

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	Z8L180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	20MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8l18020vsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION (Continued)

Power connections follow the conventional descriptions below:

Connection	Circuit	Device	
Power	V _{CC}	V _{DD}	
Ground	GND	V _{SS}	

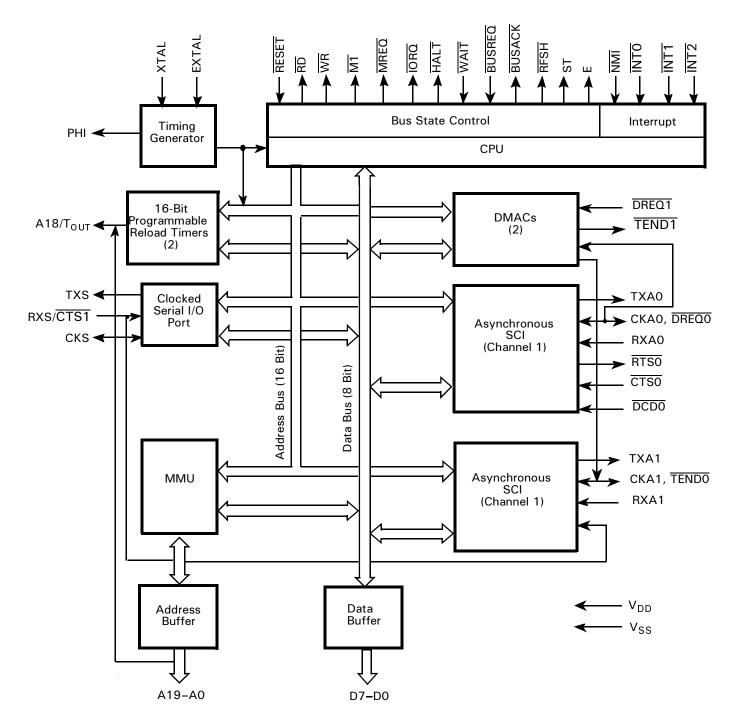


Figure 1. Z8S180/Z8L180 Functional Block Diagram

5

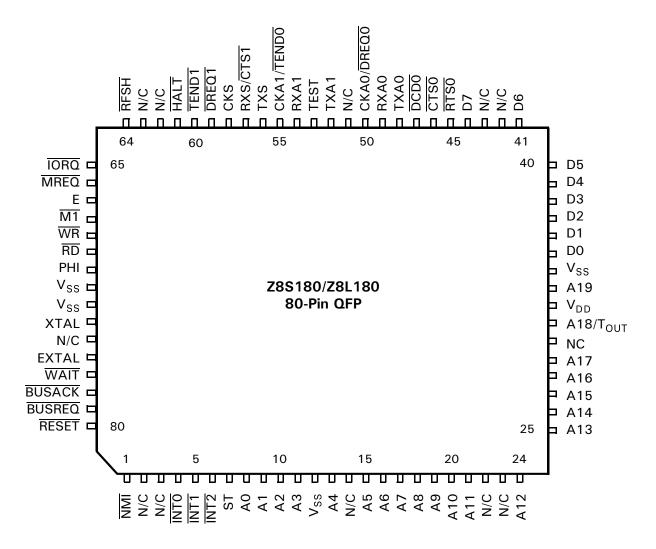


Figure 4. Z8S180/Z8L180 80-Pin QFP Pin Configuration

Table 1. Z8S180/Z8L180 Pin Identification

Pin Num	ber and Packa	age Type	Default	Secondary	
QFP	PLCC	DIP	Function	Function	Control
1	9	8	NMI		
2			NC		
3			NC		
4	10	9	ĪNTO		
5	11	10	ĪNT1		
6	12	11	ĪNT2		
7	13	12	ST		
8	14	13	Α0		
9	15	14	A1		
10	16	15	A2		
11	17	16	А3		
12	18		V _{SS}		

	Table 4. Multiplexed Pin Descriptions
A18/TOUT	During RESET, this pin is initialized as A18. If either the TOC1 or the TOC0 bit of the Timer Control register (TCR) is set to 1, the T_{OUT} function is selected. If TOC1 and TOC0 are cleared to 0, the A18 function is selected.
CKA0/DREQ0	During RESET, this pin is initialized as CKAO. If either DM1 or SM1 in the DMA Mode register (DMODE) is set to 1, the DREQO function is selected.
CKA1/TENDO	During RESET, this pin is initialized as CKA1. If the CKA1D bit in ASCI control register ch1 (CNTLA1) is set to 1, the $\overline{\text{TENDO}}$ function is selected. If the CKA1D bit is set to 0, the CKA1 function is selected.
RXS/CTS1	During RESET, this pin is initialized as RXS. If the CTS1E bit in the ASCI status register ch1 (STAT1) is set to 1, the $\overline{\text{CTS1}}$ function is selected. If the CTS1E bit is set to 0, the RXS function is selected.

OPERATION MODES (Continued)

The Z8S180/Z8L180 leaves HALT mode in response to:

- Low on RESET
- Interrupt from an enabled on-chip source
- External request on NMI
- Enabled external request on INTO, INT1, or INT2

In case of an interrupt, the return address is the instruction following the HALT instruction. The program can either branch back to the HALT instruction to wait for another interrupt or can examine the new state of the system/application and respond appropriately.

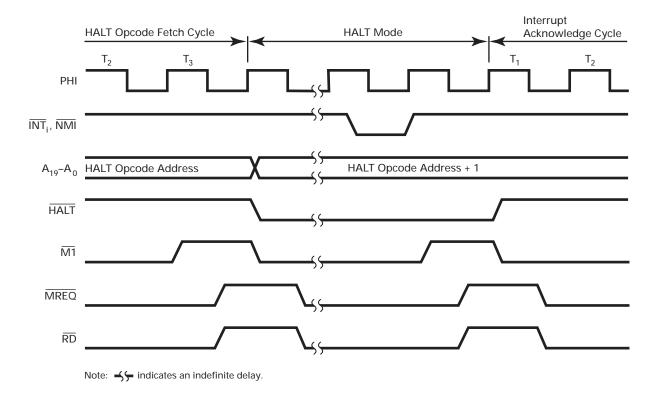
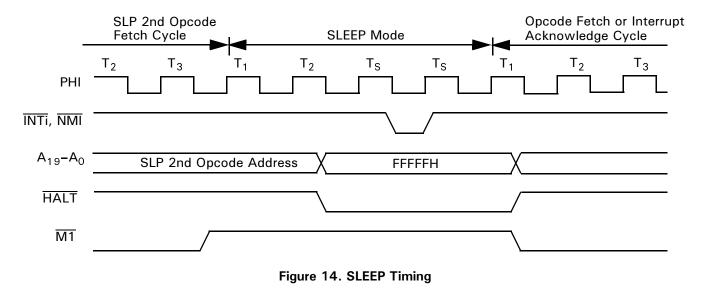


Figure 13. HALT Timing

SLEEP Mode. This mode is entered by keeping the IOSTOP bit (ICR5) and bits 3 and 6 of the CPU Control Register (CCR3, CCR6) all zero and executing the SLP instruction. The oscillator and PHI output continue operating, but are blocked from the CPU core and DMA channels to reduce power consumption. DRAM refresh stops, but interrupts and granting to an external Master can occur. Except when the bus is granted to an external Master, A19–0 and all control signals except HALT are maintained High. HALT is Low. I/O operations continue as before the SLP instruction, except for the DMA channels.


The Z8S180/Z8L180 leaves SLEEP mode in response to a Low on RESET, an interrupt request from an on-chip source,

an external request on $\overline{\text{NMI}}$, or an external request on $\overline{\text{INTO}}$, $\overline{\text{INT1}}$, or $\overline{\text{INT2}}$.

If an interrupt source is individually disabled, it cannot bring the Z8S180/Z8L180 out of SLEEP mode. If an interrupt source is individually enabled, and the IEF bit is 1 so that interrupts are globally enabled (by an EI instruction), the highest priority active interrupt occurs with the return address being the instruction after the SLP instruction. If an interrupt source is individually enabled, but the IEF bit is 0 so that interrupts are globally disabled (by a DI instruction), the Z8S180/Z8L180 leaves SLEEP mode by simply executing the following instruction(s).

This condition provides a technique for synchronization with high-speed external events without incurring the latency imposed by an interrupt-response sequence. Figure 14 depicts the timing for exiting SLEEP mode due to an interrupt request.

Note: The Z8S180/Z8L180 takes about 1.5 clock ticks to restart.

IOSTOP Mode. IOSTOP mode is entered by setting the IOSTOP bit of the I/O Control Register (ICR) to 1. In this case, on-chip I/O (ASCI, CSI/O, PRT) stops operating. However, the CPU continues to operate. Recovery from IOSTOP mode is performed by resetting the IOSTOP bit in ICR to 0.

SYSTEM STOP Mode. SYSTEM STOP mode is the combination of SLEEP and IOSTOP modes. SYSTEM STOP mode is entered by setting the IOSTOP bit in ICR to 1 followed by execution of the SLP instruction. In this mode, onchip I/O and CPU stop operating, reducing power consumption, but the PHI output continues to operate. Recovery from SYSTEM STOP mode is the same as recovery from SLEEP mode except that internal I/O sources (disabled by IOSTOP) cannot generate a recovery interrupt.

IDLE Mode. Software puts the Z8S180/Z8L180 into this mode by performing the following actions:

- Set the IOSTOP bit (ICR5) to 1
- Set CCR6 to 0
- Set CCR3 to 1
- Execute the SLP instruction

The oscillator keeps operating but its output is blocked to all circuitry including the PHI pin. DRAM refresh and all

internal devices stop, but external interrupts can occur. Bus granting to external Masters can occur if the BREST bit in the CPU control Register (CCR5) was set to 1 before IDLE mode was entered.

The Z8S180/Z8L180 leaves IDLE mode in response to a Low on $\overline{\text{RESET}}$, an external interrupt request on $\overline{\text{NMI}}$, or an external interrupt request on $\overline{\text{INT0}}$, $\overline{\text{INT1}}$ or $\overline{\text{INT2}}$ that is enabled in the INT/TRAP Control Register. As previously described for SLEEP mode, when the Z8S180/Z8L180 leaves IDLE mode due to an $\overline{\text{NMI}}$, or due to an enabled external interrupt request when the $\overline{\text{IEF}}$ flag is 1 due to an EI instruction, the device starts by performing the interrupt with the return address of the instruction after the SLP instruction.

If an external interrupt enables the INT/TRAP control register while the IEF1 bit is 0, Z8S180/Z8L180 leaves IDLE mode; specifically, the processor restarts by executing the instructions following the SLP instruction.

Figure 15 indicates the timing for exiting IDLE mode due to an interrupt request.

Note: The Z8S180/Z8L180 takes about 9.5 clocks to restart.

OPERATION MODES (Continued)

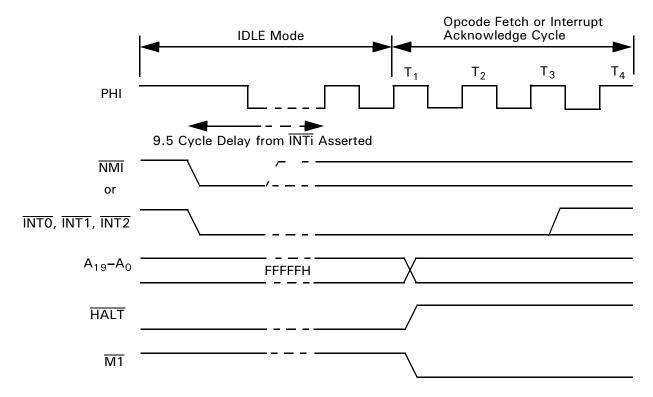


Figure 15. Z8S180/Z8L180 IDLE Mode Exit Due To External Interrupt

While the Z8S180/Z8L180 is in IDLE mode, it grants the bus to an external Master if the BREXT bit (CCR5) is 1. Figure 16 depicts the timing for this sequence.

After the external Master negates the Bus Request, the Z8S180/Z8L180 disables the PHI clock and remains in IDLE mode.

Note: A response to a bus request takes 8 clock cycles longer than in normal operation.

DC CHARACTERISTICS—Z8S180

Table 6. Z8S180 DC Characteristics $V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	Item	Condition	Min	Тур	Max	Unit
V _{IH1}	Input H Voltage RESET, EXTAL, NMI		V _{DD} -0.6	-	V _{DD} +0.3	V
V _{IH2}	Input H Voltage Except RESET, EXTAL, NMI		2.0	_	V _{DD} +0.3	V
V _{IH3}	Input H Voltage CKS, CKA0, CKA1		2.4	_	V _{DD} +0.3	V
V _{IL1}	Input L Voltage RESET, EXTAL, NMI		-0.3		0.6	V
V _{IL2}	Input L Voltage Except RESET, EXTAL, NMI		-0.3	_	0.8	V
O.1.	Outputs H Voltage	$I_{OH} = -200 \mu A$	2.4	_	_	V
	All outputs	$I_{OH} = -20 \mu\text{A}$	V _{DD} -1.2	_	_	
V _{OL}	Outputs L Voltage All outputs	$I_{OL} = 2.2 \text{ mA}$	_	_	0.45	V
I _{IL}	Input Leakage Current All Inputs Except XTAL, EXTAL	$V_{IN} = 0.5 \sim V_{DD} - 0.5$	_	_	1.0	μΑ
I _{TL}	Three State Leakage Current	$V_{IN} = 0.5 \sim V_{DD} - 0.5$	_	_	1.0	μΑ
I _{DD} ¹	Power Dissipation	F = 10 MHz	_	25	60	mA
00	(Normal Operation)	20		30	50	
		33		60	100	
	Power Dissipation	F = 10 MHz	_	2	5	
	(SYSTEM STOP mode)	20		3	6	
		33		5	9	
C _P	Pin Capacitance	$V_{ N} = O_V$, $f = 1 \text{ MHz}$ $T_A = 25^{\circ}\text{C}$	_	_	12	pF

Note:

^{1.} $V_{IHmin} = V_{DD}$ -1.0V, $V_{ILmax} = 0.8V$ (All output terminals are at NO LOAD.) $V_{DD} = 5.0V$.

AC CHARACTERISTICS—Z8S180

Table 8. Z8S180 AC Characteristics $V_{DD}=5V~\pm10\%$ or $V_{DD}=3.3V~\pm10\%$; 33-MHz Characteristics Apply Only to 5V Operation

			Z8S180-	-20 MHz	Z8S180-	-33 MHz	
Number	Symbol	Item	Min	Max	Min	Max	Unit
1	t _{CYC}	Clock Cycle Time	50	DC	30	DC	ns
2	t _{CHW}	Clock "H" Pulse Width	15	_	10	_	ns
3	t _{CLW}	Clock "L" Pulse Width	15	_	10	_	ns
4	t _{CF}	Clock Fall Time	_	10	_	5	ns
5	t _{CR}	Clock Rise Time	_	10	_	5	ns
6	t _{AD}	PHI Rise to Address Valid Delay	_	30	_	15	ns
7	t _{AS}	Address Valid to MREQ Fall or IORQ Fall)	5	_	5	_	ns
8	t _{MED1}	PHI Fall to MREQ Fall Delay	_	25	_	15	ns
9	t _{RDD1}	PHI Fall to \overline{RD} Fall Delay $\overline{IOC} = 1$	_	25	_	15	ns
		PHI Rise to \overline{RD} Rise Delay $\overline{IOC} = 0$	_	25	_	15	
10	t _{M1D1}	PHI Rise to M1 Fall Delay	_	35	_	15	ns
11	t _{AH}	Address Hold Time from MREQ, IOREQ, RD, WR High	5	_	5	_	ns
12	t _{MED2}	PHI Fall to MREQ Rise Delay	_	25	_	15	ns
13	t _{RDD2}	PHI Fall to RD Rise Delay	_	25	_	15	ns
14	t _{M1D2}	PHI Rise to M1 Rise Delay	_	40	_	15	ns
15	t _{DRS}	Data Read Set-up Time	10	_	5	_	ns
16	t _{DRH}	Data Read Hold Time	0	_	0	_	ns
17	t _{STD1}	PHI Fall to ST Fall Delay	_	30	_	15	ns
18	t _{STD2}	PHI Fall to ST Rise Delay	_	30	_	15	ns
19	t _{WS}	WAIT Set-up Time to PHI Fall	15	_	10	_	ns
20	t _{WH}	WAIT Hold Time from PHI Fall	10	_	5	_	ns
21	t _{WDZ}	PHI Rise to Data Float Delay	_	35	_	20	ns
22	t _{WRD1}	PHI Rise to WR Fall Delay	_	25	_	15	ns
23	t _{WDD}	PHI Fall to Write Data Delay Time	_	25	_	15	ns
24	t _{WDS}	Write Data Set-up Time to WR Fall	10	_	10	_	ns
25	t _{WRD2}	PHI Fall to WR Rise Delay	_	25	_	15	ns
26	t _{WRP}	WR Pulse Width (Memory Write Cycle)	80	_	45	_	ns
26a		WR Pulse Width (I/O Write Cycle)	150	_	70	_	ns
27	t _{WDH}	Write Data Hold Time from WR Rise	10	_	5	_	ns
28	t _{IOD1}	PHI Fall to \overline{IORQ} Fall Delay $\overline{IOC} = 1$	_	25	_	15	ns
		PHI Rise to IORQ Fall Delay IOC = 0	_	25	_	15	
29	t _{IOD2}	PHI Fall to IORQ Rise Delay	_	25	_	15	ns
30	t _{IOD3}	M1 Fall to IORQ Fall Delay	125	_	80	_	ns
31	t _{INTS}	INT Set-up Time to PHI Fall	20		15	_	ns

AC CHARACTERISTICS—Z8S180 (Continued)

Table 8. Z8S180 AC Characteristics (Continued) $V_{DD}=5V\pm10\%$ or $V_{DD}=3.3V\pm10\%$; 33-MHz Characteristics Apply Only to 5V Operation

			Z8S180	—20 MHz	Z8S180	-33 MHz	
Number	Symbol	Item	Min	Max	Min	Max	Unit
32	t _{INTH}	INT Hold Time from PHI Fall	10	_	10	_	ns
33	t _{NMIW}	NMI Pulse Width	35	_	25	_	ns
34	t _{BRS}	BUSREQ Set-up Time to PHI Fall	10	_	10	_	ns
35	t _{BRH}	BUSREQ Hold Time from PHI Fall	10	_	10		ns
36	t _{BAD1}	PHI Rise to BUSACK Fall Delay	_	25	_	15	ns
37	t _{BAD2}	PHI Fall to BUSACK Rise Delay	_	25	_	15	ns
38	t _{BZD}	PHI Rise to Bus Floating Delay Time		40	_	30	ns
39	t _{MEWH}	MREQ Pulse Width (High)	35	_	25	_	ns
40	t _{MEWL}	MREQ Pulse Width (Low)	35	_	25	_	ns
41	t _{RFD1}	PHI Rise to RFSH Fall Delay	_	20	_	15	ns
42	t _{RFD2}	PHI Rise to RFSH Rise Delay	_	20	_	15	ns
43	t _{HAD1}	PHI Rise to HALT Fall Delay	_	15	_	15	ns
44	t _{HAD2}	PHI Rise to HALT Rise Delay	_	15	_	15	ns
45	t _{DRQS}	DREQ1 Set-up Time to PHI Rise	20	_	15	_	ns
46	t _{DRQH}	DREQ1 Hold Time from PHI Rise	20	_	15	_	ns
47	t _{TED1}	PHI Fall to TENDi Fall Delay	_	25	_	15	ns
48	t _{TED2}	PHI Fall to TENDi Rise Delay	_	25	_	15	ns
49	t _{ED1}	PHI Rise to E Rise Delay	_	30	_	15	ns
50	t _{ED2}	PHI Fall or Rise to E Fall Delay	_	30	_	15	ns
51	P _{WEH}	E Pulse Width (High)	25	_	20	_	ns
52	P _{WEL}	E Pulse Width (Low)	50	_	40	_	ns
53	t _{Er}	Enable Rise Time	_	10	_	10	ns
54	t _{Ef}	Enable Fall Time	_	10	_	10	ns
55	t _{TOD}	PHI Fall to Timer Output Delay	_	75	_	50	ns
56	t _{STDI}	CSI/O Transmit Data Delay Time (Internal Clock Operation)	_	2	_	2	tcyc
57	t _{STDE}	CSI/O Transmit Data Delay Time (External Clock Operation)	_	7.5 t _{CYC} +75	-	75 t _{CYC} +60	ns
58	t _{SRSI}	CSI/O Receive Data Set-up Time (Internal Clock Operation)	1	_	1	_	tcyc
59	t _{SRHI}	CSI/O Receive Data Hold Time (Internal Clock Operation)	1	_	1	_	tcyc
60	t _{SRSE}	CSI/O Receive Data Set-up Time (External Clock Operation)	1	_	1	_	tcyc
61	t _{SRHE}	CSI/O Receive Data Hold Time (External Clock Operation)	1	—	1	_	tcyc
62	t _{RES}	RESET Set-up Time to PHI Fall	40	_	25	_	ns

Table 8. Z8S180 AC Characteristics (Continued) $V_{DD}=5V\pm10\%$ or $V_{DD}=3.3V\pm10\%$; 33-MHz Characteristics Apply Only to 5V Operation

			Z8S180-	-20 MHz	Z8S180-	-33 MHz	_
Number	Symbol	Item	Min	Max	Min	Max	Unit
63	t _{REH}	RESET Hold Time from PHI Fall	25	_	15	_	ns
64	t _{OSC}	Oscillator Stabilization Time	_	20	_	20	ns
65	t _{EXR}	External Clock Rise Time (EXTAL)	_	5	_	5	ns
66	t _{EXF}	External Clock Fall Time (EXTAL)	_	5	_	5	ns
67	t _{RR}	RESET Rise Time	_	50	_	50	ms
68	t _{RF}	RESET Fall Time	_	50	_	50	ms
69	t _{IR}	Input Rise Time (except EXTAL, RESET)	_	50	_	50	ns
70	t _{IF}	Input Fall Time (except EXTAL, RESET)	_	50	_	50	ns

TIMING DIAGRAMS (Continued)

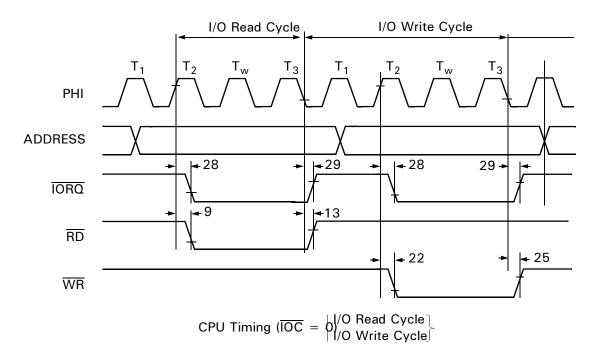
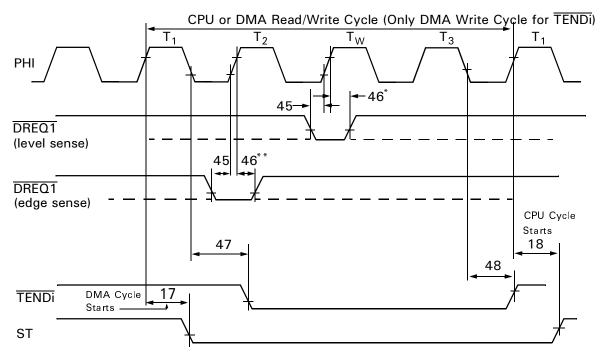



Figure 22. CPU Timing ($\overline{IOC} = 0$) (I/O Read Cycle, I/O Write Cycle)

Notes:

 $^*T_{DRQS}$ and T_{DRQH} are specified for the rising edge of the clock followed by T_3 .

Figure 23. DMA Control Signals

 $^{**}T_{DRQS}$ and T_{DRQH} are specified for the rising edge of the clock.

ASCIO requests an interrupt when \overline{DCDO} goes High. RIE is cleared to 0 by RESET.

DCDO: Data Carrier Detect (Bit 2 STATO). This bit is set to 1 when the pin is High. It is cleared to 0 on the first READ of STATO following the pin's transition from High to Low and during RESET. When bit 6 of the ASEXTO register is 0 to select auto-enabling, and the pin is negated (High), the receiver is reset and its operation is inhibited.

CTS1E: Clear To Send (Bit 2 STAT1). Channel 1 features an external CTS1 input, which is multiplexed with the receive data pin RSX for the CSI/O. Setting this bit to 1 selects the CTS1 function; clearing the bit to 0 selects the RXS function.

TDRE: Transmit Data Register Empty (Bit 1). TDRE = 1 indicates that the TDR is empty and the next transmit data byte is written to TDR. After the byte is written to TDR, TDRE is cleared to 0 until the ASCI transfers the byte from TDR to the TSR and then TDRE is again set to 1. TDRE is set to 1 in IOSTOP mode and during RESET. On ASCIO, if the $\overline{\text{CTSO}}$ pin is auto-enabled in the ASEXTO register and the pin is High, TDRE is reset to 0.

TIE: Transmit Interrupt Enable (Bit 0). TIE should be set to 1 to enable ASCI transmit interrupt requests. If TIE = 1, an interrupt is requested when TDRE = 1. TIE is cleared to 0 during RESET.

ASCI TRANSMIT DATA REGISTERS

Register addresses 06H and 07H hold the ASCI transmit data for channel 0 and channel 1, respectively.

ASCI Transmit Data Registers Channel 0

Mnemonic TDR0 Address 06H

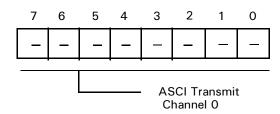


Figure 36. ASCI Register

ASCI Transmit Data Registers Channel 1

Mnemonic TDR1 Address 07H

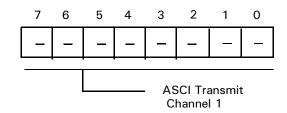


Figure 37. ASCI Register

never both set to 1 at the same time. TE is cleared to 0 during RESET and IOSTOP mode.

SS2, 1, 0: Speed Select 2, 1, 0 (Bits 2–0). SS2, SS1 and SS0 select the CSI/O transmit/receive clock source and speed. SS2, SS1 and SS0 are all set to 1 during RESET. Table 11 indicates CSI/O Baud Rate Selection.

Table 11. CSI/O Baud Rate Selection

SS2	SS1	SS0	Divide Ratio
0	0	0	÷20
0	0	1	÷40
0	1	0	÷80
0	1	1	÷160
1	0	0	÷320
1	0	1	÷640
1	1	0	÷1280
1	1	1	External Clock Input (Less Than ÷20)

After $\overline{\text{RESET}}$, the CKS pin is configured as an external clock input (SS2, SS1, SS0 = 1). Changing these values causes CKS to become an output pin and the selected clock is output when transmit or receive operations are enabled.

CSI/O Transmit/Receive Data Register

Mnemonic TRDR Address 0BH

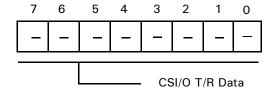


Figure 41. CSI/O Transmit/Receive Data Register

Timer Data Register Channel 0 Low Mnemonic TMDR0L Address 0CH

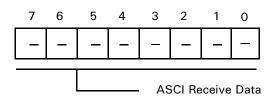


Figure 42. Timer Register Channel 0 Low

Timer Data Register Channel 0H

Mnemonic TMDR0H Address 0DH

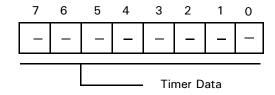


Figure 43. Timer Data Register Channel 0 High

Timer Reload Register Channel 0 Low

Mnemonic RLDR0L Address 0EH

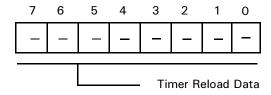


Figure 44. Timer Reload Register Low

Timer Reload Register Channel 0 High

Mnemonic RLDR0H Address 0FH

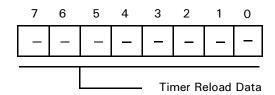


Figure 45. Timer Reload Register Channel 0 High

ASCI EXTENSION CONTROL REGISTER CHANNEL 0 AND CHANNEL 1

The ASCI Extension Control Registers (ASEXTO and ASEXT1) control functions that have been added to the

ASCIs in the Z8S180/Z8L180 family. All bits in this register reset to 0.

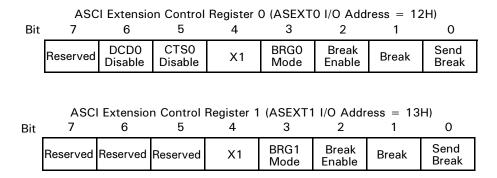


Figure 47. ASCI Extension Control Registers, Channels 0 and 1

DCD0 Disable (Bit 6, ASCIO Only). If this bit is 0, then the $\overline{DCD0}$ pin auto-enables the ASCI0 receiver, such that when the pin is negated/High, the Receiver is held in a RE-SET state. If this bit is 1, the state of the \overline{DCD} -pin has no effect on receiver operation. In either state of this bit, software can read the state of the $\overline{DCD0}$ pin in the STAT0 register, and the receiver interrupts on a rising edge of $\overline{DCD0}$.

CTSO Disable (Bit 5, ASCIO Only). If this bit is 0, then the $\overline{\text{CTSO}}$ pin auto-enables the ASCIO transmitter, in that when the pin is negated/High, the TDRE bit in the STATO register is forced to 0. If this bit is 1, the state of the $\overline{\text{CTSO}}$ pin has no effect on the transmitter. Regardless of the state of this bit, software can read the state of the $\overline{\text{CTSO}}$ pin the CNTLBO register.

X1 (**Bit 4**). If this bit is 1, the clock from the Baud Rate Generator or CKA pin is taken as a 1X-bit clock (sometimes called *isochronous mode*). In this mode, receive data on the RXA pin must be synchronized to the clock on the CKA pin, regardless of whether CKA is an input or an output. If this bit is 0, the clock from the Baud Rate Generator or CKA pin is divided by 16 or 64 per the DR bit in the CNTLB register, to obtain the actual bit rate. In this mode, receive data on the RXA pin is not required to be synchronized to a clock.

BRG Mode (Bit 3). If the SS2-0 bits in the CNTLB register are not 111, and this bit is 0, the ASCI Baud Rate Generator

divides PHI by 10 or 30, depending on the PS bit in CNTLB, and factored by a power of two (selected by the SS2–0 bits), to obtain the clock that is presented to the transmitter and receiver and output on the CKA pin. If SS2–0 are not 111, and this bit is 1, the Baud Rate Generator divides PHI by twice the sum of the 16-bit value (programmed into the Time Constant registers) and 2. This mode is identical to the operation of the baud rate generator in the ESCC.

Break Enable (Bit 2). If this bit is 1, the receiver detects BREAK conditions and report them in bit 1, and the transmitter sends BREAKs under the control of bit 0.

Break Detect (Bit 1). The receiver sets this read-only bit to 1 when an all-zero character with a Framing Error becomes the oldest character in the Rx FIFO. The bit is cleared when software writes a 0 to the EFR bit in CNTLA register, also by RESET, by IOSTOP mode, and for ASCIO, if the DCDO pin is auto-enabled and is negated (High).

Send Break (Bit 0). If this bit and bit 2 are both 1, the transmitter holds the TXA pin Low to send a BREAK condition. The duration of the BREAK is under software control (one of the PRTs or CTCs can be used to time it). This bit resets to 0, in which state TXA carries the serial output of the transmitter.

DMA BYTE COUNT REGISTER CHANNEL 0

The DMA Byte Count Register Channel 0 specifies the number of bytes to be transferred. This register contains 16 bits and may specify up to 64-KB transfers. When one byte is transferred, the register is decremented by one. If n bytes should be transferred, n must be stored before the DMA operation.

Note: All DMA Count Register channels are undefined during RESET.

DMA Byte Count Register Channel 0 Low

Mnemonic BCR0L Address 26H

Figure 61. DMA Byte Count Register 0 Low

DMA Byte Count Register Channel 0 High

Mnemonic BCR0H Address 27H

Figure 62. DMA Byte Count Register 0 High

DMA Byte Count Register Channel 1 Low

Mnemonic BCR1L Address 2EH

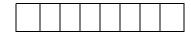


Figure 63. DMA Byte Count Register 1 Low

DMA Byte Count Register Channel 1 High

Mnemonic BCR1H Address 2FH

Figure 64. DMA Byte Count Register 1 High

DMA I/O ADDRESS REGISTER

The DMA I/O Address Register specifies the I/O device for channel 1 transfers. This address may be a destination or source I/O device. IAR1L and IAR1H each contain 8 address bits. The most significant byte identifies the Request Handshake signal and controls the Alternating Channel feature.

DMA I/O Address Register Channel 1 Low

Mnemonic IAR1L Address 2BH

Figure 68. DMA I/O Address Register Channel 1 Low

DMA I/O Address Register Channel 1 High

Mnemonic IAR1H Address 2CH

Figure 69. DMA I/O Address Register Channel 1 High

DMA I/O Address Register Channel 1 B

Mnemonic IAR1B Address 2DH

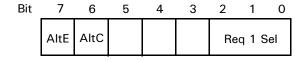


Figure 70. DMA I/O Address Register Channel 1 B

AltE. The AltE bit should be set only when both DMA channels are programmed for the same I/O source or I/O destination. In this case, a *channel end* condition (byte count = 0) on channel 0 sets bit 6 (AltC), which subsequently enables the channel 1 request and blocks the channel 0 request. Similarly, a channel end condition on channel 1 clears bit 6 (AltC), which then enables the channel 0 request and blocks the channel 1 request. For external requests, the request from the device must be routed or connected to both the DREQ0 and DREQ1 pins.

AltC. If bit (AltE) is 0, the AltC bit has no effect. When bit 7 (AltE) is 1 and the AltC bit is 0, the request signal selected by bits 2–0 is not presented to channel 1; however, the channel 0 request operates normally. When AltE is 1 and AltC is 1, the request selected by SAR18–16 or DAR18–16 is not presented to channel 0; however, the channel 1 request operates normally. The AltC bit can be written by software to select which channel should operate first; however, this operation should be executed only when both channels are stopped (both DE1 and DE0 are 0).

Req1Sel. If bit DIM1 in the DCNTL register is 1, indicating an I/O source, the following bits select which source handshake signal should control the transfer:

000	DREQ1 pin
001	ASCIO RDRF
010	ASCI1 RDRF
Other	Reserved, do not program

If DIM1 is 0, indicating an I/O destination, the following bits select which destination handshake signal should control the transfer:

000	DREQ1 pin
001	ASCIO TDRE
010	ASCI1 TDRE
Other	Reserved, do not program

DMA STATUS REGISTER

The DMA Status Register (DSTAT) is used to enable and disable DMA transfer and DMA termination interrupts.

DSTAT also indicates DMA transfer status, Completed or In Progress.

DMA Status Register

Mnemonic DSTAT Address 30H

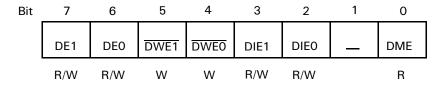


Figure 71. DMA Status Register (DSTAT: I/O Address = 30H)

DE1: DMA Enable Channel 1 (Bit 7). When DE1 = 1 and DME = 1, channel 1 DMA is enabled. When a DMA transfer terminates (BCR1 = 0), DE1 is reset to 0 by the DMAC. When DE1 = 0 and the DMA interrupt is enabled (DIE1 = 1), a DMA interrupt request is made to the CPU.

To perform a software WRITE to DE1, DWE1 should be written with a 0 during the same register WRITE access. Writing DE1 to 0 disables channel 1 DMA, but DMA is restartable. Writing DE1 to 1 enables channel 1 DMA and automatically sets DMA Main Enable (DME) to 1. DE1 is cleared to 0 during RESET.

DEO: DMA Enable Channel 0 (Bit 6). When DE0 = 1 and DME = 1, channel 0 DMA is enabled. When a DMA transfer terminates (BCRO = 0), DE0 is reset to 0 by the DMAC. When DE0 = 0 and the DMA interrupt is enabled (DIE0 = 1), a DMA interrupt request is made to the CPU.

To perform a software WRITE to DEO, $\overline{\text{DWEO}}$ should be written with 0 during the same register WRITE access. Writing DEO to 0 disables channel 0 DMA. Writing DEO to 1 enables channel 0 DMA and automatically sets DMA Main Enable (DME) to 1. DEO is cleared to 0 during RESET.

DWE1: DE1 Bit Write Enable (**Bit 5**). When performing any software WRITE to DE1, this bit should be written with 0 during the same access. DWE1 always reads as 1.

DWEO: DEO Bit Write Enable (Bit 4). When performing any software WRITE to DEO, this bit should be written with 0 during the same access. DWEO always reads as 1.

DIE1: DMA Interrupt Enable Channel 1 (Bit 3). When DIE0 is set to 1, the termination channel 1 DMA transfer (indicated when DE1 = 0) causes a CPU interrupt request to be generated. When DIE0 = 0, the channel 0 DMA termination interrupt is disabled. DIE0 is cleared to 0 during RESET.

DIEO: DMA Interrupt Enable Channel 0 (Bit 2). When DIEO is set to 1, the termination channel 0 of DMA transfer (indicated when DEO = 0) causes a CPU interrupt request to be generated. When DIEO = 0, the channel 0 DMA termination interrupt is disabled. DIEO is cleared to 0 during RESET.

DME: DMA Main Enable (Bit 0). A DMA operation is only enabled when its DE bit (DEO for channel 0, DE1 for channel 1) and the DME bit is set to 1.

When NMI occurs, DME is reset to 0, thus disabling DMA activity during the NMI interrupt service routine. To restart DMA, DE- and/or DE1 should be written with a 1 (even if the contents are already 1). This condition automatically sets DME to 1, allowing DMA operations to continue.

Note: DME cannot be directly written. The bit is cleared to 0 by NMI or indirectly set to 1 by setting DEO and/or DE1 to 1. DME is cleared to 0 during RESET.

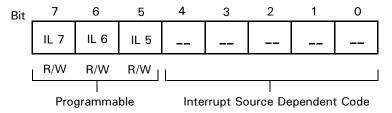
INTERRUPT VECTOR LOW REGISTER

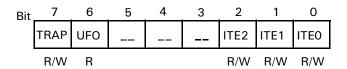
Bits 7–5 of the Interrupt Vector Low Register (I_L) are used as bits 7–5 of the synthesized interrupt vector during interrupts for the $\overline{INT1}$ and $\overline{INT2}$ pins and for the DMAs, ASCIs,

PRTs, and CSI/O. These three bits are cleared to 0 during RESET (Figure 74).

Interrupt Vector Low Register

Mnemonic: IL Address 33H




Figure 74. Interrupt Vector Low Register (IL: I/O Address = 33H)

INT/TRAP CONTROL REGISTER

This register is used in handling TRAP interrupts and to enable or disable Maskable Interrupt Level 0 and the $\overline{\text{INT1}}$ and $\overline{\text{INT2}}$ pins.

INT/TRAP Control Register

Mnemonics ITC Address 34H

TRAP (Bit 7). This bit is set to 1 when an undefined opcode is fetched. TRAP can be reset under program control by writing it with a 0; however, TRAP cannot be written with 1 under program control. TRAP is reset to 0 during RESET.

UFO: Undefined Fetch Object (Bit 6). When a TRAP interrupt occurs, the contents of UFO allow the starting address of the undefined instruction to be determined. This interrupt is necessary because the TRAP may occur on either the second or third byte of the opcode. UFO allows the stacked PC value to be correctly adjusted. If UFO = 0, the first opcode should be interpreted as the stacked PC-1. If UFO = 1, the first opcode address is stacked PC-2. UFO is Read-Only.

ITE2, 1, 0: Interrupt Enable 2, 1, 0 (Bits 2–0). ITE2 and ITE1 enable and disable the external interrupt inputs

INT2 and INT1, respectively. ITEO enables and disables interrupts from:

- ESCC
- Bidirectional Centronics controller
- CTCs
- External interrupt input INTO

A 1 in a bit enables the corresponding interrupt level while a 0 disables it. A RESET sets ITEO to 1 and clears ITE1 and ITE2 to 0.

TRAP Interrupt. The Z8S180/Z8L180 generates a TRAP sequence when an undefined opcode fetch occurs. This feature can be used to increase software reliability, implement an *extended* instruction set, or both. TRAP may occur during opcode fetch cycles and also if an undefined opcode is fetched during the interrupt acknowledge cycle for INTO when Mode O is used.

When a TRAP sequence occurs, the Z8S180/Z8L180:

- 1. Sets the TRAP bit in the Interrupt TRAP/Control (ITC) register to 1.
- 2. Saves the current Program Counter (PC) value, reflecting the location of the undefined opcode, on the stack.
- 3. Resumes execution at logical address 0.

Note: If logical address 0000H is mapped to physical address 00000H, the vector is the same as for RESET. In this case, testing the TRAP bit in ITC reveals whether the restart at physical address 00000H was caused by RESET or TRAP.

MMU COMMON BASE REGISTER

The Common Base Register (CBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit phys-

ical address for Common Area 1 accesses. All bits of CBR are reset to 0 during RESET.

MMU Common Base Register

Mnemonic CBR Address 38H

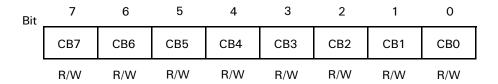


Figure 78. MMU Common Base Register (CBR: I/O Address = 38H)

MMU BANK BASE REGISTER

The Bank Base Register (BBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit physical ad-

dress for Bank Area accesses. All bits of BBR are reset to 0 during RESET.

MMU Bank Base Register

Mnemonic BBR Address 39H

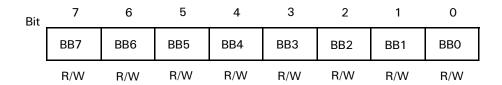


Figure 79. MMU Bank Base Register (BBR: I/O Address = 39H)

MMU COMMON/BANK AREA REGISTER

The Common/Bank Area Register (CBAR) specifies boundaries within the Z8S180/Z8L180 64-KB logical address

space for up to three areas; Common Area), Bank Area and Common Area 1.

MMU Common/Bank Area Register

Mnemonic CBAR Address 3AH

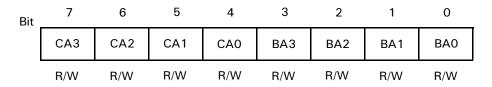


Figure 80. MMU Common/Bank Area Register (CBAR: I/O Address = 3AH)

PACKAGE INFORMATION

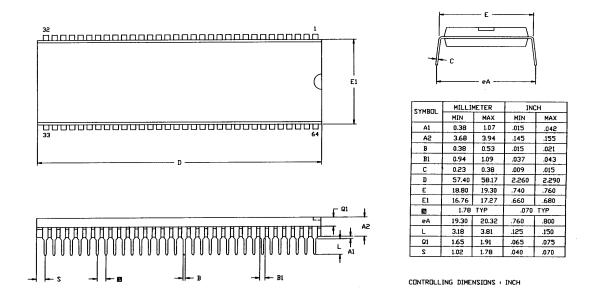


Figure 85. 64-Pin DIP Package Diagram

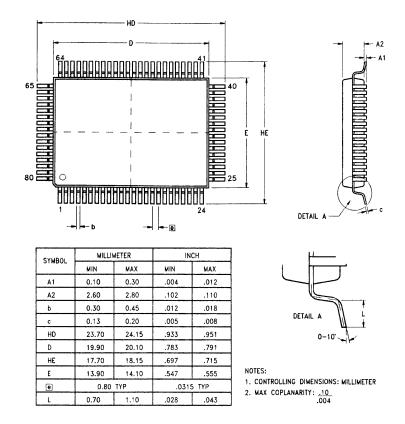


Figure 86. 80-Pin QFP Package Diagram