

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z8L180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	20MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	80-BQFP
Supplier Device Package	80-QFP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8l18020fsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN IDENTIFICATION (Continued)

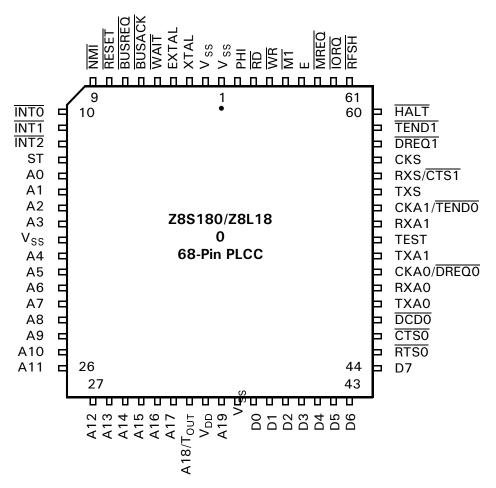


Figure 3. Z8S180/Z8L180 68-Pin PLCC Pin Configuration

PIN IDENTIFICATION (Continued)

Table 1.	Z8S180/Z8L180 Pir	n Identification (Continued)
10010 11	200100/20210011	raonanou (contanaou)

Pin Num	ber and Packa	ige Type	Default	Secondary	
QFP	PLCC	DIP	Function	Function	Control
13	19	17	A4		
14			NC		
15	20	18	A5		
16	21	19	A6		
17	22	20	A7		
18	23	21	A8		
19	24	22	A9		
20	25	23	A10		
21	26	24	A11		
22			NC		
23			NC		
24	27	25	A12		
25	28	26	A13		
26	29	27	A14		
27	30	28	A15		
28	31	29	A16		
29	32	30	A17		
30			NC		
31	33	31	A18	T _{OUT}	Bit 2 or Bit 3 of TCR
32	34	32	V _{DD}		
33	35		A19		
34	36	33	V _{SS}		
35	37	34	D0		
36	38	35	D1		
37	39	36	D2		
38	40	37	D3		
39	41	38	D4		
40	42	39	D5		
41	43	40	D6		
42			NC		
43			NC		
44	44	41	D7		
45	45	42	RTSO		
46	46	43	CTSO		
47	47	44	DCD0		
48	48	45	TXA0		
49	49	46	RXA0		
50	50	47	CKAO	DREQO	Bit 3 or Bit 5 of DMODE
51	-		NC		
52	51	48	TXA1		

ARCHITECTURE

The Z180 combines a high-performance CPU core with a variety of system and I/O resources useful in a broad range of applications. The CPU core consists of five functional blocks: clock generator, bus state controller, Interrupt controller, memory management unit (MMU), and the central processing unit (CPU). The integrated I/O resources make up the remaining four functional blocks: direct memory access (DMA) control (2 channels), asynchronous serial communication interface (ASCI, 2 channels) programmable reload timers (PRT, 2 channels), and a clock serial I/O (CSI/O) channel.

Clock Generator. This logic generates a system clock from an external crystal or clock input. The external clock is divided by 2 or 1 and provides the timing for both internal and external devices.

Bus State Controller. This logic performs all of the status and bus-control activity associated with the CPU and some on-chip peripherals. Also includes wait-state timing, reset cycles, DRAM refresh, and DMA bus exchanges.

Interrupt Controller. This logic monitors and prioritizes the variety of internal and external interrupts and traps to provide the correct responses from the CPU. To maintain compatibility with the Z80 CPU, three different interrupts modes are supported.

Memory Management Unit. The MMU allows the user to map the memory used by the CPU (logically only 64KB) into the 1-MB addressing range supported by the Z8S180/Z8L180. The organization of the MMU object

Central Processing Unit. The CPU is microcoded to provide a core that is object-code compatible with the Z80 CPU. It also provides a superset of the Z80 instruction set, including 8-bit multiplication. The core is modified to allow many of the instructions to execute in fewer clock cycles.

DMA Controller. The DMA controller provides highspeed transfers between memory and I/O devices. Transfer operations supported are memory-to-memory, memory to/from I/O, and I/O-to-I/O. Transfer modes supported are request, burst, and cycle steal. DMA transfers can access the full 1-MB address range with a block length up to 64 KB, and can cross over 64K boundaries.

Asynchronous Serial Communication Interface (ASCI).

The ASCI logic provides two individual full-duplex UARTs. Each channel includes a programmable baud rate generator and modem control signals. The ASCI channels can also support a multiprocessor communication format as well as break detection and generation

Programmable Reload Timers (PRT). This logic consists of two separate channels, each containing a 16-bit counter (timer) and count reload register. The time base for the counters is derived from the system clock (divided by 20) before reaching the counter. PRT channel 1 provides an optional output to allow for waveform generation.

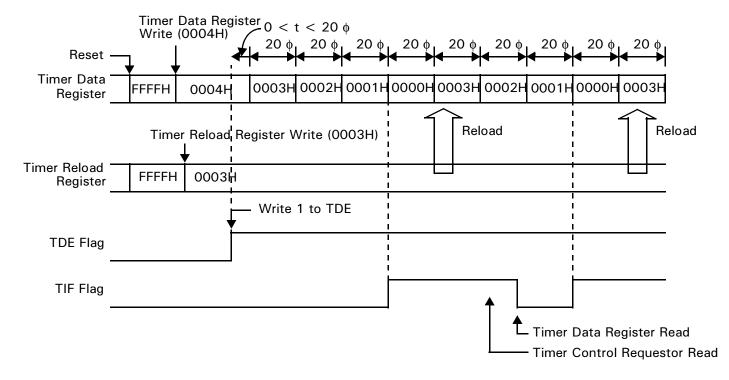
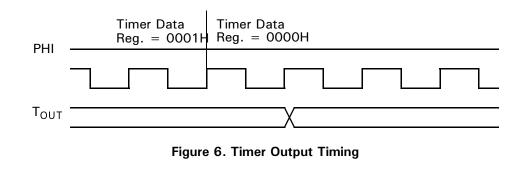
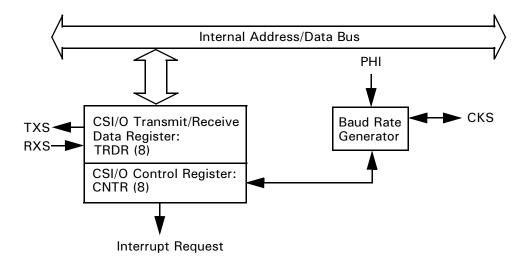
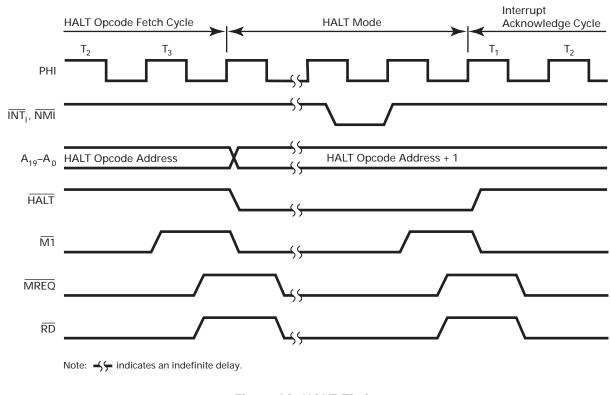



Figure 5. Timer Initialization, Count Down, and Reload Timing

Clocked Serial I/O (CSI/O). The CSI/O channel provides a half-duplex serial transmitter and receiver. This channel can be used for simple high-speed data connection to another microprocessor or microcomputer. TRDR is used for both CSI/O transmission and reception. Thus, the system design must ensure that the constraints of half-duplex operation are met (Transmit and Receive operation cannot occur simultaneously). For example, if a CSI/O transmission is attempted while the CSI/O is receiving data, a CSI/O does not work.

Note: TRDR is not buffered. Performing a CSI/O transmit while the previous transmission is still in progress causes the data to be immediately updated and corrupts the transmit operation. Similarly, reading TRDR while a transmit or receive is in progress should be avoided.



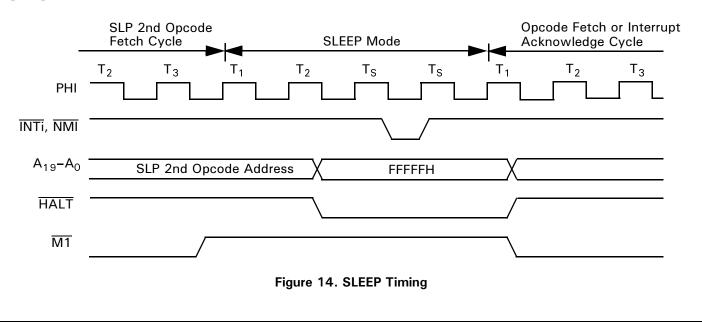

Figure 7. CSI/O Block Diagram

OPERATION MODES (Continued)

The Z8S180/Z8L180 leaves HALT mode in response to:

- Low on RESET
- Interrupt from an enabled on-chip source
- External request on NMI
- Enabled external request on INTO, INT1, or INT2

In case of an interrupt, the return address is the instruction following the HALT instruction. The program can either branch back to the HALT instruction to wait for another interrupt or can examine the new state of the system/application and respond appropriately.


SLEEP Mode. This mode is entered by keeping the IOSTOP bit (ICR5) and bits 3 and 6 of the CPU Control Register (CCR3, CCR6) all zero and executing the SLP instruction. The oscillator and PHI output continue operating, but are blocked from the CPU core and DMA channels to reduce power consumption. DRAM refresh stops, but interrupts and granting to an external Master can occur. Except when the bus is granted to an external Master, A19–0 and all control signals except HALT are maintained High. HALT is Low. I/O operations continue as before the SLP instruction, except for the DMA channels.

The Z8S180/Z8L180 leaves SLEEP mode in response to a Low on RESET, an interrupt request from an on-chip source,

an external request on $\overline{\text{NMI}}$, or an external request on $\overline{\text{INTO}}$, $\overline{\text{INT1}}$, or $\overline{\text{INT2}}$.

If an interrupt source is individually disabled, it cannot bring the Z8S180/Z8L180 out of SLEEP mode. If an interrupt source is individually enabled, and the IEF bit is 1 so that interrupts are globally enabled (by an EI instruction), the highest priority active interrupt occurs with the return address being the instruction after the SLP instruction. If an interrupt source is individually enabled, but the IEF bit is 0 so that interrupts are globally disabled (by a DI instruction), the Z8S180/Z8L180 leaves SLEEP mode by simply executing the following instruction(s). This condition provides a technique for synchronization with high-speed external events without incurring the latency imposed by an interrupt-response sequence. Figure 14 depicts the timing for exiting SLEEP mode due to an interrupt request.

Note: The Z8S180/Z8L180 takes about 1.5 clock ticks to restart.

IOSTOP Mode. IOSTOP mode is entered by setting the IOSTOP bit of the I/O Control Register (ICR) to 1. In this case, on-chip I/O (ASCI, CSI/O, PRT) stops operating. However, the CPU continues to operate. Recovery from IOSTOP mode is performed by resetting the IOSTOP bit in ICR to 0.

SYSTEM STOP Mode. SYSTEM STOP mode is the combination of SLEEP and IOSTOP modes. SYSTEM STOP mode is entered by setting the IOSTOP bit in ICR to 1 followed by execution of the SLP instruction. In this mode, on-chip I/O and CPU stop operating, reducing power consumption, but the PHI output continues to operate. Recovery from SYSTEM STOP mode is the same as recovery from SLEEP mode except that internal I/O sources (disabled by IOSTOP) cannot generate a recovery interrupt.

IDLE Mode. Software puts the Z8S180/Z8L180 into this mode by performing the following actions:

- Set the IOSTOP bit (ICR5) to 1
- Set CCR6 to 0
- Set CCR3 to 1
- Execute the SLP instruction

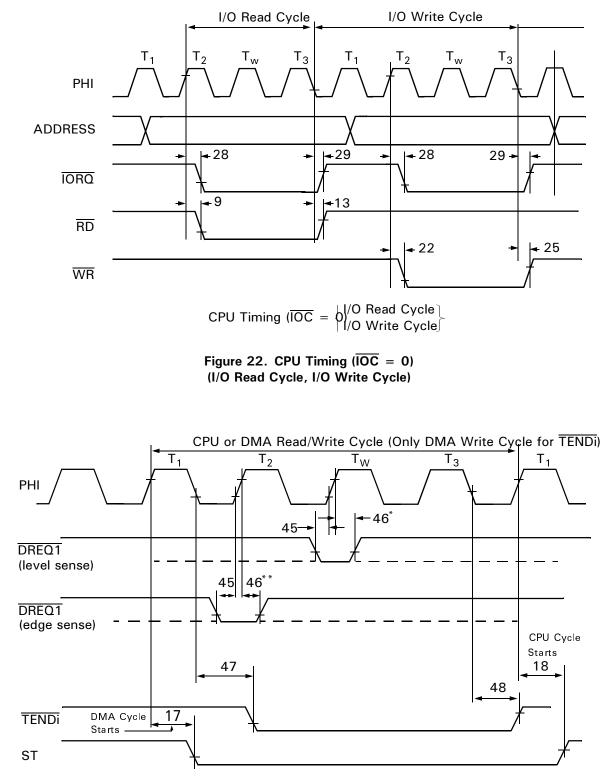
The oscillator keeps operating but its output is blocked to all circuitry including the PHI pin. DRAM refresh and all

internal devices stop, but external interrupts can occur. Bus granting to external Masters can occur if the BREST bit in the CPU control Register (CCR5) was set to 1 before IDLE mode was entered.

The Z8S180/Z8L180 leaves IDLE mode in response to a Low on RESET, an external interrupt request on NMI, or an external interrupt request on INTO, INT1 or INT2 that is enabled in the INT/TRAP Control Register. As previously described for SLEEP mode, when the Z8S180/Z8L180 leaves IDLE mode due to an NMI, or due to an enabled external interrupt request when the IEF flag is 1 due to an El instruction, the device starts by performing the interrupt with the return address of the instruction after the SLP instruction.

If an external interrupt enables the INT/TRAP control register while the IEF1 bit is 0, Z8S180/Z8L180 leaves IDLE mode; specifically, the processor restarts by executing the instructions following the SLP instruction.

Figure 15 indicates the timing for exiting IDLE mode due to an interrupt request.


Note: The Z8S180/Z8L180 takes about 9.5 clocks to restart.

AC CHARACTERISTICS – Z8S180 (Continued)

Table 8. Z8S180 AC Characteristics (Continued)
$V_{DD} = 5V \pm 10\%$ or $V_{DD} = 3.3V \pm 10\%$; 33-MHz Characteristics Apply Only to 5V Operation

			Z8S180	—20 MHz	Z8S180	—33 MHz	
Number	Symbol	ltem	Min	Max	Min	Max	Unit
32	t _{INTH}	INT Hold Time from PHI Fall	10	_	10	_	ns
33	t _{NMIW}	NMI Pulse Width	35	_	25	_	ns
34	t _{BRS}	BUSREQ Set-up Time to PHI Fall	10	_	10	_	ns
35	t _{BRH}	BUSREQ Hold Time from PHI Fall	10	_	10		ns
36	t _{BAD1}	PHI Rise to BUSACK Fall Delay	—	25	_	15	ns
37	t _{BAD2}	PHI Fall to BUSACK Rise Delay	_	25	_	15	ns
38	t _{BZD}	PHI Rise to Bus Floating Delay Time	_	40	_	30	ns
39	t _{MEWH}	MREQ Pulse Width (High)	35	—	25	—	ns
40	t _{MEWL}	MREQ Pulse Width (Low)	35	_	25	_	ns
41	t _{RFD1}	PHI Rise to RFSH Fall Delay	_	20	_	15	ns
42	t _{RFD2}	PHI Rise to RFSH Rise Delay	_	20		15	ns
43	t _{HAD1}	PHI Rise to HALT Fall Delay	_	15		15	ns
44	t _{HAD2}	PHI Rise to HALT Rise Delay	_	15	_	15	ns
45	t _{DRQS}	DREQ1 Set-up Time to PHI Rise	20	_	15	_	ns
46	t _{DRQH}	DREQ1 Hold Time from PHI Rise	20	_	15	_	ns
47	t _{TED1}	PHI Fall to TENDi Fall Delay	_	25	_	15	ns
48	t _{TED2}	PHI Fall to TENDi Rise Delay	_	25	_	15	ns
49	t _{ED1}	PHI Rise to E Rise Delay	_	30	_	15	ns
50	t _{ED2}	PHI Fall or Rise to E Fall Delay	_	30	_	15	ns
51	P _{WEH}	E Pulse Width (High)	25	_	20	_	ns
52	P _{WEL}	E Pulse Width (Low)	50	_	40	_	ns
53	t _{Er}	Enable Rise Time	_	10	_	10	ns
54	t _{Ef}	Enable Fall Time	_	10	_	10	ns
55	t _{TOD}	PHI Fall to Timer Output Delay	_	75	_	50	ns
56	t _{STDI}	CSI/O Transmit Data Delay Time (Internal Clock Operation)	_	2	_	2	tcyc
57	t _{STDE}	CSI/O Transmit Data Delay Time (External Clock Operation)	_	7.5 t _{CYC} +75	—	75 t _{CYC} +60	ns
58	t _{SRSI}	CSI/O Receive Data Set-up Time (Internal Clock Operation)	1	_	1	_	tcyc
59	t _{SRHI}	CSI/O Receive Data Hold Time (Internal Clock Operation)	1	_	1	_	tcyc
60	t _{SRSE}	CSI/O Receive Data Set-up Time (External Clock Operation)	1	_	1	_	tcyc
61	t _{SRHE}	CSI/O Receive Data Hold Time (External Clock Operation)	1	_	1	_	tcyc
62	t _{RES}	RESET Set-up Time to PHI Fall	40	_	25	_	ns

TIMING DIAGRAMS (Continued)

Notes:

 $^{*}T_{\text{DRQS}}$ and T_{DRQH} are specified for the rising edge of the clock followed by $T_{3}.$

 $^{*\,*}T_{DRQS}$ and T_{DRQH} are specified for the rising edge of the clock.

Figure 23. DMA Control Signals

ZiLOG

Bit 2 LNIO. This bit controls the drive capability of certain external I/O pins of the Z8S180/Z8L180. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability:

TxS	
CKA0/DREQ0	
TXA1	
CKS	
	CKA0/DREQ0 TXA1

Bit 1 LNCPUCTL. This bit controls the drive capability of the CPU Control pins. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability:

BUSACK	RD
WR	M1
MREQ	IORQ
RFSH	HALT
E	TEST
ST	

Bit O LNAD/DATA. This bit controls the drive capability of the Address/Data bus output drivers. If this bit is set to 1, the output drive capability of the Address and Data bus outputs is reduced to 33 percent of its original drive capability.

Data can be written into and read from the ASCI Transmit Data Register. If data is read from the ASCI Transmit Data Register, the ASCI data transmit operation is not affected by this READ operation.

ASCI Receive Shift Register 0,1 (RSR0,1). This register receives data shifted in on the RXA pin. When full, data is automatically transferred to the ASCI Receive Data Register (RDR) if it is empty. If RSR is not empty when the next incoming data byte is shifted in, an overrun error occurs. This register is not program accessible.

ASCI Receive Data FIFO 0,1 (RDR0, 1:I/O Address = **08H**, **09H**). The ASCI Receive Data Register is a read-only register. When a complete incoming data byte is assembled in RSR, it is automatically transferred to the 4 character Receive Data First-In First-Out (FIFO) memory. The oldest character in the FIFO (if any) can be read from the Receive Data Register (RDR). The next incoming data byte can be shifted into RSR while the FIFO is full. Thus, the ASCI receiver is well buffered.

ASCI STATUS FIFO

This four-entry FIFO contains Parity Error, Framing Error, Rx Overrun, and Break status bits associated with each character in the receive data FIFO. The status of the oldest character (if any) can be read from the ASCI status registers.

ASCI CHANNEL CONTROL REGISTER A

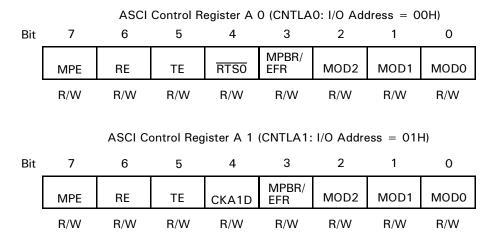
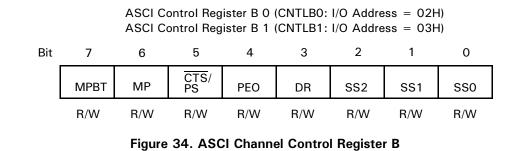


Figure 33. ASCI Channel Control Register A


MPE: Multi-Processor Mode Enable (Bit 7). The ASCI features a multiprocessor communication mode that utilizes an extra data bit for selective communication when a number of processors share a common serial bus. Multiprocessor data format is selected when the MP bit in CNTLB is set to 1. If multiprocessor mode is not selected (MP bit in CNTLB = 0), MPE has no effect. If multiprocessor mode is selected, MPE enables or disables the wake-up feature as follows. If MBE is set to 1, only received bytes in which the multiprocessor bit (MPB) = 1 can affect the RDRF and error flags. Effectively, other bytes (with MPB = 0) are *ignored* by the ASCI. If MPE is reset to 0, all bytes, regardless of

the state of the MPB data bit, affect the REDR and error flags. MPE is cleared to 0 during RESET.

RE: Receiver Enable (Bit 6). When RE is set to 1, the ASCI transmitter is enabled. When TE is reset to 0, the transmitter is disables and any transmit operation in progress is interrupted. However, the TDRE flag is not reset and the previous contents of TDRE are held. TE is cleared to 0 in IOSTOP mode during RESET.

TE: Transmitter Enable (Bit 5). When TE is set to 1, the ASCI receiver is enabled. When \overline{TE} is reset to 0, the transmitter is disabled and any transmit operation in progress is interrupted. However, the TDRE flag is not reset and the pre-

ASCI CHANNEL CONTROL REGISTER B

MPBT: Multiprocessor Bit Transmit (Bit 7). When multiprocessor communication format is selected (MP bit = 1), MPBT is used to specify the MPB data bit for transmission. If MPBT = 1, then MPB = 1 is transmitted. If MPBT = 0, then MPB = 0 is transmitted. The MPBT state is undefined during and after RESET.

MP: Multiprocessor Mode (Bit 6). When MP is set to 1, the data format is configured for multiprocessor mode based on MOD2 (number of data bits) and MOD0 (number of stop bits) in CNTLA. The format is as follows:

Start bit + 7 or 8 data bits + MPB bit + 1 or 2 stop bits

Multiprocessor (MP = 1) format offers no provision for parity. If MP = 0, the data format is based on MODO, MOD1, MOD2, and may include parity. The MP bit is cleared to 0 during RESET.

 $\overline{\text{CTS}}/\text{PS}$: Clear to Send/Prescale (Bit 5). When read, $\overline{\text{CTS}}/\text{PS}$ reflects the state of the external $\overline{\text{CTS}}$ input. If the $\overline{\text{CTS}}$ input pin is High, $\overline{\text{CTS}}/\text{PS}$ is read as 1.

Note: When the \overline{CTS} input pin is High, the TDRE bit is inhibited (that is, held at 0).

For channel 1, the $\overline{\text{CTS}}$ input is multiplexed with RXS pin (Clocked Serial Receive Data). Thus, $\overline{\text{CTS}}/\text{PS}$ is only valid when read if the channel 1 CTS1E bit = 1 and the $\overline{\text{CTS}}$ input pin function is selected. The READ data of $\overline{\text{CTS}}/\text{PS}$ is not affected by $\overline{\text{RESET}}$.

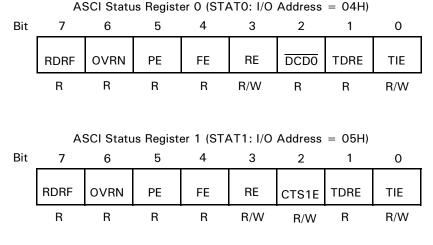
If the SS2-0 bits in this register are not 111, and the BRG mode bit in the ASEXT register is 0, then writing to this bit sets the prescale (PS) control. Under those circumstances, a 0 indicates a divide-by-10 prescale function while a 1 indicates divide-by-30. The bit resets to 0.

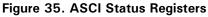
PEO: Parity Even Odd (Bit 4) . PEO selects oven or odd parity. PEO does not affect the enabling/disabling of parity (MOD1 bit of CNTLA). If PEO is cleared to 0, even parity is selected. If PEO is set to 1, odd parity is selected. PEO is cleared to 0 during RESET.

DR: Divide Ratio (Bit 3). If the X1 bit in the ASEXT register is 0, this bit specifies the divider used to obtain baud rate from the data sampling clock. If DR is reset to 0, divide-by-16 is used, while if DR is set to 1, divide-by-64 is used. DR is cleared to 0 during RESET.

SS2,1,0: Source/Speed Select 2,1,0 (Bits 2–0). First, if these bits are 111, as they are after a RESET, the CKA pin is used as a clock input, and is divided by 1, 16, or 64 depending on the DR bit and the X1 bit in the ASEXT register.

If these bits are not 111 and the BRG mode bit is ASEXT is 0, then these bits specify a power-of-two divider for the PHI clock as indicated in Table 10.


Setting or leaving these bits as 111 makes sense for a channel only when its CKA pin is selected for the CKA function. CKAO/CKS offers the CKAO function when bit 4 of the System Configuration Register is 0. $\overline{DCDO}/CKA1$ offers the CKA1 function when bit 0 of the Interrupt Edge register is 1.


Table 10. Divide Ratio

SS2	SS1	SS0	Divide Ratio
0	0	0	÷1
0	0	1	÷2
0	1	0	÷4
0	1	1	÷8
1	0	0	÷16
1	0	1	÷32
1	1	0	÷64
1	1	1	External Clock

ASCI STATUS REGISTER 0,1

Each ASCI channel status register (STAT0,1) allows interrogation of ASCI communication, error and modem control signal status, and the enabling or disabling of ASCI interrupts.

RDRF: Receive Data Register Full (Bit 7). RDRF is set to 1 when an incoming data byte is loaded into an empty Rx FIFO. If a framing or parity error occurs, RDRF is still set and the receive data (which generated the error) is still loaded into the FIFO. RDRF is cleared to 0 by reading RDR and most recently received character in the FIFO from IOSTOP mode, during RESET and for ASCI0 if the DCD0 input is auto-enabled and is negated (High).

OVRN: Overrun Error (Bit 6). An overrun condition occurs if the receiver finishes assembling a character but the Rx FIFO is full so there is no room for the character. However, this status bit is not set until the most recent character received before the overrun becomes the oldest byte in the FIFO. This bit is cleared when software writes a 1 to the EFR bit in the CNTLA register. The bit may also be cleared by RESET in IOSTOP mode or ASCIO if the DCDO pin is auto enabled and is negated (High).

Note: When an overrun occurs, the receiver does not place the character in the shift register into the FIFO, nor any subsequent characters, until the most recent good character enters the top of the FIFO so that OVRN is set. Software then writes a 1 to EFR to clear it.

PE: Parity Error (Bit 5). A parity error is detected when parity checking is enabled. When the MOD1 bit in the

CNTLA register is 1, a character is assembled in which the parity does not match the PEO bit in the CNTLB register. However, this status bit is not set until or unless the error character becomes the oldest one in the Rx FIFO. PE is cleared when software writes a 1 to the EFR bit in the CNTRLA register. PE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

FE: Framing Error (Bit 4). A framing error is detected when the stop bit of a character is sampled as O/SPACE. However, this status bit is not set until/unless the error character becomes the oldest one in the Rx FIFO. FE is cleared when software writes a 1 to the EFR bit in the CNTLA register. FE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

REI: Receive Interrupt Enable (Bit 3). RIE should be set to 1 to enable ASCI receive interrupt requests. When RIE is 1, the Receiver requests an interrupt when a character is received and RDRF is set, but only if neither DMA channel requires its request-routing field to be set to receive data from this ASCI. That is, if SM1–0 are 11 and SAR17–16 are 10, or DIM1 is 1 and IAR17–16 are 10, then ASCI1 does not request an interrupt for RDRF. If RIE is 1, either ASCI requests an interrupt when OVRN, PE or FE is set, and

ASCI TIME CONSTANT REGISTERS

If the SS2–0 bits of the CNTLB register are not 111, and the BRG mode bit in the ASEXT register is 1, the ASCI divides the PHI clock by two times the registers' 16-bit value, plus two. As a result, the clock is presented to the transmitter and receiver for division by 1, 16, or 64, and is output on the CKA pin.

If the SS2–0 bits in an ASCI CNTLB register are not 111, and the BRG mode bit in its Extension Control Register is 1, its *new* baud rate generator divides PHI for serial clocking, as follows:

bits/second =
$$f_{PHI}/(2*(TC+2) \times sampling rate)$$

where TC is the 16-bit value programmed into the ASCI Time Constant High and Low registers. If the ASCI multiplexed CKA pin is selected for the CKA function, it outputs the clock before the final division by the sampling rate, as follows:

$$f_{CKAout} = f_{PHI}/(2*(TC+2))$$

Find the TC value for a particular serial bit rate as follows:

 $TC = (f_{PHI}/(2 \text{ x bits/second x sampling rate})) - 2$

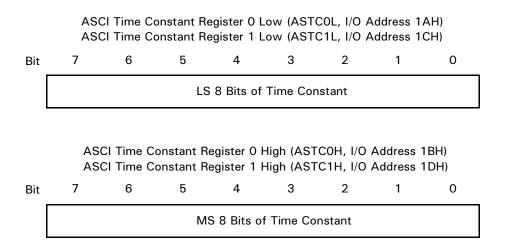


Figure 53. ASCI Time Constant Registers

CLOCK MULTIPLIER REGISTER

(Z180 MPU Address 1EH)

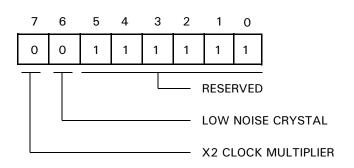


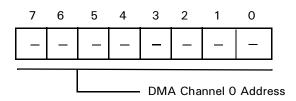
Figure 54. Clock Multiplier Register

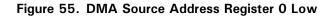
Bit 7. X2 Clock Multiplier Mode. When this bit is set to 1, the programmer can double the internal clock speed from the speed of the external clock. This feature only operates effectively with frequencies of 10-16 MHz (20-32 MHz internal). When this bit is set to 0, the Z8S180/Z8L180 device operates in normal mode. At power-up, this feature is disabled.

Bit 6. Low Noise Crystal Option. Setting this bit to 1 enables the low-noise option for the EXTAL and XTAL pins. This option reduces the gain in addition to reducing the output drive capability to 30% of its original drive capability. The Low Noise Crystal Option is recommended in the use of crystals for PCMCIA applications, where the crystal may be driven too hard by the oscillator. Setting this bit to 0 is selected for normal operation of the EXTAL and XTAL pins. The default for this bit is 0.

Note: Operating restrictions for device operation are listed below. If a low-noise option is required, and normal device operation is required, use the clock multiplier feature.

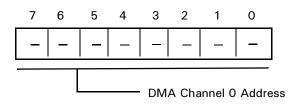
Table 13. Low Noise Option


Low Noise ADDR 1E, bit 6 = 1	Normal ADDR 1E, bit 6 = 0
20 MHz @ 4.5V, 100°C	33 MHz @ 4.5V, 100°C
10 MHz @ 3.0V, 100°C	20 MHz @ 3.0V, 100°C


DMA SOURCE ADDRESS REGISTER CHANNEL 0

The DMA Source Address Register Channel 0 specifies the physical source address for channel 0 transfers. The register contains 20 bits and can specify up to 1024 KB memory addresses or up to 64-KB I/O addresses. Channel 0 source can be memory, I/O, or memory mapped I/O. For I/O, bits 17–16 of this register identify the Request Handshake signal.

DMA Source Address Register, Channel 0 Low


Mnemonic SAR0L Address 20H

DMA Source Address Register, Channel 0 High

Mnemonic SAR0H Address 21H

DMA Source Address Register Channel OB

Mnemonic SAR0B Address 22H

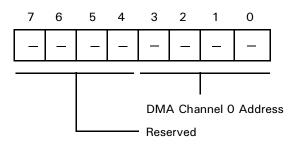
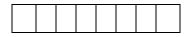


Figure 57. DMA Source Address Register 0B

If the source is in I/O space, bits 1–0 of this register select the DMA request signal for DMA0, as follows:

Bit 1 (A17)	Bit 0 (A16)	DMA Transfer Request
0	0	DREQ0 (external)
0	1	RDRF (ASCI0)
1	0	RDRF (ASCI1)
1	1	Reserved


DMA BYTE COUNT REGISTER CHANNEL 0

The DMA Byte Count Register Channel 0 specifies the number of bytes to be transferred. This register contains 16 bits and may specify up to 64-KB transfers. When one byte is transferred, the register is decremented by one. If n bytes should be transferred, n must be stored before the DMA operation.

Note: All DMA Count Register channels are undefined during RESET.

DMA Byte Count Register Channel 0 Low

Mnemonic BCR0L Address 26H

DMA Byte Count Register Channel 0 High

Mnemonic BCR0H Address 27H

Figure 62. DMA Byte Count Register 0 High

DMA Byte Count Register Channel 1 Low

Mnemonic BCR1L Address 2EH

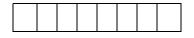


Figure 63. DMA Byte Count Register 1 Low

DMA Byte Count Register Channel 1 High

Mnemonic BCR1H Address 2FH

Figure 64. DMA Byte Count Register 1 High

DMA STATUS REGISTER

The DMA Status Register (DSTAT) is used to enable and disable DMA transfer and DMA termination interrupts.

DMA Status Register

Mnemonic DSTAT Address 30H

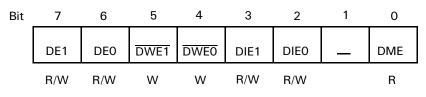


Figure 71. DMA Status Register (DSTAT: I/O Address = 30H)

DE1: DMA Enable Channel 1 (Bit 7). When DE1 = 1 and DME = 1, channel 1 DMA is enabled. When a DMA transfer terminates (BCR1 = 0), DE1 is reset to 0 by the DMAC. When DE1 = 0 and the DMA interrupt is enabled (DIE1 = 1), a DMA interrupt request is made to the CPU.

To perform a software WRITE to DE1, DWE1 should be written with a 0 during the same register WRITE access. Writing DE1 to 0 disables channel 1 DMA, but DMA is restartable. Writing DE1 to 1 enables channel 1 DMA and automatically sets DMA Main Enable (DME) to 1. DE1 is cleared to 0 during RESET.

DEO: DMA Enable Channel 0 (Bit 6). When DEO = 1 and DME = 1, channel 0 DMA is enabled. When a DMA transfer terminates (BCRO = 0), DEO is reset to 0 by the DMAC. When DEO = 0 and the DMA interrupt is enabled (DIEO = 1), a DMA interrupt request is made to the CPU.

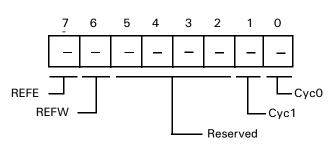
To perform a software WRITE to DEO, $\overline{\text{DWEO}}$ should be written with 0 during the same register WRITE access. Writing DEO to 0 disables channel 0 DMA. Writing DEO to 1 enables channel 0 DMA and automatically sets DMA Main Enable (DME) to 1. DEO is cleared to 0 during RESET.

DWE1: DE1 Bit Write Enable (Bit 5). When performing any software WRITE to DE1, this bit should be written with 0 during the same access. DWE1 always reads as 1.

DWEO: DEO Bit Write Enable (Bit 4). When performing any software WRITE to DEO, this bit should be written with 0 during the same access. DWEO always reads as 1.

DIE1: DMA Interrupt Enable Channel 1 (Bit 3). When DIE0 is set to 1, the termination channel 1 DMA transfer (indicated when DE1 = 0) causes a CPU interrupt request to be generated. When DIEO = 0, the channel 0 DMA termination interrupt is disabled. DIEO is cleared to 0 during RESET.

DIEO: DMA Interrupt Enable Channel 0 (Bit 2). When DIEO is set to 1, the termination channel 0 of DMA transfer (indicated when DEO = 0) causes a CPU interrupt request to be generated. When DIEO = 0, the channel 0 DMA termination interrupt is disabled. DIEO is cleared to 0 during RESET.


DME: DMA Main Enable (Bit 0). A DMA operation is only enabled when its DE bit (DE0 for channel 0, DE1 for channel 1) and the DME bit is set to 1.

When $\overline{\text{NMI}}$ occurs, DME is reset to 0, thus disabling DMA activity during the $\overline{\text{NMI}}$ interrupt service routine. To restart DMA, DE- and/or DE1 should be written with a 1 (even if the contents are already 1). This condition automatically sets DME to 1, allowing DMA operations to continue.

Note: DME cannot be directly written. The bit is cleared to 0 by $\overline{\text{NMI}}$ or indirectly set to 1 by setting DEO and/or DE1 to 1. DME is cleared to 0 during RESET.

REFRESH CONTROL REGISTER

Mnemonic RCR Address 36H

The Refresh Control Register (RCR) specifies the interval and length of refresh cycles, while enabling or disabling the refresh function. **REFE: Refresh Enable (Bit 7).** REFE = 0 disables the refresh controller, while REFE = 1 enables refresh cycle insertion. REFE is set to 1 during RESET.

REFW: Refresh Wait (Bit 6). REFW = 0 causes the refresh cycle to be two clocks in duration. REFW = 1 causes the refresh cycle to be three clocks in duration by adding a refresh wait cycle (TRW). REFW is set to 1 during RESET.

CYC1, 0: Cycle Interval (Bit 1,0). CYC1 and CYC0 specify the interval (in clock cycles) between refresh cycles. When dynamic RAM requires 128 refresh cycles every 2 ms (or 256 cycles in every 4 ms), the required refresh interval is less than or equal to 15.625 µs. Thus, the underlined values indicate the best refresh interval depending on CPU clock frequency. CYC0 and CYC1 are cleared to 0 during RESET (see Table 18).

Table 1	18.	DRAM	Refresh	Intervals

					Time Interval		
CYC1	CYC0	Insertion Interval	PHI: 10 MHz	8 MHz	6 MHz	4 MHz	2.5 MHz
0	0	10 states	(1.0 <i>µ</i> s)*	(1.25 <i>µ</i> s)*	1.66 <i>μ</i> s	2.5 <i>µ</i> s	4.0 <i>μ</i> s
0	1	20 states	(2.0 <i>µ</i> s)*	(2.5 <i>µ</i> s)*	3.3 <i>µ</i> s	5.0 <i>µ</i> s	8.0 <i>μ</i> s
1	0	40 states	(4.0 <i>µ</i> s)*	(5.0 <i>µ</i> s)*	6.6 <i>µ</i> s	10.0 <i>μ</i> s	16.0 <i>μ</i> s
1	1	80 states	(8.0 µs)*	(10.0 <i>µ</i> s)*	13.3 <i>µ</i> s	20.0 <i>µ</i> s	32.0 <i>µ</i> s

Refresh Control and Reset. After RESET, based on the initialized value of RCR, refresh cycles occur with an interval of 10 clock cycles and be 3 clock cycles in duration.

Dynamic RAM Refresh Operation

- 1. Refresh Cycle insertion is stopped when the CPU is in the following states:
 - a. During RESET
 - b. When the bus is released in response to **BUSREQ**
 - c. During SLEEP mode
 - d. During \overline{WAIT} states
- 2. Refresh cycles are suppressed when the bus is released in response to $\overline{\text{BUSREO}}$. However, the refresh timer continues to operate. The time at which the first refresh cycle occurs after the Z8S180/Z8L180 reacquires the bus depends on the refresh timer. This cycle offers no timing relationship with the bus exchange.
- 3. Refresh cycles are suppressed during SLEEP mode. If a refresh cycle is requested during SLEEP mode, the refresh cycle request is internally latched (until replaced with the next refresh request). The latched refresh cycle is inserted at the end of the first machine cycle after SLEEP mode is exited. After this initial cycle, the time at which the next refresh cycle occurs depends on the refresh time and offers no relationship with the exit from SLEEP mode.
- 4. The refresh address is incremented by one for each successful refresh cycle, not for each refresh. Thus, independent of the number of missed refresh requests, each refresh bus cycle uses a refresh address incremented by one from that of the previous refresh bus cycles.

CA3–CA0:CA (Bits 7–4). CA specifies the start (Low) address (on 4-KB boundaries) for Common Area 1. This condition also determines the most recent address of the Bank Area. All bits of CA are set to 1 during RESET.

OPERATION MODE CONTROL REGISTER

The Z8S180/Z8L180 is descended from two different ancestor processors, ZiLOG's original Z80 and the Hitachi 64180. The Operating Mode Control Register (OMCR) can be programmed to select between certain differences between the Z80 and the 64180.

Operation Mode Control Register

Mnemonic OMCR Address 3EH

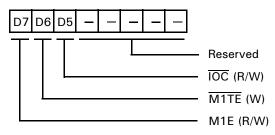


Figure 81. Operating Control Register (OMCR: I/O Address = 3EH)

BA3–BA0 (Bits 3–0). BA specifies the start (Low) address (on 4-KB boundaries) for the Bank Area. This condition also determines the most recent address of Common Area 0. All bits of BA are set to 1 during RESET.

M1E ($\overline{M1}$ Enable). This bit controls the $\overline{M1}$ output and is set to a 1 during reset.

When M1E = 1, the $\overline{M1}$ output is asserted Low during the opcode fetch cycle, the \overline{INTO} acknowledge cycle, and the first machine cycle of the \overline{NMI} acknowledge.

On the Z8S180/Z8L180, this choice makes the processor fetch one RETI instruction. When fetching a RETI from zero-wait-state memory, the processor uses three clock machine cycles that are not fully Z80-timing-compatible.

When M1E = 0, the processor does not drive $\overline{M1}$ Low during instruction fetch cycles. After fetching one RETI instruction with normal timing, the processor returns and refetches the instruction using Z80-compatible cycles that drive $\overline{M1}$ Low. This timing compatibility may be required by external Z80 peripherals to properly decode the RETI instruction.

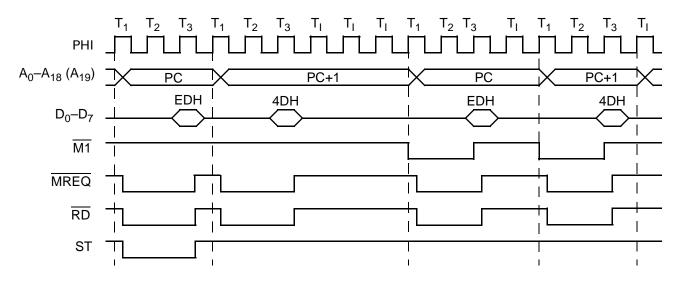


Figure 82. RETI Instruction Sequence with M1E = 0