Welcome to **E-XFL.COM** #### **Understanding Embedded - Microprocessors** Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications. ## **Applications of Embedded - Microprocessors** Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in | Details | | |---------------------------------|--| | Product Status | Obsolete | | Core Processor | Z8L180 | | Number of Cores/Bus Width | 1 Core, 8-Bit | | Speed | 20MHz | | Co-Processors/DSP | - | | RAM Controllers | DRAM | | Graphics Acceleration | No | | Display & Interface Controllers | - | | Ethernet | - | | SATA | - | | USB | - | | Voltage - I/O | 3.3V | | Operating Temperature | 0°C ~ 70°C (TA) | | Security Features | - | | Package / Case | 68-LCC (J-Lead) | | Supplier Device Package | 68-PLCC | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/z8l18020vsc00tr | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong 5 Figure 4. Z8S180/Z8L180 80-Pin QFP Pin Configuration Table 1. Z8S180/Z8L180 Pin Identification | Pin Num | ber and Packa | age Type | Default | Secondary | | |---------|---------------|----------|-----------------|-----------|---------| | QFP | PLCC | DIP | Function | Function | Control | | 1 | 9 | 8 | NMI | | | | 2 | | | NC | | | | 3 | | | NC | | | | 4 | 10 | 9 | ĪNTO | | | | 5 | 11 | 10 | ĪNT1 | | | | 6 | 12 | 11 | ĪNT2 | | | | 7 | 13 | 12 | ST | | | | 8 | 14 | 13 | Α0 | | | | 9 | 15 | 14 | A1 | | | | 10 | 16 | 15 | A2 | | | | 11 | 17 | 16 | А3 | | | | 12 | 18 | | V _{SS} | | | # PIN IDENTIFICATION (Continued) Table 1. Z8S180/Z8L180 Pin Identification (Continued) | OFP PLCC DIP Function Secondary Function 13 19 17 A4 14 NC 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 19 24 22 A9 | | |--|--| | 14 NC 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 | | | 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 | | | 16 21 19 A6 17 22 20 A7 18 23 21 A8 | | | 17 22 20 A7
18 23 21 A8 | | | 18 23 21 A8 | | | | | | 19 24 22 A9 | | | | | | 20 25 23 A10 | | | 21 26 24 A11 | | | 22 NC | | | 23 NC | | | 24 27 25 A12 | | | 25 28 26 A13 | | | 26 29 27 A14 | | | 27 30 28 A15 | | | 28 31 29 A16 | | | 29 32 30 A17 | | | 30 NC | | | 31 33 31 A18 T _{OUT} Bit 2 or Bit 3 of TCR | | | 32 34 32 V _{DD} | | | 33 35 A19 | | | 34 36 33 V _{SS} | | | 35 37 34 D0 | | | 36 38 35 D1 | | | 37 39 36 D2 | | | 38 40 37 D3 | | | 39 41 38 D4 | | | 40 42 39 D5 | | | 41 43 40 D6 | | | 42 NC | | | 43 NC | | | 44 44 41 D7 | | | 45 45 42 <u>RTSO</u> | | | 46 46 43 <u>CTSO</u> | | | 47 47 44 <u>DCD0</u> | | | 48 48 45 TXA0 | | | 49 49 46 RXA0 | | | 50 50 47 CKAO DREQO Bit 3 or Bit 5 of DMODE | | | 51 NC | | | 52 51 48 TXA1 | | Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes (Continued) | Pin Num | ber and Packa | age Type | | | | Pin Status | | |---------|---------------|----------|---------------------|-----------------------|-------|------------|-------| | QFP | PLCC | DIP | Default
Function | Secondary
Function | RESET | BUSACK | SLEEF | | 39 | 41 | 38 | D4 | | 3T | 3T | 3T | | 40 | 42 | 39 | D5 | | 3T | 3T | 3T | | 41 | 43 | 40 | D6 | | 3T | 3T | 3T | | 42 | | | NC | | | | | | 43 | | | NC | | | | | | 44 | 44 | 41 | D7 | | 3T | 3T | 3T | | 45 | 45 | 42 | RTS0 | | High | OUT | High | | 46 | 46 | 43 | CTS0 | | IN | OUT | IN | | 47 | 47 | 44 | DCD0 | | IN | IN | IN | | 48 | 48 | 45 | TXA0 | | High | OUT | OUT | | 49 | 49 | 46 | RXA0 | | IN | IN | IN | | 50 | 50 | 47 | CKA0 | | 3T | I/O | I/O | | | | | DREQ0 | | N/A | IN | IN | | 51 | | | NC | | | | | | 52 | 51 | 48 | TXA1 | | High | OUT | OUT | | 53 | 52 | | TEST | | | | | | 54 | 53 | 49 | RXA1 | | IN | IN | IN | | 55 | 54 | 50 | CKA1 | | 3T | I/O | I/O | | | | | TEND0 | | N/A | High | High | | 56 | 55 | 51 | TXS | | High | OUT | OUT | | 57 | 56 | 52 | RXS | | IN | IN | IN | | | | | CTS1 | | N/A | IN | IN | | 58 | 57 | 53 | CKS | | 3T | I/O | I/O | | 59 | 58 | 54 | DREQ1 | | IN | 3T | IN | | 60 | 59 | 55 | TEND1 | | High | OUT | High | | 61 | 60 | 56 | HALT | | High | High | Low | | 62 | | | NC | | | | | | 63 | | | NC | | | | | | 64 | 61 | 57 | RFSH | | High | OUT | High | | 65 | 62 | 58 | ĪORQ | | High | 3T | High | | 66 | 63 | 59 | MREQ | | High | 3T | High | | 67 | 64 | 60 | Е | | Low | OUT | OUT | | 68 | 65 | 61 | M1 | | High | High | High | | 69 | 66 | 62 | WR | | High | 3T | High | | 70 | 67 | 63 | RD | | High | 3T | High | | 71 | 68 | 64 | PHI | | OUT | OUT | OUT | | 72 | 1 | 1 | V _{SS} | | GND | GND | GND | | 73 | 2 | | V _{SS} | | GND | GND | GND | | 74 | 3 | 2 | XTAL | | OUT | OUT | OUT | | 75 | | | NC | | | | | ### **OPERATION MODES** (Continued) The Z8S180/Z8L180 leaves HALT mode in response to: - Low on RESET - Interrupt from an enabled on-chip source - External request on NMI - Enabled external request on INTO, INT1, or INT2 In case of an interrupt, the return address is the instruction following the HALT instruction. The program can either branch back to the HALT instruction to wait for another interrupt or can examine the new state of the system/application and respond appropriately. Figure 13. HALT Timing SLEEP Mode. This mode is entered by keeping the IOSTOP bit (ICR5) and bits 3 and 6 of the CPU Control Register (CCR3, CCR6) all zero and executing the SLP instruction. The oscillator and PHI output continue operating, but are blocked from the CPU core and DMA channels to reduce power consumption. DRAM refresh stops, but interrupts and granting to an external Master can occur. Except when the bus is granted to an external Master, A19–0 and all control signals except HALT are maintained High. HALT is Low. I/O operations continue as before the SLP instruction, except for the DMA channels. The Z8S180/Z8L180 leaves SLEEP mode in response to a Low on RESET, an interrupt request from an on-chip source, an external request on $\overline{\text{NMI}}$, or an external request on $\overline{\text{INTO}}$, $\overline{\text{INT1}}$, or $\overline{\text{INT2}}$. If an interrupt source is individually disabled, it cannot bring the Z8S180/Z8L180 out of SLEEP mode. If an interrupt source is individually enabled, and the IEF bit is 1 so that interrupts are globally enabled (by an EI instruction), the highest priority active interrupt occurs with the return address being the instruction after the SLP instruction. If an interrupt source is individually enabled, but the IEF bit is 0 so that interrupts are globally disabled (by a DI instruction), the Z8S180/Z8L180 leaves SLEEP mode by simply executing the following instruction(s). ## DC CHARACTERISTICS—Z8S180 Table 6. Z8S180 DC Characteristics $V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$ | Symbol | Item | Condition | Min | Тур | Max | Unit | |------------------------------|---|--|----------------------|-----|-------------------------|------| | V _{IH1} | Input H Voltage
RESET, EXTAL, NMI | | V _{DD} -0.6 | - | V _{DD}
+0.3 | V | | V _{IH2} | Input H Voltage
Except RESET, EXTAL, NMI | | 2.0 | _ | V _{DD}
+0.3 | V | | V _{IH3} | Input H Voltage
CKS, CKA0, CKA1 | | 2.4 | _ | V _{DD}
+0.3 | V | | V _{IL1} | Input L Voltage
RESET, EXTAL, NMI | | -0.3 | | 0.6 | V | | V _{IL2} | Input L Voltage
Except RESET, EXTAL, NMI | | -0.3 | _ | 0.8 | V | | V _{OH} | Outputs H Voltage | $I_{OH} = -200 \mu A$ | 2.4 | _ | _ | V | | | All outputs | $I_{OH} = -20 \mu\text{A}$ | V _{DD} -1.2 | _ | _ | | | V _{OL} | Outputs L Voltage
All outputs | $I_{OL} = 2.2 \text{ mA}$ | _ | _ | 0.45 | V | | I _{IL} | Input Leakage
Current All Inputs
Except XTAL, EXTAL | $V_{IN} = 0.5 \sim V_{DD} - 0.5$ | _ | _ | 1.0 | μΑ | | I _{TL} | Three State Leakage
Current | $V_{IN} = 0.5 \sim V_{DD} - 0.5$ | _ | _ | 1.0 | μΑ | | I _{DD} ¹ | Power Dissipation | F = 10 MHz | _ | 25 | 60 | mA | | | (Normal Operation) | 20 | | 30 | 50 | | | | | 33 | | 60 | 100 | | | | Power Dissipation | F = 10 MHz | _ | 2 | 5 | | | | (SYSTEM STOP mode) | 20 | | 3 | 6 | | | | | 33 | | 5 | 9 | | | C _P | Pin Capacitance | $V_{ N} = O_V$, $f = 1 \text{ MHz}$
$T_A = 25^{\circ}\text{C}$ | _ | _ | 12 | pF | ## Note: ^{1.} $V_{IHmin} = V_{DD}$ -1.0V, $V_{ILmax} = 0.8V$ (All output terminals are at NO LOAD.) $V_{DD} = 5.0V$. ## **TIMING DIAGRAMS** (Continued) Figure 22. CPU Timing ($\overline{IOC} = 0$) (I/O Read Cycle, I/O Write Cycle) #### Notes: $^*T_{DRQS}$ and T_{DRQH} are specified for the rising edge of the clock followed by T_3 . Figure 23. DMA Control Signals $^{**}T_{DRQS}$ and T_{DRQH} are specified for the rising edge of the clock. #### **CPU CONTROL REGISTER** **CPU Control Register (CCR).** This register controls the basic clock rate, certain aspects of Power-Down modes, and output drive/low-noise options (Figure 31). Figure 31. CPU Control Register (CCR) Address 1FH **Bit 7.** Clock Divide Select. If this bit is 0, as it is after a RE-SET, the Z8S180/Z8L180 divides the frequency on the XTAL pin(s) by two to obtain its Master clock PHI. If this bit is programmed as 1, the part uses the XTAL frequency as PHI without division. If an external oscillator is used in divide-by-one mode, the minimum pulse width requirement provided in the AC Characteristics must be satisfied. **Bits 6 and 3.** STANDBY/IDLE Control. When these bits are both 0, a SLP instruction makes the Z8S180/Z8L180 enter SLEEP or SYSTEM STOP mode, depending on the IOSTOP bit (ICR5). When D6 is 0 and D3 is 1, setting the IOSTOP bit (ICR5) and executing a SLP instruction puts the Z8S180/Z8L180 into IDLE mode in which the on-chip oscillator runs, but its output is blocked from the rest of the part, including PHI out. When D6 is 1 and D3 is 0, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into STANDBY mode, in which the on-chip oscillator is stopped and the part allows 2¹⁷ (128K) clock cycles for the oscillator to stabilize when it restarts. When D6 and D3 are both 1, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into QUICK RE-COVERY STANDBY mode, in which the on-chip oscillator is stopped, and the part allows only 64 clock cycles for the oscillator to stabilize when it restarts. The latter section, HALT and LOW POWER modes, describes the subject more fully. **Bit 5 BREXT.** This bit controls the ability of the Z8S180/Z8L180 to honor a bus request during STANDBY mode. If this bit is set to 1 and the part is in STANDBY mode, a BUSREQ is honored after the clock stabilization timer is timed out. **Bit 4 LNPHI.** This bit controls the drive capability on the PHI Clock output. If this bit is set to 1, the PHI Clock output is reduced to 33 percent of its drive capability. ### **ASCI REGISTER DESCRIPTION** Figure 32. ASCI Block Diagram ASCI Transmit Shift Register 0,1. When the ASCI Transmit Shift Register (TSR) receives data from the ASCI Transmit Data Register (TDR), the data is shifted out to the TXA pin. When transmission is completed, the next byte (if available) is automatically loaded from TDR into TSR and the next transmission starts. If no data is available for trans- mission, TSR idles by outputting a continuous High level. This register is not program-accessible ASCI Transmit Data Register 0,1 (TDR0, 1: I/O address = 06H, 07H). Data written to the ASCI Transmit Data Register is transferred to the TSR as soon as TSR is empty. Data can be written while TSR is shifting out the previous byte of data. Thus, the ASCI transmitter is double buffered. Data can be written into and read from the ASCI Transmit Data Register. If data is read from the ASCI Transmit Data Register, the ASCI data transmit operation is not affected by this READ operation. ASCI Receive Shift Register 0,1 (RSR0,1). This register receives data shifted in on the RXA pin. When full, data is automatically transferred to the ASCI Receive Data Register (RDR) if it is empty. If RSR is not empty when the next incoming data byte is shifted in, an overrun error occurs. This register is not program accessible. ASCI Receive Data FIFO 0,1 (RDR0, 1:I/O Address = 08H, 09H). The ASCI Receive Data Register is a read-only register. When a complete incoming data byte is assembled in RSR, it is automatically transferred to the 4 character Receive Data First-In First-Out (FIFO) memory. The oldest character in the FIFO (if any) can be read from the Receive Data Register (RDR). The next incoming data byte can be shifted into RSR while the FIFO is full. Thus, the ASCI receiver is well buffered. #### **ASCI STATUS FIFO** This four-entry FIFO contains Parity Error, Framing Error, Rx Overrun, and Break status bits associated with each char- acter in the receive data FIFO. The status of the oldest character (if any) can be read from the ASCI status registers. ### **ASCI CHANNEL CONTROL REGISTER A** Figure 33. ASCI Channel Control Register A MPE: Multi-Processor Mode Enable (Bit 7). The ASCI features a multiprocessor communication mode that utilizes an extra data bit for selective communication when a number of processors share a common serial bus. Multiprocessor data format is selected when the MP bit in CNTLB is set to 1. If multiprocessor mode is not selected (MP bit in CNTLB = 0), MPE has no effect. If multiprocessor mode is selected, MPE enables or disables the *wake-up* feature as follows. If MBE is set to 1, only received bytes in which the multiprocessor bit (MPB) = 1 can affect the RDRF and error flags. Effectively, other bytes (with MPB = 0) are *ignored* by the ASCI. If MPE is reset to 0, all bytes, regardless of the state of the MPB data bit, affect the REDR and error flags. MPE is cleared to 0 during RESET. **RE:** Receiver Enable (Bit 6). When RE is set to 1, the ASCI transmitter is enabled. When TE is reset to 0, the transmitter is disables and any transmit operation in progress is interrupted. However, the TDRE flag is not reset and the previous contents of TDRE are held. TE is cleared to 0 in IOSTOP mode during RESET. **TE:** Transmitter Enable (Bit 5). When TE is set to 1, the ASCI receiver is enabled. When $\overline{\text{TE}}$ is reset to 0, the transmitter is disabled and any transmit operation in progress is interrupted. However, the TDRE flag is not reset and the pre- ### **ASCI CHANNEL CONTROL REGISTER A (Continued)** vious contents of TDRE are held. TE is cleared to 0 in IOSTOP mode during RESET. RTSO: Request to Send Channel 0 (Bit 4 in CNTLAO Only). If bit 4 of the System Configuration Register is 0, the RTSO/TXS pin exhibits the RTSO function. RTSO allows the ASCI to control (start/stop) another communication devices transmission (for example, by connecting to that device's CTS input). RTSO is essentially a 1-bit output port, having no side effects on other ASCI registers or flags. Bit 4 in CNTLA1 is used. $$CKA1D = 1, CKA1/\overline{TENDO} pin = \overline{TENDO}$$ $$CKA1D = 0$$, $CKA1/\overline{TEND0}$ pin = $CKA1$ These bits are cleared to 0 on reset. MPBR/EFR: Multiprocessor Bit Receive/Error Flag Reset (Bit 3). When multiprocessor mode is enabled (MP in CNTLB = 1), MPBR, when read, contains the value of the MPB bit for the most recent receive operation. When written to 0, the EFR function is selected to reset all error flags (OVRN, FE, PE and BRK in the ASEXT Register) to 0. MPBR/EFR is undefined during RESET. MOD2, 1, 0: ASCI Data Format Mode 2,1,0 (bits 2-0). These bits program the ASCI data format as follows. #### MOD₂ - $= 0 \rightarrow 7$ bit data - = 1→8 bit data #### MOD1 - = 0→No parity - = 1→Parity enabled #### MOD0 - $= 0 \rightarrow 1$ stop bit - $= 1 \rightarrow 2$ stop bits The data formats available based on all combinations of MOD2, MOD1, and MOD0 are indicated in Table 9. Table 9. Data Formats | MOD2 | MOD1 | MOD0 | Data Format | |------|------|------|--------------------------------------| | 0 | 0 | 0 | Start + 7 bit data + 1 stop | | 0 | 0 | 1 | Start + 7 bit data + 2 stop | | 0 | 1 | 0 | Start + 7 bit data + parity + 1 stop | | 0 | 1 | 1 | Start + 7 bit data + parity + 2 stop | | 1 | 0 | 0 | Start + 8 bit data + 1 stop | | 1 | 0 | 1 | Start + 8 bit data + 2 stop | | 1 | 1 | 0 | Start + 8 bit data + parity + 1 stop | | 1 | 1 | 1 | Start + 8 bit data + parity + 2 stop | #### **ASCI RECEIVE REGISTER** Register addresses 08H and 09H hold the ASCI receive data for channel 0 and channel 1, respectively. ### **ASCI Receive Register Channel 0** #### Mnemonic RDR0 Address 08H Figure 38. ASCI Receive Register Channel 0 ## **ASCI Receive Register Channel 1** ### Mnemonic RDR1 Address 09H Figure 39. ASCI Receive Register Channel 1 #### CSI/O CONTROL/STATUS REGISTER The CSI/O Control/Status Register (CNTR) is used to monitor CSI/O status, enable and disable the CSI/O, enable and disable interrupt generation, and select the data clock speed and source. Figure 40. CSI/O Control Register (CNTR: I/O Address = 000AH) **EF:** End Flag (Bit 7). EF is set to 1 by the CSI/O to indicate completion of an 8-bit data transmit or receive operation. If End Interrupt Enable (EIE) bit = 1 when EF is set to 1, a CPU interrupt request is generated. Program access of TRDR only occurs if EF = 1. The CSI/O clears EF to 0 when TRDR is read or written. EF is cleared to 0 during RESET and IOSTOP mode. **EIE:** End Interrupt Enable (Bit 6). EIE is set to 1 to generate a CPU interrupt request. The interrupt request is inhibited if EIE is reset to 0. EIE is cleared to 0 during RESET. **RE:** Receive Enable (Bit 5). A CSI/O receive operation is started by setting RE to 1. When RE is set to 1, the data clock is enabled. In internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted in on the RXS pin in synchronization with the (internal or external) data clock. After receiving 8 bits of data, the CSI/O automatically clears RE to 0, EF is set to 1, and an interrupt (if enabled by EIE = 1) is generated. RE and TE are never both set to 1 at the same time. RE is cleared to 0 during RESET and IOSTOP mode. **TE:** Transmit Enable (Bit 4). A CSI/O transmit operation is started by setting TE to 1. When TE is set to 1, the data clock is enabled. When in internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted out on the TXS pin synchronous with the (internal or external) data clock. After transmitting 8 bits of data, the CSI/O automatically clears TE to 0, sets EF to 1, and requests an interrupt if enabled by EIE = 1. TE and RE are ### **CLOCK MULTIPLIER REGISTER** (Z180 MPU Address 1EH) Figure 54. Clock Multiplier Register Bit 7. X2 Clock Multiplier Mode. When this bit is set to 1, the programmer can double the internal clock speed from the speed of the external clock. This feature only operates effectively with frequencies of 10–16 MHz (20–32 MHz internal). When this bit is set to 0, the Z8S180/Z8L180 device operates in normal mode. At power-up, this feature is disabled. **Bit 6. Low Noise Crystal Option.** Setting this bit to 1 enables the low-noise option for the EXTAL and XTAL pins. This option reduces the gain in addition to reducing the output drive capability to 30% of its original drive capability. The Low Noise Crystal Option is recommended in the use of crystals for PCMCIA applications, where the crystal may be driven too hard by the oscillator. Setting this bit to 0 is selected for normal operation of the EXTAL and XTAL pins. The default for this bit is 0. **Note:** Operating restrictions for device operation are listed below. If a low-noise option is required, and normal device operation is required, use the clock multiplier feature. Table 13. Low Noise Option | Low Noise
ADDR 1E, bit 6 = 1 | Normal
ADDR 1E, bit 6 = 0 | |---------------------------------|------------------------------| | 20 MHz @ 4.5V, 100°C | 33 MHz @ 4.5V, 100°C | | 10 MHz @ 3.0V, 100°C | 20 MHz @ 3.0V, 100°C | ### DMA BYTE COUNT REGISTER CHANNEL 0 The DMA Byte Count Register Channel 0 specifies the number of bytes to be transferred. This register contains 16 bits and may specify up to 64-KB transfers. When one byte is transferred, the register is decremented by one. If n bytes should be transferred, n must be stored before the DMA operation. **Note:** All DMA Count Register channels are undefined during RESET. ## **DMA Byte Count Register Channel 0 Low** Mnemonic BCR0L Address 26H Figure 61. DMA Byte Count Register 0 Low ## **DMA Byte Count Register Channel 0 High** Mnemonic BCR0H Address 27H Figure 62. DMA Byte Count Register 0 High ## **DMA Byte Count Register Channel 1 Low** Mnemonic BCR1L Address 2EH Figure 63. DMA Byte Count Register 1 Low ## **DMA Byte Count Register Channel 1 High** Mnemonic BCR1H Address 2FH Figure 64. DMA Byte Count Register 1 High ## **DMA MODE REGISTER** The DMA Mode Register (DMODE) is used to set the addressing and transfer mode for channel 0. ## **DMA Mode Register** Mnemonic DMODE Address 31H Figure 72. DMA Mode Register (DMODE: I/O Address = 31H) **DM1, DM0: Destination Mode Channel 0 (Bits 5,4).** This mode specifies whether the destination for channel 0 transfers is memory or I/O, and whether the address should be incremented or decremented for each byte transferred. **DM1** and **DM0** are cleared to 0 during RESET. Table 14. Channel 0 Destination | DM1 | DM0 | Memory I/O | Memory
Increment/Decrement | |-----|-----|------------|-------------------------------| | 0 | 0 | Memory | +1 | | 0 | 1 | Memory | -1 | | 1 | 0 | Memory | fixed | | 1 | 1 | I/O | fixed | **SM1**, **SM0**: **Source Mode Channel 0 (Bits 3, 2)**. This mode specifies whether the source for channel 0 transfers is memory or I/O, and whether the address should be incremented or decremented for each byte transferred. Table 15. Channel 0 Source | SM1 | SM0 | Memory I/O | Memory
Increment/Decrement | |-----|-----|------------|-------------------------------| | 0 | 0 | Memory | +1 | | 0 | 1 | Memory | -1 | | 1 | 0 | Memory | fixed | | 1 | 1 | I/O | fixed | Table 16 indicates all DMA transfer mode combinations of DMO, DM1, SMO, and SM1. Because I/O to/from I/O transfers are not implemented, 12 combinations are available. **Table 16. Transfer Mode Combinations** | DM1 | DM0 | SM1 | SM0 | Transfer Mode | Address Increment/Decrement | |-----|-----|-----|-----|----------------|-----------------------------| | 0 | 0 | 0 | 0 | Memory→Memory | SAR0 + 1, DAR0 + 1 | | 0 | 0 | 0 | 1 | Memory→Memory | SAR0-1, DAR0+1 | | 0 | 0 | 1 | 0 | Memory*→Memory | SAR0 fixed, DAR0+1 | | 0 | 0 | 1 | 1 | I/O→Memory | SAR0 fixed, DAR0+1 | | 0 | 1 | 0 | 0 | Memory→Memory | SAR0+1, DAR0-1 | | 0 | 1 | 0 | 1 | Memory→Memory | SAR0-1, DAR0-1 | | 0 | 1 | 1 | 0 | Memory*→Memory | SAR0 fixed, DAR0-1 | | 0 | 1 | 1 | 1 | I/O→Memory | SAR0 fixed, DAR0-1 | | 1 | 0 | 0 | 0 | Memory→Memory* | SAR0+1, DAR0 fixed | | 1 | 0 | 0 | 1 | Memory→Memory* | SAR0-1, DAR0 fixed | | 1 | 0 | 1 | 0 | Reserved | | | 1 | 0 | 1 | 1 | Reserved | | | 1 | 1 | 0 | 0 | Memory→I/O | SAR0+1, DAR0 fixed | | 1 | 1 | 0 | 1 | Memory→I/O | SAR0-1, DAR0 fixed | | 1 | 1 | 1 | 0 | Reserved | | | 1 | 1 | 1 | 1 | Reserved | | **Note:** * Includes memory mapped I/O. **MMOD:** Memory Mode Channel 0 (Bit 1). When channel 0 is configured for memory to/from memory transfers there is no Request Handshake signal to control the transfer timing. Instead, two automatic transfer timing modes are selectable: burst (MMOD = 1) and cycle steal (MMOD = 0). For burst memory to/from memory transfers, the DMAC takes control of the bus continuously until the DMA transfer completes (as indicated by the byte count register = 0). In cycle steal mode, the CPU is provided a cycle for each DMA byte transfer cycle until the transfer is completed. For channel 0 DMA with I/O source or destination, the selected Request signal times the transfer ignoring MMOD. MMOD is cleared to 0 during RESET. ### MMU COMMON BASE REGISTER The Common Base Register (CBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit phys- ical address for Common Area 1 accesses. All bits of CBR are reset to 0 during RESET. ### **MMU Common Base Register** Mnemonic CBR Address 38H Figure 78. MMU Common Base Register (CBR: I/O Address = 38H) #### MMU BANK BASE REGISTER The Bank Base Register (BBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit physical ad- dress for Bank Area accesses. All bits of BBR are reset to 0 during RESET. ### **MMU Bank Base Register** Mnemonic BBR Address 39H Figure 79. MMU Bank Base Register (BBR: I/O Address = 39H) ### MMU COMMON/BANK AREA REGISTER The Common/Bank Area Register (CBAR) specifies boundaries within the Z8S180/Z8L180 64-KB logical address space for up to three areas; Common Area), Bank Area and Common Area 1. ### MMU Common/Bank Area Register Mnemonic CBAR Address 3AH Figure 80. MMU Common/Bank Area Register (CBAR: I/O Address = 3AH) **CA3–CA0:CA** (Bits 7–4). CA specifies the start (Low) address (on 4-KB boundaries) for Common Area 1. This condition also determines the most recent address of the Bank Area. All bits of CA are set to 1 during RESET. **BA3-BA0** (Bits 3-0). BA specifies the start (Low) address (on 4-KB boundaries) for the Bank Area. This condition also determines the most recent address of Common Area 0. All bits of BA are set to 1 during RESET. ### **OPERATION MODE CONTROL REGISTER** The Z8S180/Z8L180 is descended from two different ancestor processors, ZiLOG's original Z80 and the Hitachi 64180. The Operating Mode Control Register (OMCR) can be programmed to select between certain differences between the Z80 and the 64180. ## **Operation Mode Control Register** Mnemonic OMCR Address 3EH Figure 81. Operating Control Register (OMCR: I/O Address = 3EH) M1E ($\overline{M1}$ Enable). This bit controls the $\overline{M1}$ output and is set to a 1 during reset. When M1E = 1, the $\overline{\text{M1}}$ output is asserted Low during the opcode fetch cycle, the $\overline{\text{INTO}}$ acknowledge cycle, and the first machine cycle of the $\overline{\text{NMI}}$ acknowledge. On the Z8S180/Z8L180, this choice makes the processor fetch one RETI instruction. When fetching a RETI from zero-wait-state memory, the processor uses three clock machine cycles that are not fully Z80-timing-compatible. When M1E = 0, the processor does not drive $\overline{\text{M1}}$ Low during instruction fetch cycles. After fetching one RETI instruction with normal timing, the processor returns and refetches the instruction using Z80-compatible cycles that drive $\overline{\text{M1}}$ Low. This timing compatibility may be required by external Z80 peripherals to properly decode the RETI instruction. Figure 82. RETI Instruction Sequence with M1E = 0 ### I/O CONTROL REGISTER The I/O Control Register (ICR) allows relocation of the internal I/O addresses. ICR also controls the enabling and disabling of IOSTOP mode (Figure 83). Figure 83. I/O Control Register (ICR: I/O Address = 3FH) IOA7, 6: I/O Address Relocation (Bits 7,6). IOA7 and IOA6 relocate internal I/O as indicated in Figure 84. **Note:** The high-order 8 bits of 16-bit internal I/O address are always 0. IOA7 and IOA6 are cleared to 0 during RESET. Figure 84. I/O Address Relocation **IOSTP: IOSTOP Mode (Bit 5).** IOSTOP mode is enabled when IOSTP is set to 1. Normal I/O operation resumes when IOSTP is reprogrammed or RESET to 0. PRELIMINARY DS006002-ZMP0200 ## **PACKAGE INFORMATION** Figure 85. 64-Pin DIP Package Diagram Figure 86. 80-Pin QFP Package Diagram #### ORDERING INFORMATION | Codes | | |---------------|---| | Speed | 10 = 10 MHz | | | 20 = 20 MHz | | | 33 = 33 MHz | | Package | P = 60-Pin Plastic DIP | | | V = 68-Pin PLCC | | | F = 80-Pin QFP | | Temperature | $S = 0^{\circ}C \text{ to } +70^{\circ}C$ | | | E = -40 °C to $+85$ °C | | Environmental | C = Plastic Standard | For fast results, contact your local ZiLOG sales office for assistance in ordering the part(s) required. #### Example: #### **Pre-Characterization Product** The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or non-conformance with some aspects of the document may be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery may be uncertain at times, due to start-up yield issues. ©2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights. ZiLOG, Inc. 910 East Hamilton Avenue, Suite 110 Campbell, CA 95008 Telephone (408) 558-8500 FAX (408) 558-8300 Internet: http://www.zilog.com