISA	_	_	PORTA Data Direction Register							1111	11	1111
94h	SSPSTAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 C	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or USART, these bits are unimplemented, read as '0'.

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909 I	MHz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

	Fosc =	5.0688 M	Hz	4 MHz			3.579545	5 MHz		1 MHz			32.768 kHz		
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	100	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909	MHz	SPBRG
RATE		% ERROR	value		%	value		%	value		% ERROR	value
(K)	KBAUD	ERROR	(decimal)	RBAUD	ERROR	(decimal)	REAUD	ERROR	(decimal)	REAUD	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

	Fosc =	5.0688 MI	Hz	4 MHz			3.57954	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	62.500	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

14.7 Watchdog Timer (WDT) **Applicable Devices** 72 73 73A 74 74A 76 77

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 14.1).

14.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a

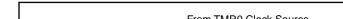
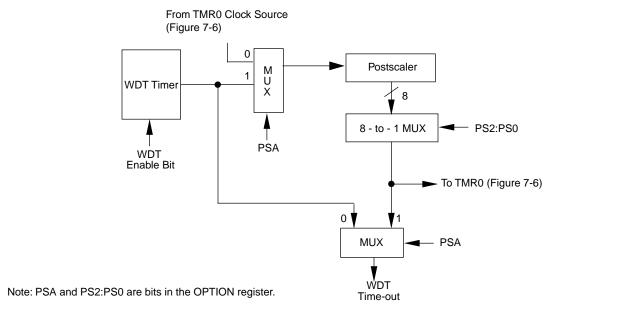


FIGURE 14-18: WATCHDOG TIMER BLOCK DIAGRAM

prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.


The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

14.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 14-19: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 14-1, and Figure 14-2 for operation of these bits.

PIC16C7X

IORWF	Inclusive	e OR W v	with f							
Syntax:	[label]	IORWF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27								
Operation:	(W) .OR.	(f) \rightarrow (de	estination)						
Status Affected:	Z									
Encoding:	00	0100	dfff	ffff						
Description:	Inclusive C ter 'f'. If 'd' W register back in reg	is 0 the re . If 'd' is 1	sult is plac	ced in the						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example	IORWF		RESULT,	0						
	Before In									
	RESULT = 0x13 W = 0x91									
	After Inst	r Instruction RESULT = $0x13$ W = $0x93$ Z = 1								

MOVLW	Move Literal to W									
Syntax:	[<i>label</i>] MOVLW k									
Operands:	$0 \le k \le 255$									
Operation:	$k \rightarrow (W)$									
Status Affected:	None									
Encoding:	11 00xx kkkk kkkk									
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1 Q2 Q3 Q4									
	Decode Read literal 'k' Process Write to W									
Example	MOVLW $0x5A$ After Instruction W = 0x5A									

MOVF	Move f									
Syntax:	[label]	MOVF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7								
Operation:	$(f) \rightarrow (de)$	stination)							
Status Affected:	Z									
Encoding:	00 1000 dfff ffff									
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode Read Process Write to register 'f'									
Example	MOVF FSR, 0 After Instruction									
			ie in FSR i	register						

MOVWF	Move W	to f								
Syntax:	[label]	MOVW	= f							
Operands:	$0 \le f \le 12$	27								
Operation:	$(W) \to (f)$									
Status Affected:	None									
Encoding:	00	0000	lfff	ffff						
Description:	Move data 'f'.	Move data from W register to register 'f'.								
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write register 'f'						
Example	MOVWF	OPTIC	DN_REG							
	Before In			-						
		OPTION W	= 0xF = 0x4	-						
	After Inst	ruction								
		OPTION								
		W	= 0x4	F						

17.2 DC Characteristics: PIC16LC72-04 (Commercial, Industrial)

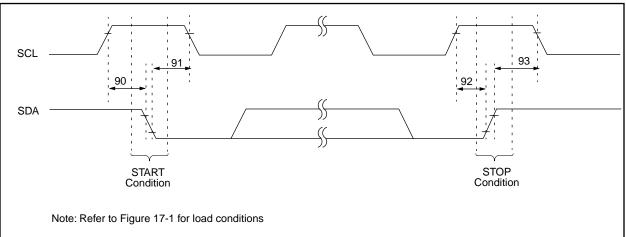
DC CHA	ARACTERISTICS			ard Ope ing tem			itions (unless otherwise stated) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:


 $OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD <math>\overline{MCLR} = VDD; WDT$ enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16C7X

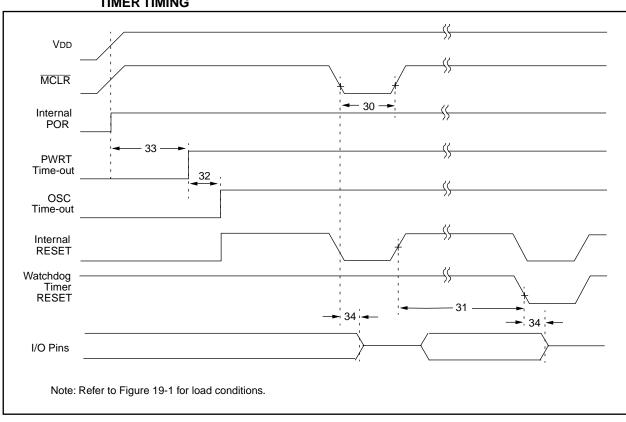
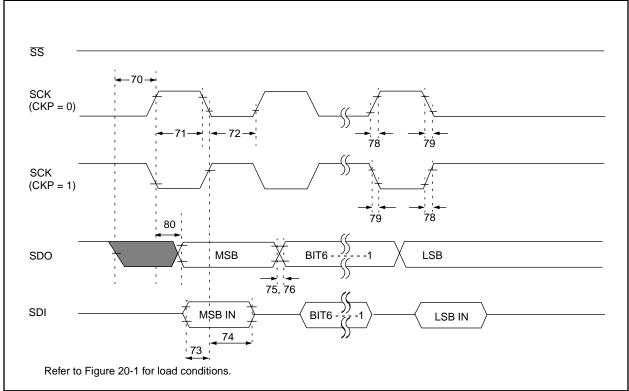

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 17-8: I²C BUS START/STOP BITS REQUIREMENTS

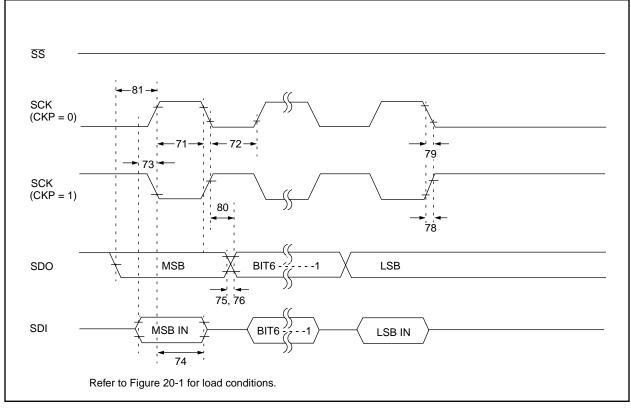
Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—		condition
91	THD:STA	START condition	100 kHz mode	4000	—	—	ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—	115	pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	—	—	113	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	—	—	113	

FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 19-5: BROWN-OUT RESET TIMING


TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100		_	μs	$VDD \le BVDD$ (D005)


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-9: SPI MASTER MODE TIMING (CKE = 0)

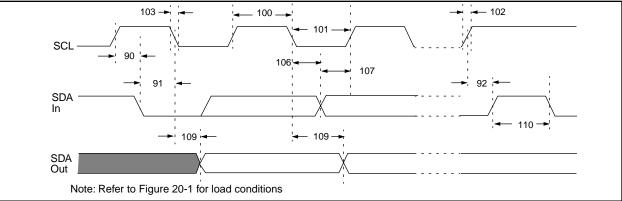


FIGURE 20-10: SPI MASTER MODE TIMING (CKE = 1)

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-14: I²C BUS DATA TIMING

TABLE 20-10: I²C BUS DATA REQUIREMENTS

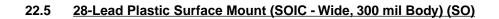
Parameter No.	Sym	Characteristic		Min	Мах	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
101	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	_		
102	Tr	SDA and SCL rise	100 kHz mode	-	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	Tf	SDA and SCL fall time	100 kHz mode	-	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	

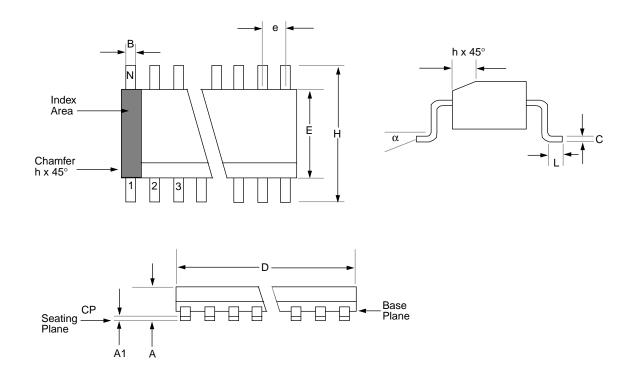
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 20-13: A/D CONVERTER CHARACTERISTICS:

PIC16C76/77-04 (Commercial, Industrial, Extended) PIC16C76/77-10 (Commercial, Industrial, Extended) PIC16C76/77-20 (Commercial, Industrial, Extended) PIC16LC76/77-04 (Commercial, Industrial)


Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution				8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	EABS	Total Absolute error		_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A03	EIL	Integral linearity error	_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A04	EDL	Differential linearity error	—	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A05	EFS	Full scale error	—	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A06	EOFF	Offset error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity		—	guaranteed	_	-	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedan analog voltage source	ice of		_	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 76/77	—	180	_	μΑ	Average current consump-
		(VDD)	PIC16 LC 76/77	—	90		μΑ	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)		10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.
				—	—	10	μA	During A/D Conversion cycle


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

		Package	Group: Plastic	SOIC (SO)		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	8 °		0°	8 °	
А	2.362	2.642		0.093	0.104	
A1	0.101	0.300		0.004	0.012	
В	0.355	0.483		0.014	0.019	
С	0.241	0.318		0.009	0.013	
D	17.703	18.085		0.697	0.712	
E	7.416	7.595		0.292	0.299	
е	1.270	1.270	Typical	0.050	0.050	Typical
Н	10.007	10.643		0.394	0.419	
h	0.381	0.762		0.015	0.030	
L	0.406	1.143		0.016	0.045	
Ν	28	28		28	28	
CP	-	0.102		—	0.004	

LIST OF FIGURES

Figure 3-1:	PIC16C72 Block Diagram10
Figure 3-2:	PIC16C73/73A/76 Block Diagram 11
Figure 3-3:	PIC16C74/74A/77 Block Diagram
Figure 3-4:	Clock/Instruction Cycle17
Figure 4-1:	PIC16C72 Program Memory Map
	and Stack
Figure 4-2:	PIC16C73/73A/74/74A Program
riguio 4 2.	Memory Map and Stack
Figure 4.2:	PIC16C76/77 Program Memory
Figure 4-3:	Map and Stack
E :	
Figure 4-4:	PIC16C72 Register File Map
Figure 4-5:	PIC16C73/73A/74/74A Register
	File Map21
Figure 4-6:	PIC16C76/77 Register File Map22
Figure 4-7:	Status Register (Address 03h,
	83h, 103h, 183h)30
Figure 4-8:	OPTION Register (Address 81h,
	181h)31
Figure 4-9:	INTCON Register
	(Address 0Bh, 8Bh, 10bh, 18bh)
Figure 4-10:	PIE1 Register PIC16C72
-	(Address 8Ch)
Figure 4-11:	PIE1 Register PIC16C73/73A/
0	74/74A/76/77 (Address 8Ch)
Figure 4-12:	PIR1 Register PIC16C72
-	(Address 0Ch)
Figure 4-13:	PIR1 Register PIC16C73/73A/
-	74/74A/76/77 (Address 0Ch)
Figure 4-14:	PIE2 Register (Address 8Dh)
Figure 4-15:	PIR2 Register (Address 0Dh)
Figure 4-16:	PCON Register (Address 8Eh)
Figure 4-17:	Loading of PC In Different
0	Situations
Figure 4-18:	Direct/Indirect Addressing41
Figure 5-1:	Block Diagram of RA3:RA0
5	and RA5 Pins43
Figure 5-2:	Block Diagram of RA4/T0CKI Pin43
Figure 5-3:	Block Diagram of RB3:RB0 Pins45
Figure 5-4:	Block Diagram of RB7:RB4 Pins
5	(PIC16C73/74)46
Figure 5-5:	Block Diagram of
0	RB7:RB4 Pins (PIC16C72/73A/
	74A/76/77)
Figure 5-6:	PORTC Block Diagram
-	(Peripheral Output Override)
Figure 5-7:	PORTD Block Diagram
-	(in I/O Port Mode)50
Figure 5-8:	PORTE Block Diagram
0	(in I/O Port Mode)51
Figure 5-9:	TRISE Register (Address 89h)51
Figure 5-10:	Successive I/O Operation53
Figure 5-11:	PORTD and PORTE Block Diagram
-	(Parallel Slave Port)54
Figure 5-12:	Parallel Slave Port Write Waveforms 55
Figure 5-13:	Parallel Slave Port Read Waveforms 55
Figure 7-1:	Timer0 Block Diagram59
Figure 7-2:	Timer0 Timing: Internal Clock/No
0	Prescale
Figure 7-3:	Timer0 Timing: Internal
0 -	Clock/Prescale 1:2 60
Figure 7-4:	Timer0 Interrupt Timing60
Figure 7-5:	Timer0 Timing with External Clock61
Figure 7-6:	Block Diagram of the Timer0/WDT
J	Prescaler

Figure 8-1:	T1CON: Timer1 Control Register
	(Address 10h) 65
Figure 8-2:	Timer1 Block Diagram 66
Figure 9-1:	Timer2 Block Diagram 69
Figure 9-2:	T2CON: Timer2 Control Register
	(Address 12h) 70
Figure 10-1:	CCP1CON Register (Address 17h)/
	CCP2CON Register (Address 1Dh)
Figure 10-2:	Capture Mode Operation
	Block Diagram
Figure 10-3:	Compare Mode Operation
	Block Diagram
Figure 10-4:	Simplified PWM Block Diagram
Figure 10-5:	PWM Output74
Figure 11-1:	SSPSTAT: Sync Serial Port Status
F : 44.0	Register (Address 94h)
Figure 11-2:	SSPCON: Sync Serial Port Control
E '	Register (Address 14h)
Figure 11-3:	SSP Block Diagram (SPI Mode)
Figure 11-4:	SPI Master/Slave Connection
Figure 11-5:	SPI Mode Timing, Master Mode
E '	or Slave Mode w/o SS Control
Figure 11-6:	SPI Mode Timing, Slave Mode with
Figure 44 7	SS Control
Figure 11-7:	SSPSTAT: Sync Serial Port Status
Eigener 11 0:	Register (Address 94h)(PIC16C76/77) 83
Figure 11-8:	SSPCON: Sync Serial Port Control
Figure 11 Or	Register (Address 14h)(PIC16C76/77) 84
Figure 11-9:	SSP Block Diagram (SPI Mode)
Figure 11-10:	(PIC16C76/77)85 SPI Master/Slave Connection
Figure 11-10.	PIC16C76/77)
Figuro 11 11:	SPI Mode Timing, Master Mode
Figure 11-11:	(PIC16C76/77)
Figure 11-12:	SPI Mode Timing (Slave Mode
riguie i i - i z.	With CKE = 0) (PIC16C76/77)
Figure 11-13:	SPI Mode Timing (Slave Mode
riguro i i io.	With CKE = 1) (PIC16C76/77)
Figure 11-14:	Start and Stop Conditions
Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
0.	(Two Masters)
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram
0	(I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
-	(7-bit Address)
Figure 11-26:	I ² C Waveforms for Transmission
-	(7-bit Address)
Figure 11-27:	Operation of the I ² C Module in
-	IDLE_MODE, RCV_MODE or
	XMIT_MODE
Figure 12-1:	TXSTA: Transmit Status and
	Control Register (Address 98h) 99
Figure 12-2:	RCSTA: Receive Status and
	Control Register (Address 18h) 100
Figure 12-3:	RX Pin Sampling Scheme. BRGH = 0
	(PIC16C73/73A/74/74A)104
Figure 12-4:	RX Pin Sampling Scheme, BRGH = 1
	(PIC16C73/73A/74/74A) 104

PIC16C7X

Figure 12-5:	RX Pin Sampling Scheme, BRGH = 1
	(PIC16C73/73A/74/74A) 104
Figure 12-6:	RX Pin Sampling Scheme,
	BRGH = 0 OR BRGH = 1 (
	PIC16C76/77) 105
Figure 12-7:	USART Transmit Block Diagram 106
Figure 12-8:	Asynchronous Master Transmission 107
Figure 12-9:	Asynchronous Master Transmission
Figure 12-10:	(Back to Back)107 USART Receive Block Diagram108
Figure 12-10.	Asynchronous Reception
Figure 12-11:	Synchronous Transmission
Figure 12-13:	Synchronous Transmission
rigato 12 to:	(Through TXEN) 111
Figure 12-14:	Synchronous Reception
ga.e . <u>=</u>	(Master Mode, SREN)
Figure 13-1:	ADCON0 Register (Address 1Fh) 117
Figure 13-2:	ADCON1 Register (Address 9Fh) 118
Figure 13-3:	A/D Block Diagram119
Figure 13-4:	Analog Input Model 120
Figure 13-5:	A/D Transfer Function 125
Figure 13-6:	Flowchart of A/D Operation126
Figure 14-1:	Configuration Word for
-	PIC16C73/74129
Figure 14-2:	Configuration Word for
	PIC16C72/73A/74A/76/77130
Figure 14-3:	Crystal/Ceramic Resonator
	Operation (HS, XT or LP
	OSC Configuration)131
Figure 14-4:	External Clock Input Operation
	(HS, XT or LP OSC Configuration) 131
Figure 14-5:	External Parallel Resonant Crystal
	Oscillator Circuit
Figure 14-6:	External Series Resonant Crystal Oscillator Circuit
Figure 14-7:	RC Oscillator Mode
Figure 14-7:	Simplified Block Diagram of On-chip
riguie 140.	Reset Circuit
Figure 14-9:	Brown-out Situations
Figure 14-10:	Time-out Sequence on Power-up
0	(MCLR not Tied to VDD): Case 1
Figure 14-11:	Time-out Sequence on Power-up
-	(MCLR Not Tied To VDD): Case 2
Figure 14-12:	Time-out Sequence on Power-up
	(MCLR Tied to VDD)139
Figure 14-13:	External Power-on Reset Circuit
	(for Slow VDD Power-up)140
Figure 14-14:	External Brown-out Protection
Figure 44.45	Circuit 1 140 External Brown-out Protection
Figure 14-15:	
Figure 14 16	Circuit 2
Figure 14-16: Figure 14-17:	Interrupt Logic
0	INT Pin Interrupt Timing
Figure 14-18: Figure 14-19:	Watchdog Timer Block Diagram
i iguie 14-19.	Timer Registers144
Figure 14-20:	Wake-up from Sleep Through
. iguit 14-20.	Interrupt
Figure 14-21:	Typical In-Circuit Serial
	Programming Connection
Figure 15-1:	General Format for Instructions
Figure 17-1:	Load Conditions 172
Figure 17-2:	External Clock Timing 173
Figure 17-3:	CLKOUT and I/O Timing 174
	-

E : 171	
Figure 17-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Timing175
Figure 17-5:	Brown-out Reset Timing175
Figure 17-6:	Timer0 and Timer1 External
	Clock Timings176
Figure 17-7:	Capture/Compare/PWM
	Timings (CCP1)177
Figure 17-8:	SPI Mode Timing178
Figure 17-9:	I ² C Bus Start/Stop Bits Timing179
Figure 17-10:	I ² C Bus Data Timing180
Figure 17-11:	A/D Conversion Timing182
Figure 18-1:	Load Conditions188
Figure 18-2:	External Clock Timing189
Figure 18-3:	CLKOUT and I/O Timing190
Figure 18-4:	Reset, Watchdog Timer,
0	Oscillator Start-up Timer and Power-up Tim-
	er Timing
Figure 18-5:	Timer0 and Timer1 External
	Clock Timings
Figure 18-6:	Capture/Compare/PWM Timings
rigaro ro o.	(CCP1 and CCP2)193
Figure 18-7:	Parallel Slave Port Timing
	(PIC16C74)194
Figure 18-8:	SPI Mode Timing
Figure 18-9:	I ² C Bus Start/Stop Bits Timing196
Figure 18-10:	I ² C Bus Data Timing
Figure 18-11:	USART Synchronous Transmission
E : 40.40	(Master/Slave) Timing
Figure 18-12:	USART Synchronous Receive
	(Master/Slave) Timing198
Figure 18-13:	A/D Conversion Timing200
Figure 19-1:	Load Conditions206
Figure 19-2:	External Clock Timing207
Figure 19-3:	CLKOUT and I/O Timing208
Figure 19-4:	Reset, Watchdog Timer,
	Oscillator Start-up Timer and
	Power-up Timer Timing209
Figure 19-5:	Brown-out Reset Timing209
Figure 19-6:	Timer0 and Timer1 External
	Clock Timings210
Figure 19-7:	Capture/Compare/PWM Timings
-	(CCP1 and CCP2)211
Figure 19-8:	Parallel Slave Port Timing
•	(PIC16C74A)212
Figure 19-9:	SPI Mode Timing213
Figure 19-10:	I ² C Bus Start/Stop Bits Timing214
Figure 19-11:	I ² C Bus Data Timing215
Figure 19-12:	USART Synchronous Transmission
0	(Master/Slave) Timing216
Figure 19-13:	USART Synchronous Receive
i igui o i o i oi	(Master/Slave) Timing216
Figure 19-14:	A/D Conversion Timing218
Figure 20-1:	Load Conditions
Figure 20-2:	External Clock Timing
Figure 20-3:	CLKOUT and I/O Timing
Figure 20-3:	Reset, Watchdog Timer,
Figure 20-4.	-
	Oscillator Start-up Timer and
Figure 20 Fr	Power-up Timer Timing
Figure 20-5:	Brown-out Reset Timing
Figure 20-6:	Timer0 and Timer1 External
	Clock Timings
Figure 20-7:	Capture/Compare/PWM Timings
	(CCP1 and CCP2)230
Figure 20-8:	Parallel Slave Port Timing
	(PIC16C77)231

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

RE: Reader Response From: Name Company
Company Address City / State / ZIP / Country Telephone: () FAX: () Application (optional): Would you like a reply?Y Mould you like a reply?Y Pevice: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
Address City / State / ZIP / Country Telephone: () Telephone: () FAX: () Application (optional): Would you like a reply? Y Device: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
City / State / ZIP / Country Telephone: () Telephone: () Application (optional): Would you like a reply? Y Device: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
Telephone: ()
Application (optional): Would you like a reply?YN Device: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
Would you like a reply? Y Device: PIC16C6X Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs?
Device: PIC16C6X Literature Number: DS30390E Questions:
Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs?
 What are the best features of this document? How does this document meet your hardware and software development needs?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this data sheet easy to follow? If not, why?
3. Do you find the organization of this data sheet easy to follow? If not, why?
 Do you find the organization of this data sheet easy to follow? If not, why?
4. What additions to the data sheet do you think would enhance the structure and subject?
5. What deletions from the data sheet could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
8. How would you improve our software, systems, and silicon products?