

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

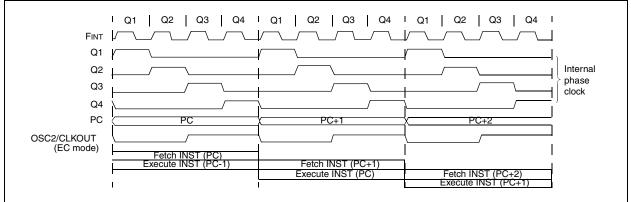
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	24MHz
Connectivity	SCI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.35V ~ 5.25V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c765t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle


The clock input feeds either an on-chip PLL, or directly drives (FINT). The clock output from either the PLL or direct drive (FINT) is internally divided by four to generate four non-overlapping quadrature clocks namely, Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

		TCY0	TCY1	TCY2	TCY3	TCY4	TCY5	
1. MOVLW	55h	Fetch 1	Execute 1					
2. MOVWF	PORTB		Fetch 2	Execute 2				
3. CALL	SUB_1	•		Fetch 3	Execute 3			
4. BSF	PORTA, BIT3 (1	Forced NOP)			Fetch 4	Flush		
5. Instru	ction @ addres	ss SUB_1				Fetch SUB_1	Execute SUB_1	
Note: All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.								

TABLE 5-1: PORTA FUNCTIONS

Name	Function	Input Type	Output Type	Description
	RA0	ST	CMOS	Bi-directional I/O
RA0/AN0	AN0	AN	_	A/D Input
	RA1	ST	CMOS	Bi-directional I/O
RA1/AN1	AN1	AN	_	A/D Input
	RA2	ST	CMOS	Bi-directional I/O
RA2/AN2	AN2	AN	_	A/D Input
	RA3	ST	CMOS	Bi-directional I/O
RA3/AN3/VREF	AN3	AN	—	A/D Input
	VREF	AN	—	A/D Positive Reference
	RA4	ST	OD	Bi-directional I/O
RA4/T0CKI	T0CKI	ST	_	Timer 0 Clock Input
	RA5	ST		Bi-directional I/O
RA5/AN4	AN4	AN	_	A/D Input

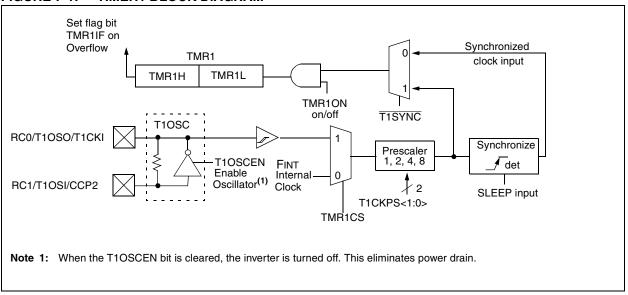
Legend: OD = open drain, ST = Schmitt Trigger

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA			RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA Data Direction Register						11 1111	11 1111
9Fh	ADCON1			_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

7.1 <u>Timer1 Operation in Timer Mode</u>


Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FINT. The synchronize control bit $\overline{T1SYNC}$ (T1CON<2>) has no effect since the internal clock is always in sync.

7.2 <u>Timer1 Operation in Synchronized</u> <u>Counter Mode</u>

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared.

If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

FIGURE 7-1: TIMER1 BLOCK DIAGRAM

10.5.1.9 Endpoint Registers

Each endpoint is controlled by an Endpoint Control Register. The PIC16C745/765 supports Buffer Descriptors (BD) for the following endpoints:

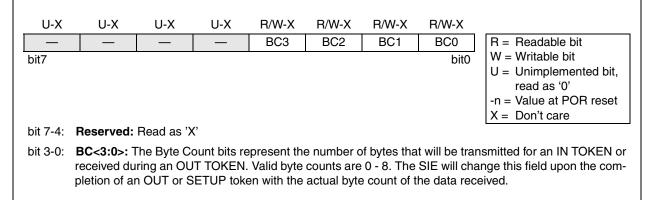
- EP0 Out
- EP0 In
- EP1 Out
- EP1 In
- EP2 Out
- EP2 In

The user will be required to disable unused Endpoints and directions using the Endpoint Control Registers.

10.5.1.10 USB Endpoint Control Register (EPCn)

The Endpoint Control Register contains the endpoint control bits for each of the 6 endpoints available on USB for a decoded address. These four bits define the control necessary for any one endpoint. Endpoint 0 (ENDP0) is associated with control pipe 0 which is required by USB for all functions (IN, OUT, and SETUP). Therefore, after a USB_RST interrupt has been received, the microprocessor should set UEP0 to contain 06h.

Note: These registers are initialized in response to a RESET from the host. The user must modify function USBReset in USB_CH9.ASM to configure the endpoints as needed for the application.


REGISTER 10-9: USB ENDPOINT CONTROL REGISTER (UEPn: 198H-19Ah)

U-0	U-0 U-0	U-0 B/	/W-0 F	R/W-0	R/W-0	B/W-0		
-				OUT EN			R = Readable bit	
bit7						bit0	W = Writable bit	
							U = Unimplemented bit, read as '0'	
							-n = Value at POR reset	
bit 7-4:								
bit 3-1:		, EP_OUT_EN , Ipoint. The endp				•	it is enabled and the direc- :	
	EP_CTL_DIS	EP_OUT_EN	EP_IN_EN	Endpoir	nt Enable/Dir	ection Contro	bl	
	Х	0	0	Disable	Endpoint			
	Х	0	1	Enable	Endpoint for	IN tokens on	ly	
	Х	1	0	Enable	Endpoint for	OUT tokens	only	
	1	1	1	Enable	Endpoint for	IN and OUT	tokens	
	0	1	1	Enable	Endpoint for	IN, OUT, and	d SETUP tokens	
bit 0:	control bits in to this endpoir	the Endpoint Enant t will cause the l	able register, b USB to return	ut is only a STALL I	valid if EP_IN handshake. 7	I_EN=1 or EF The EP_STAL	it has priority over all other P_OUT_EN=1. Any access LL bit can be set or cleared nore details on the STALL	

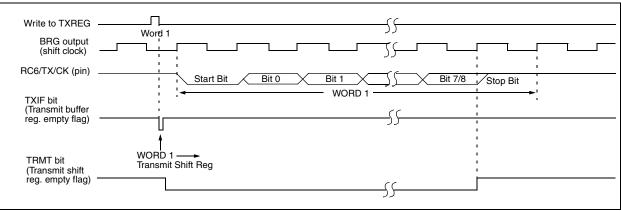
REGISTER 10-11: BUFFER DESCRIPTOR STATUS. BITS READ BY THE MCU (BDndST: 1A0h, 1A4h, 1A8h, 1ACh, 1B0h, 1B4h)

R/W-0	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	U-X	U-X			
UOWN	DATA0/1	PID3	PID2	PID1	PID0		—	R = Readable bit		
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR reset X = Don't care									
bit 7:										
bit 6:	DATA0/1: T 1 = Data 1 0 = Data 0	packet	nes the typ	e of data t	oggle pack	et that was	transmitted	l or received		
bit 5-2:	PID<3:0>: Packet Identifier The received token PID value.									
bit 1-0:	bit 1-0: Reserved: Read as 'X'									
Note:	Recommend that users not use BSF, BCF due to the dual functionality of this register.									

REGISTER 10-12: BUFFER DESCRIPTOR BYTE COUNT (BDndBC: 1A1h, 1A5h, 1A9h, 1ADh, 1B1h, 1B5h)

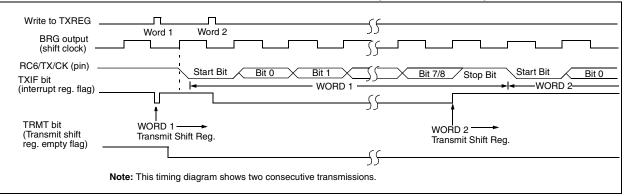
PIC16C745/765

NOTES:


Г

REGISTER 11-2: RECEIVE STATUS AND CONTROL REGISTER (RCSTA: 18h)

R/W-0 SPEN	R/W-0 RX9	R/W-0 SREN	R/W-0 CREN	U-0	R-0 FERR	R-0 OERR	R-x RX9D	R = Readable bit			
bit7	11/3	JULI	UNLIN			OLIII	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7:	SPEN: Ser 1 = Serial p 0 = Serial p	oort enable	d (Configu	res RC7/R	X/DT and	RC6/TX/Cł	<pre>< pins as se</pre>	erial port pins)			
bit 6:	1 = Selects	RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception									
bit 5:	SREN: Sing	REN: Single Receive Enable bit									
	Asynchrone Don't care	Asynchronous mode									
	Synchronol1 = Enable0 = DisableThis bit is c	s single re s single re	ceive ceive	is comple	te.						
	Synchrono Unused in t		<u>slave</u>								
bit 4:	CREN: Cor	ntinuous R	eceive Ena	ble bit							
	Asynchrono 1 = Enable 0 = Disable	s continuo									
	Synchrono 1 = Enable 0 = Disable	s continuo		until enabl	e bit CREN	l is cleared	(CREN ov	errides SREN)			
bit 3:	Unimplem	ented: Rea	ad as '0'								
bit 2:	FERR : Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error										
bit 1:	OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error										
bit 0:	RX9D : 9th bit of received data. (Can be used for parity.)										


Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 11.1)
- Enable the asynchronous serial port by clearing 2. bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- Enable the transmission by setting bit TXEN, 5. which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Load data to the TXREG register (starts trans-7. mission).

FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 11-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 11-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	USBIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tran	nsmit Reg	jister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	USBIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate (Baud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

11.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

11.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

11.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Also, bit SREN is a don't care in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

13.4 <u>RESETS</u>

13.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a POR. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

13.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up from the POR. The PWRT operates on an internal RC oscillator. The device is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

13.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for HS mode and only on Power-on Reset or wake-up from SLEEP.

13.4.4 BROWN-OUT RESET (BOR)

If VDD falls below VBOR (parameter D005) for longer than TBOR (parameter #35), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Powerup Timer Reset. Since the device is intended to operate at 5V nominal only, the Brown-out Detect is always enabled and the device will RESET when Vdd falls below the brown-out threshold. This device is unique in that the 4•WDT timer will not activate after a brownout if $\overrightarrow{PWRTE} = 1$ (inactive).

13.4.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: The PWRT delay starts (if enabled), when a Power-on Reset occurs. Then OST starts counting 1024 oscillator cycles when PWRT ends (HS). When the OST ends, the device comes out of RESET.

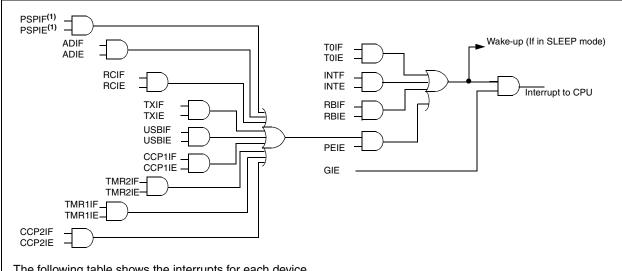
If $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 13-5 shows the RESET conditions for the STA-TUS, PCON and PC registers, while Table 13-7 shows the RESET conditions for all the registers.

13.4.6 POWER CONTROL/STATUS REGISTER (PCON)

The Brown-out Reset Status bit, $\overline{\text{BOR}}$, is unknown on a POR. It must be set by the user and checked on subsequent RESETS to see if bit $\overline{\text{BOR}}$ was cleared, indicating a BOR occurred. The $\overline{\text{BOR}}$ bit is not predictable if the Brown-out Reset circuitry is disabled.

The Power-on Reset Status bit, \overrightarrow{POR} , is cleared on a POR and unaffected otherwise. The user must set this bit following a POR and check it on subsequent RESETS to see if it has been cleared.


FIGURE 13-5: WAKE-UP FROM SLEEP THROUGH INTERRUPT

OSC1	/			Q1 Q2 Q3 Q4;		
CLKOUT ⁽⁴⁾		Tost ⁽²⁾	/	<u> </u>		
INT pin			1	1	1	
INTF flag (INTCON<1>)		\	Int	errupt Latency ⁽²⁾		
GIE bit (INTCON<7>)	-	Processor in SLEEP				
INSTRUCTION FLOW				1 1	1	
PC		PC+2	PC+2	<u> PC + 2 X</u>	0004h X	0005h
Instruction J fetched		1 1 1	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction j		1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: HS oscillator mode assumed.

TOST = 1024TOSC (drawing not to scale). This delay is not present in EC osc mode.
 GIE = '1' assumed. After wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

FIGURE 13-6: INTERRUPT LOGIC

The following table shows the interrupts for each device.

Device	TOIF	INTF	RBIF	PSPIF	ADIF	RCIF	TXIF	USBIF	CCP1IF	TMR2IF	TMR1IF	CCP2IF
PIC16C745	Yes	Yes	Yes	_	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C765	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note 1: PIC16C765 only.

13.6.1 INT INTERRUPT

The external interrupt on RB0/INT pin is edge triggered: either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See Section 13.9 for details on SLEEP mode.

13.6.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 6.0)

13.6.3 PORTB INTERRUPT ON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>) (Section 5.2).

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then the RBIF inter-
	rupt flag may not get set.

13.7 <u>Context Saving During Interrupts</u>

During an interrupt, only the PC is saved on the stack. At the very least, W and STATUS should be saved to preserve the context for the interrupted program. All registers that may be corrupted by the ISR, such as PCLATH or FSR, should be saved.

Example 13-1 stores and restores the STATUS, W and PCLATH registers. The register, W_TEMP, is defined in Common RAM, the last 16 bytes of each bank that may be accessed from any bank. The STATUS_TEMP and PCLATH_TEMP are defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register in bank 0.
- d) Executes the ISR code.
- e) Restores the PCLATH register.
- f) Restores the STATUS register
- g) Restores W.

Note that W_TEMP, STATUS_TEMP and PCLATH_TEMP are defined in the common RAM area (70h - 7Fh) to avoid register bank switching during context save and restore.

EXAMPLE 13-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

org	W_TEMP STATUS_TEMP PCLATH_TEMP 0x04 W TEMP	0x70 0x71 0x72 ; start at Interrupt Vector ; Save W register
MOVF		,
MOVWF	_	; save STATUS
	PCLATH,W	
	PCLATH_TEMP	; save PCLATH
: (Interr :	upt Service Routine)
MOVF	PCLATH_TEMP,W	
MOVWF	PCLATH	
MOVF	STATUS_TEMP,W	
MOVWF	STATUS	
SWAPF	W_TEMP,F	;
SWAPF RETFIE	W_TEMP,W	; swapf loads W without affecting STATUS flags

14.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 14-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

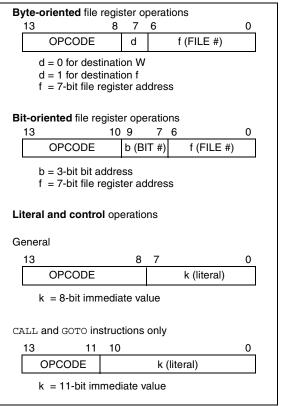
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 14-2 lists the instructions recognized by the MPASM assembler.

Figure 14-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.

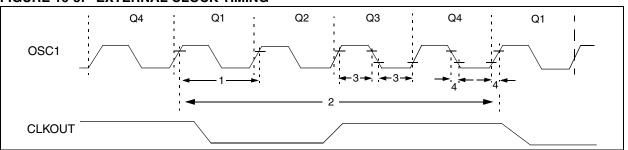
INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead making it a 2TCY instruction.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in regis- ter 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead making it a 2TCY instruction.

MPLAB [®] Integrated Development Environment MPLAB [®] C17 Compiler MPLAB [®] C18 Comvilor		 ✓ BIC1400 					< PIC16C	LO9LOId >							63CXX 52CXX 54CXX	ххээн	MCRFXX	
	>	>	>	>	>	>	>	>	>	>	>	>	>	• >	>	>		
ខ្លុំ MPLAB [®] -ICE	>	>	>	>	>	**^	>	>	~	>	>	>	>	~				
ICEPIC™ Low-Cost In-Circuit Emulator	>		>	>	>		>	>	>		>							
er MPLAB [®] -ICD In-Circuit Debugger				* ^			*^			>								
PICSTART®Plus Low-Cost Universal Dev. Kit	>	`	>	`	`	**`	>	~	`	>	`	`	`	`				
អ្នក MATE® II ច្បូ Universal Programmer	>	>	>	>	>	** ^	>	>	>	>	>	>	>	>	>	>		
PICDEM-1			>		>		+ ↓		>			>						
PICDEM-2				≁			+,							>				
PICDEM-3							ļ		<u> </u>	ļ	>	<u> </u>	<u> </u>					
PICDEM-14A		>																
DICDEM-17										<u> </u>			>					
עם KeeLoo® Evaluation Kit							ļ		<u> </u>	ļ		<u> </u>	<u> </u>			>		
B KEELOQ Transponder Kit							ļ		<u> </u>	ļ		<u> </u>	<u> </u>			>		
unicrolD™ Programmer's Kit							ļ		<u> </u>	ļ		<u> </u>	<u> </u>				~	
125 kHz microlD Developer's Kit	t																>	
Developer's Kit										<u> </u>							^	
13.56 MHz Anticollision microlD Developer's Kit	•									<u></u>							^	
MCP2510 CAN Developer's Kit																		

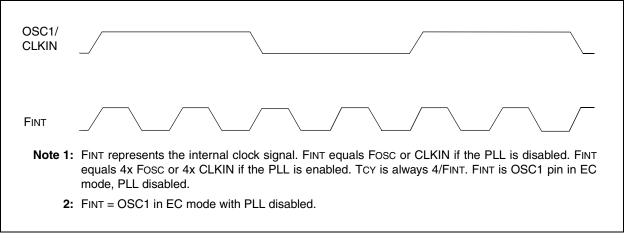
TABLE 15-1: DEVELOPMENT TOOLS FROM MICROCHIP

* Contact the Microchip Technology Inc. web site at www.microchip.com for information on how to use the MI ** Contact Microchip Technology Inc. for availability date. † Development tool is available on select devices.


16.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss	0.3V to +13.25V
Voltage on RA4 with respect to Vss	0.3V to +10.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (Vι < 0 or Vι > VDD)	±20 mA
Output clamp current, Ioκ (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 2) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 2) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 2) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 2) (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(V	DD-VOH) x IOH} + Σ (VOI x IOL)
2: PORTD and PORTE not available on the PIC16C745.	


† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

16.3.3 TIMING DIAGRAMS AND SPECIFICATIONS

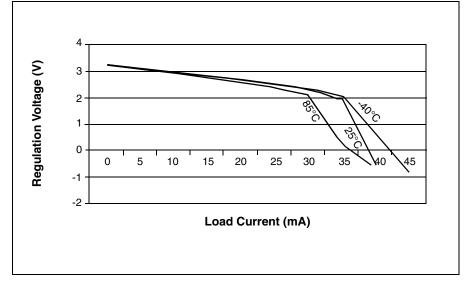


FIGURE 16-3: EXTERNAL CLOCK TIMING

FIGURE 16-4: CLOCK MULTIPLIER (PLL) PHASE RELATIONSHIP

FIGURE 17-3: DC LOAD LINES FOR USB REGULATOR OUTPUT (VUSB)

INDEX

Α

A/D	
ADCON0 Register	91
Analog Input Model Block Diagram	95
Analog-to-Digital Converter	91
Block Diagram	94
Configuring Analog Port Pins	
Configuring the Interrupt	94
Configuring the Module	94
Conversion Clock	96
Conversions	96
Converter Characteristics	141
Effects of a Reset	
Faster Conversion - Lower Resolution Tradeoff	
Internal Sampling Switch (Rss) Impedance	95
Operation During Sleep	
Sampling Requirements	95
Source Impedance	95
Timing Diagram	142
Using the CCP Trigger	97
Absolute Maximum Ratings	127
ADRES Register	17,91
Application Notes	
AN552 (Implementing Wake-up on Key Strokes	
Using PIC16CXXX)	33
AN556 (Table Reading Using PIC16CXX	
AN607, Power-up Trouble Shooting	103
Architecture	
Overview	9
Assembler	
MPASM Assembler	121
MPASM Assembler	121
В	
B Baud Rate Formula	
B Baud Rate Formula Block Diagrams	79
B Baud Rate Formula Block Diagrams A/D	79
B Baud Rate Formula Block Diagrams A/D Analog Input Model	79 94 95
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture	
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare	79 94 95 53 54
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit	79 94 95 53 54 102
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC	79 94 53 53 54 102 35
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC (In I/O Port Mode)	79 94 95 53 54 102 35 37
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port	79 94 53 54 102 35 37 40
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode)	79 94 95 53 54 35 37 40 38
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM	
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin	
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins	79 94 95 53 54 35 37 40 38 54 31 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins	79 94 95 53 54 102 35 37 40 38 33 33 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins Timer0/WDT Prescaler	79 94 95 53 54 102 35 37 40 38 33 33 33 33 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2	79 94 95 53 54 102 35 37 33 33 33 33 33 33 33 33 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2 USART Receive	79 94 95 53 54 102 35 37 40 38 33 33 33 33 33 43 49 83
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2 USART Receive USART Transmit	79 94 95 53 54 102 35 37 37 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2 USART Receive USART Transmit Watchdog Timer	79 94 95 53 54 102 35 37 40 38 33 33 33 33 33 33 43 43 49 83 81 110
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2 USART Receive USART Transmit Watchdog Timer	79 94 95 53 54 102 35 37 40 38 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 31 31 31 33 31 33 33 33 33 33 33 33 33 33 33 33 33 31 33 33 33 33 31 33 33 33 33 33 33 33 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2 USART Receive USART Transmit Watchdog Timer	79 94 95 53 54 102 35 37 40 38 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 31 31 31 33 31 33 33 33 33 33 33 33 33 33 33 33 33 31 33 33 33 33 31 33 33 33 33 33 33 33 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2 USART Receive USART Transmit Watchdog Timer BOR bit BRGH bit Brown-out Reset (BOR)	79 94 95 53 54 35 35 37 40 38 33
B Baud Rate Formula Block Diagrams A/D Analog Input Model Capture Compare On-Chip Reset Circuit PORTC PORTC PORTD (In I/O Port Mode) PORTD and PORTE as a Parallel Slave Port PORTE (In I/O Port Mode) PORTE (In I/O Port Mode) PWM RA4/T0CKI Pin RB Port Pins RB Port Pins RB Port Pins Timer0/WDT Prescaler Timer2 USART Receive USART Transmit Watchdog Timer	79 94 95 53 54 54 35 37 37 33

С

C bit
Capture/Compare/PWM
• •
Capture
Block Diagram
CCP1CON Register
CCP1IF
Mode53
Prescaler53
CCP Timer Resources5
Compare
Block Diagram54
Mode54
Software Interrupt Mode54
Special Event Trigger54
Special Trigger Output of CCP154
Special Trigger Output of CCP254
Interaction of Two CCP Modules
Section
Special Event Trigger and A/D Conversions
Capture/Compare/PWM (CCP)
PWM Block Diagram
PWM Mode
Timing Diagram
CCP1CON
CCP2CON
CCPR1H Register 17, 19, 5
CCPR1L Register
CCPR2H Register
CCPR2L Register 17, 19
Clocking Scheme
Code Examples
Call of a Subroutine in Page 1 from Page 0 29
Changing Prescaler (Timer0 to WDT)44
Indirect Addressing
Indirect Addressing
Indirect Addressing 30 Initializing PORTA 31 Code Protection 99, 112 Computed GOTO 25 Configuration Bits 95 Control 60 CREN bit 75 CS pin 40
Indirect Addressing
Indirect Addressing
Indirect Addressing 30 Initializing PORTA 31 Code Protection 99, 112 Computed GOTO 22 Configuration Bits 92 Control 60 CREN bit 74 CS pin 40 D D DC bit 22 DC Characteristics 129, 130
Indirect Addressing
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 66 CREN bit 76 D 22 DC bit 22 DC Characteristics 129, 130 Development Support 5, 12
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12* Direct Addressing 30
Indirect Addressing 30 Initializing PORTA 31 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12 Direct Addressing 30 E 30
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12 Direct Addressing 30 E EC Oscillator 104
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D 22 DC bit 22 DC Characteristics 129, 130 Development Support 5, 12 Direct Addressing 30 E 20 EC Oscillator 104 Electrical Characteristics 125
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12 Direct Addressing 30 E E EC Oscillator 104 Electrical Characteristics 127 Endpoint 77
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D 22 DC bit 22 DC Characteristics 129, 130 Development Support 5, 12 Direct Addressing 30 E 20 EC Oscillator 104 Electrical Characteristics 125
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12 Direct Addressing 30 E E EC Oscillator 104 Electrical Characteristics 127 Endpoint 77
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12 Direct Addressing 30 E E EC Oscillator 104 Electrical Characteristics 127 Endpoint 77 Errata 77
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12° Direct Addressing 30 E E Coscillator 104 Electrical Characteristics 12° Errata 30 F 60
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12° Direct Addressing 30 E E Coscillator 104 Electrical Characteristics 12° Error 60 F F FERR bit 74
Indirect Addressing 30 Initializing PORTA 33 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12* Direct Addressing 30 E E C Oscillator 104 Electrical Characteristics 12* Endpoint 7* Errata 3* F F FERR bit 74 FSR Register 17, 18, 20, 30
Indirect Addressing 30 Initializing PORTA 3 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12° Direct Addressing 30 E E Coscillator 104 Electrical Characteristics 12° Error 60 F F FERR bit 74
Indirect Addressing 30 Initializing PORTA 33 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12* Direct Addressing 30 E E CO Scillator 104 Electrical Characteristics 12* Endpoint 7* Error 65 F FERR bit 74 FSR Register 17, 18, 20, 30 G 40 40
Indirect Addressing 30 Initializing PORTA 33 Code Protection 99, 112 Computed GOTO 29 Configuration Bits 99 Control 60 CREN bit 76 CS pin 40 D D DC bit 22 DC Characteristics 129, 130 Development Support 5, 12* Direct Addressing 30 E E C Oscillator 104 Electrical Characteristics 12* Endpoint 7* Errata 3* F F FERR bit 74 FSR Register 17, 18, 20, 30