Welcome to **E-XFL.COM** #### **Understanding Embedded - Microprocessors** Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications. #### **Applications of Embedded - Microprocessors** Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in | Details | | |---------------------------------|--| | Product Status | Active | | Core Processor | Z8S180 | | Number of Cores/Bus Width | 1 Core, 8-Bit | | Speed | 10MHz | | Co-Processors/DSP | - | | RAM Controllers | DRAM | | Graphics Acceleration | No | | Display & Interface Controllers | - | | Ethernet | - | | SATA | - | | USB | - | | Voltage - I/O | 5.0V | | Operating Temperature | -40°C ~ 100°C (TA) | | Security Features | - | | Package / Case | 80-BQFP | | Supplier Device Package | 80-QFP | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/z8s18010feg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### **GENERAL DESCRIPTION** (Continued) Power connections follow the conventional descriptions below: | Connection | Circuit | Device | | |------------|-----------------|-----------------|--| | Power | V _{CC} | V _{DD} | | | Ground | GND | V _{SS} | | Figure 1. Z8S180/Z8L180 Functional Block Diagram # PIN IDENTIFICATION (Continued) Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes | Pin Num | ber and Packa | age Type | | | | Pin Status | | |----------|---------------|----------|---------------------|-----------------------|-----------------|-----------------|-----------------| | QFP | PLCC | DIP | Default
Function | Secondary
Function | RESET | BUSACK | SLEEP | | | | | NMI | runction | | | | | 1 | 9 | 8 | | | IN | IN | IN | | 3 | | | NC | | | | | | | 10 | 9 | NC
INTO | | INI | INI | INI | | 4 | | 10 | INTO
INT1 | | IN | IN | IN | | 5 | 11
12 | 11 | INT 1 | | IN
IN | IN
IN | IN
IN | | 6
7 | 13 | 12 | ST | | | | | | | 14 | | | | High | High | High | | 9 | 15 | 13
14 | A0 | | 3T
3T | 3T
3T | High | | 10 | 16 | 15 | A1 | | 3T | | High | | | 17 | 16 | A2
A3 | | 3T | 3T
3T | High | | 11 | 17 | 10 | | | | | High | | | | 47 | V _{SS} | | V _{SS} | V _{SS} | V _{SS} | | 13 | 19 | 17 | A4 | | 3T | 3T | High | | 14 | 00 | 40 | NC | | 0.7 | 0.7 | | | 15 | 20 | 18 | A5 | | 3T | 3T | High | | 16 | 21 | 19 | A6 | | 3T | 3T | High | | 17 | 22 | 20 | A7 | | 3T | 3T | High | | 18 | 23 | 21 | A8 | | 3T | 3T | High | | 19 | 24 | 22 | A9 | | 3T | 3T | High | | 20 | 25 | 23 | A10 | | 3T | 3T | High | | 21 | 26 | 24 | A11 | | 3T | 3T | High | | 22 | | | NC | | | | | | 23 | 0.7 | 0.5 | NC
A 1 2 | | 0.7 | O.T. | 11.1 | | 24 | 27 | 25 | A12 | | 3T | 3T | High | | 25 | 28 | 26 | A13 | | 3T | 3T | High | | 26
27 | 29
30 | 27 | A14 | | 3T
3T | 3T | High | | 28 | 30 | 28
29 | A15
A16 | | 31
3T | 3T
3T | High
High | | 29 | 31 | 30 | A16 | | 31
3T | 3T | High | | 30 | ٥٧ | 30 | NC | | ا ا | <u>ی</u> ا | піуп | | 31 | 33 | 31 | A18 | | 3T | 3T | High | | JI | JJ | JI | | | N/A | OUT | OUT | | 22 | 2.4 | 20 | T _{OUT} | | | | | | 32 | 34 | 32 | V _{DD} | | V _{DD} | V _{DD} | V _{DD} | | 33 | 35 | | A19 | | 3T | 3T | High | | 34 | 36 | 33 | V _{SS} | | V_{SS} | V _{SS} | V _{SS} | | 35 | 37 | 34 | D0 | | 3T | 3T | 3T | | 36 | 38 | 35 | D1 | | 3T | 3T | 3T | | 37 | 39 | 36 | D2 | | 3T | 3T | 3T | | 38 | 40 | 37 | D3 | | 3T | 3T | 3T | #### **OPERATION MODES** (Continued) | Table 5. F | RETI Control | Signal | States | |------------|--------------|--------|--------| |------------|--------------|--------|--------| | Machine
Cycle | States | Address | Data | RD | WR | MREQ | ĪORQ | M1
M1E=
1 | M1
M1E =
0 | HALT | ST | |------------------|--------|------------|---------|----|----|------|------|-----------------|------------------|------|----| | 1 | T1-T3 | 1st Opcode | EDH | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | | 2 | T1-T3 | 2nd Opcode | 4DH | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | | | Ti | NA | 3-state | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Ti | NA | 3-state | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Ti | NA | 3-state | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 3 | T1-T3 | 1st Opcode | EDH | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | | | Ti | NA | 3-state | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 4 | T1-T3 | 2nd Opcode | 4DH | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | | 5 | T1-T3 | SP | Data | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | | 6 | T1-T3 | SP + 1 | Data | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | $\overline{\text{M1TE}}$ ($\overline{\text{M1}}$ Temporary Enable). This bit controls the temporary assertion of the $\overline{\text{M1}}$ signal. It is always read back as a 1 and is set to 1 during RESET. When M1E is set to 0 to accommodate certain external Z80 peripheral(s), those same device(s) may require a pulse on M1 after programming certain of their registers to complete the function being programmed. For example, when a control word is written to the Z80 PIO to enable interrupts, no enable actually takes place until the PIO sees an active $\overline{\text{M1}}$ signal. When $\overline{\text{M1TE}} = 1$, there is no change in the operation of the $\overline{\text{M1}}$ signal, and M1E controls its function. When $\overline{\text{M1TE}} = 0$, the $\overline{\text{M1}}$ output is asserted during the next opcode fetch cycle regardless of the state programmed into the M1E bit. This condition is only momentary (one time) and it is not necessary to preprogram a 1 to disable the function (see Figure 10). Figure 10. M1 Temporary Enable Timing IOC (I/O Compatibility). This bit controls the timing of the $\overline{\text{IORO}}$ and $\overline{\text{RD}}$ signals. The bit is set to 1 by RESET. When $\overline{\mathsf{IOC}} = 1$, the $\overline{\mathsf{IORQ}}$ and $\overline{\mathsf{RD}}$ signals function the same as the Z64180 (Figure 11). This condition provides a technique for synchronization with high-speed external events without incurring the latency imposed by an interrupt-response sequence. Figure 14 depicts the timing for exiting SLEEP mode due to an interrupt request. **Note:** The Z8S180/Z8L180 takes about 1.5 clock ticks to restart. **IOSTOP Mode.** IOSTOP mode is entered by setting the IOSTOP bit of the I/O Control Register (ICR) to 1. In this case, on-chip I/O (ASCI, CSI/O, PRT) stops operating. However, the CPU continues to operate. Recovery from IOSTOP mode is performed by resetting the IOSTOP bit in ICR to 0. **SYSTEM STOP Mode.** SYSTEM STOP mode is the combination of SLEEP and IOSTOP modes. SYSTEM STOP mode is entered by setting the IOSTOP bit in ICR to 1 followed by execution of the SLP instruction. In this mode, onchip I/O and CPU stop operating, reducing power consumption, but the PHI output continues to operate. Recovery from SYSTEM STOP mode is the same as recovery from SLEEP mode except that internal I/O sources (disabled by IOSTOP) cannot generate a recovery interrupt. **IDLE Mode.** Software puts the Z8S180/Z8L180 into this mode by performing the following actions: - Set the IOSTOP bit (ICR5) to 1 - Set CCR6 to 0 - Set CCR3 to 1 - Execute the SLP instruction The oscillator keeps operating but its output is blocked to all circuitry including the PHI pin. DRAM refresh and all internal devices stop, but external interrupts can occur. Bus granting to external Masters can occur if the BREST bit in the CPU control Register (CCR5) was set to 1 before IDLE mode was entered. The Z8S180/Z8L180 leaves IDLE mode in response to a Low on $\overline{\text{RESET}}$, an external interrupt request on $\overline{\text{NMI}}$, or an external interrupt request on $\overline{\text{INT0}}$, $\overline{\text{INT1}}$ or $\overline{\text{INT2}}$ that is enabled in the INT/TRAP Control Register. As previously described for SLEEP mode, when the Z8S180/Z8L180 leaves IDLE mode due to an $\overline{\text{NMI}}$, or due to an enabled external interrupt request when the $\overline{\text{IEF}}$ flag is 1 due to an EI instruction, the device starts by performing the interrupt with the return address of the instruction after the SLP instruction. If an external interrupt enables the INT/TRAP control register while the IEF1 bit is 0, Z8S180/Z8L180 leaves IDLE mode; specifically, the processor restarts by executing the instructions following the SLP instruction. Figure 15 indicates the timing for exiting IDLE mode due to an interrupt request. **Note:** The Z8S180/Z8L180 takes about 9.5 clocks to restart. ### **OPERATION MODES** (Continued) Figure 15. Z8S180/Z8L180 IDLE Mode Exit Due To External Interrupt While the Z8S180/Z8L180 is in IDLE mode, it grants the bus to an external Master if the BREXT bit (CCR5) is 1. Figure 16 depicts the timing for this sequence. After the external Master negates the Bus Request, the Z8S180/Z8L180 disables the PHI clock and remains in IDLE mode. **Note:** A response to a bus request takes 8 clock cycles longer than in normal operation. Figure 16. Bus Granting to External Master in IDLE Mode #### STANDBY Mode (With or Without QUICK RECOVERY). Software can put the Z8S180/Z8L180 into this mode by setting the IOSTOP bit (ICR5) to 1, CCR6 to 1, and executing the SLP instruction. This mode stops the on-chip oscillator and thus draws the least power of any mode, less than $10\mu A$. As with IDLE mode, the Z8S180/Z8L180 leaves STANDBY mode in response to a Low on $\overline{\text{RESET}}$, on $\overline{\text{NMI}}$, or a Low on $\overline{\text{INTO-2}}$ that is enabled by a 1 in the corresponding bit in the INT/TRAP Control Register. This action grants the bus to an external Master if the BREXT bit in the CPU Control Register (CCR5) is 1. The time required for all of these operations is greatly increased by the necessity for restarting the on-chip oscillator, and ensuring that it stabilizes to square-wave operation. When an external clock is connected to the EXTAL pin rather than a crystal to the XTAL and EXTAL pins and the external clock runs continuously, there is little necessity to use STANDBY mode because no time is required to restart the oscillator, and other modes restart faster. However, if external logic stops the clock during STANDBY mode (for example, by decoding HALT Low and M1 High for several clock cycles), then STANDBY mode can be useful to allow the external clock source to stabilize after it is re-enabled. When external logic drives RESET Low to bring the device out of STANDBY mode, and a crystal is in use or an external clock source is stopped, the external logic must hold RESET Low until the on-chip oscillator or external clock source is restarted and stabilized. The clock-stability requirements of the Z8S180/Z8L180 are much less in the divide-by-two mode that is selected by a RESET sequence and controlled by the Clock Divide bit in the CPU Control Register (CCR7). As a result, software performs the following actions: - 1. Sets CCR7 to 0 for divide-by-two mode before an SLP instruction and STANDBY mode. - Delays setting CCR7 back to 1 for divide-by-one mode as long as possible to allow additional clock stabilization time after a RESET, interrupt, or in-line RESTART after an SLP 01 instruction. If CCR6 is set to 1 before the SLP instruction places the MPU in STANDBY mode, the value of the CCR3 bit determines the length of the delay before the oscillator restarts and stabilizes when it leaves STANDBY mode due to an external interrupt request. When CCR3 is 0, the Z8S180/Z8L180 waits 2¹⁷ (131,072) clock cycles. When CCR3 is 1, it waits 64 clock cycles. This state is called QUICK RECOVERY mode. The same delay applies to grant- #### DC CHARACTERISTICS—Z8S180 Table 6. Z8S180 DC Characteristics $V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$ | Symbol | Item | Condition | Min | Тур | Max | Unit | |------------------------------|---|--|----------------------|-----|-------------------------|------| | V _{IH1} | Input H Voltage
RESET, EXTAL, NMI | | V _{DD} -0.6 | - | V _{DD}
+0.3 | V | | V _{IH2} | Input H Voltage
Except RESET, EXTAL, NMI | | 2.0 | _ | V _{DD}
+0.3 | V | | V _{IH3} | Input H Voltage
CKS, CKA0, CKA1 | | 2.4 | _ | V _{DD}
+0.3 | V | | V _{IL1} | Input L Voltage
RESET, EXTAL, NMI | | -0.3 | | 0.6 | V | | V _{IL2} | Input L Voltage
Except RESET, EXTAL, NMI | | -0.3 | _ | 0.8 | V | | V _{OH} | Outputs H Voltage | $I_{OH} = -200 \mu A$ | 2.4 | _ | _ | V | | | All outputs | $I_{OH} = -20 \mu\text{A}$ | V _{DD} -1.2 | _ | _ | | | V _{OL} | Outputs L Voltage
All outputs | $I_{OL} = 2.2 \text{ mA}$ | _ | _ | 0.45 | V | | I _{IL} | Input Leakage
Current All Inputs
Except XTAL, EXTAL | $V_{IN} = 0.5 \sim V_{DD} - 0.5$ | _ | _ | 1.0 | μΑ | | I _{TL} | Three State Leakage
Current | $V_{IN} = 0.5 \sim V_{DD} - 0.5$ | _ | _ | 1.0 | μΑ | | I _{DD} ¹ | Power Dissipation | F = 10 MHz | _ | 25 | 60 | mA | | | (Normal Operation) | 20 | | 30 | 50 | | | | | 33 | | 60 | 100 | | | | Power Dissipation | F = 10 MHz | _ | 2 | 5 | | | | (SYSTEM STOP mode) | 20 | | 3 | 6 | | | | | 33 | | 5 | 9 | | | C _P | Pin Capacitance | $V_{ N} = O_V$, $f = 1 \text{ MHz}$
$T_A = 25^{\circ}\text{C}$ | _ | _ | 12 | pF | #### Note: ^{1.} $V_{IHmin} = V_{DD}$ -1.0V, $V_{ILmax} = 0.8V$ (All output terminals are at NO LOAD.) $V_{DD} = 5.0V$. # AC CHARACTERISTICS—Z8S180 (Continued) Table 8. Z8S180 AC Characteristics (Continued) $V_{DD}=5V\pm10\%$ or $V_{DD}=3.3V\pm10\%$; 33-MHz Characteristics Apply Only to 5V Operation | | | | Z8S180 | —20 MHz | Z8S180 | -33 MHz | | |--------|-------------------|---|--------|-----------------------------|--------|----------------------------|------| | Number | Symbol | Item | Min | Max | Min | Max | Unit | | 32 | t _{INTH} | INT Hold Time from PHI Fall | 10 | _ | 10 | _ | ns | | 33 | t _{NMIW} | NMI Pulse Width | 35 | _ | 25 | _ | ns | | 34 | t _{BRS} | BUSREQ Set-up Time to PHI Fall | 10 | _ | 10 | _ | ns | | 35 | t _{BRH} | BUSREQ Hold Time from PHI Fall | 10 | _ | 10 | | ns | | 36 | t _{BAD1} | PHI Rise to BUSACK Fall Delay | _ | 25 | _ | 15 | ns | | 37 | t _{BAD2} | PHI Fall to BUSACK Rise Delay | _ | 25 | _ | 15 | ns | | 38 | t _{BZD} | PHI Rise to Bus Floating Delay Time | | 40 | _ | 30 | ns | | 39 | t _{MEWH} | MREQ Pulse Width (High) | 35 | _ | 25 | _ | ns | | 40 | t _{MEWL} | MREQ Pulse Width (Low) | 35 | _ | 25 | _ | ns | | 41 | t _{RFD1} | PHI Rise to RFSH Fall Delay | _ | 20 | _ | 15 | ns | | 42 | t _{RFD2} | PHI Rise to RFSH Rise Delay | _ | 20 | _ | 15 | ns | | 43 | t _{HAD1} | PHI Rise to HALT Fall Delay | _ | 15 | _ | 15 | ns | | 44 | t _{HAD2} | PHI Rise to HALT Rise Delay | _ | 15 | _ | 15 | ns | | 45 | t _{DRQS} | DREQ1 Set-up Time to PHI Rise | 20 | _ | 15 | _ | ns | | 46 | t _{DRQH} | DREQ1 Hold Time from PHI Rise | 20 | _ | 15 | _ | ns | | 47 | t _{TED1} | PHI Fall to TENDi Fall Delay | _ | 25 | _ | 15 | ns | | 48 | t _{TED2} | PHI Fall to TENDi Rise Delay | _ | 25 | _ | 15 | ns | | 49 | t _{ED1} | PHI Rise to E Rise Delay | _ | 30 | _ | 15 | ns | | 50 | t _{ED2} | PHI Fall or Rise to E Fall Delay | _ | 30 | _ | 15 | ns | | 51 | P _{WEH} | E Pulse Width (High) | 25 | _ | 20 | _ | ns | | 52 | P _{WEL} | E Pulse Width (Low) | 50 | _ | 40 | _ | ns | | 53 | t _{Er} | Enable Rise Time | _ | 10 | _ | 10 | ns | | 54 | t _{Ef} | Enable Fall Time | _ | 10 | _ | 10 | ns | | 55 | t _{TOD} | PHI Fall to Timer Output Delay | _ | 75 | _ | 50 | ns | | 56 | t _{STDI} | CSI/O Transmit Data Delay Time (Internal Clock Operation) | _ | 2 | _ | 2 | tcyc | | 57 | t _{STDE} | CSI/O Transmit Data Delay Time (External Clock Operation) | _ | 7.5 t _{CYC}
+75 | - | 75 t _{CYC}
+60 | ns | | 58 | t _{SRSI} | CSI/O Receive Data Set-up Time (Internal Clock Operation) | 1 | _ | 1 | _ | tcyc | | 59 | t _{SRHI} | CSI/O Receive Data Hold Time (Internal Clock Operation) | 1 | _ | 1 | _ | tcyc | | 60 | t _{SRSE} | CSI/O Receive Data Set-up Time (External Clock Operation) | 1 | _ | 1 | _ | tcyc | | 61 | t _{SRHE} | CSI/O Receive Data Hold Time (External Clock Operation) | 1 | _ | 1 | _ | tcyc | | 62 | t _{RES} | RESET Set-up Time to PHI Fall | 40 | _ | 25 | _ | ns | ## **TIMING DIAGRAMS** Note: *Memory Read/Write Cycle timing is the same as I/O Read/Write Cycle except there are no automatic wait states (T_W) , and \overline{MREQ} is active instead of \overline{IORQ} . Figure 20. CPU Timing (Opcode Fetch Cycle, Memory Read Cycle, Memory Write Cycle, I/O Write Cycle, I/O Read Cycle) Figure 24. E Clock Timing (Memory Read/Write Cycle, I/O Read/Write Cycle) Figure 25. E Clock Timing (BUS RELEASE Mode, SLEEP Mode, SYSTEM STOP Mode) Figure 26. E Clock Timing (Minimum Timing Example of \mathbf{P}_{WEL} and $\mathbf{P}_{WEH})$ **Bit 2 LNIO.** This bit controls the drive capability of certain external I/O pins of the Z8S180/Z8L180. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability: | RTS0 | TxS | |------------|------------| | CKA1/TENDO | CKA0/DREQ0 | | TXA0 | TXA1 | | TENDi | CKS | **Bit 1 LNCPUCTL.** This bit controls the drive capability of the CPU Control pins. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability: | BUSACK | RD | |--------|------| | WR | M1 | | MREQ | ĪORQ | | RFSH | HALT | | Е | TEST | | ST | | **Bit O LNAD/DATA.** This bit controls the drive capability of the Address/Data bus output drivers. If this bit is set to 1, the output drive capability of the Address and Data bus outputs is reduced to 33 percent of its original drive capability. #### **ASCI CHANNEL CONTROL REGISTER B** ASCI Control Register B 0 (CNTLB0: I/O Address = 02H) ASCI Control Register B 1 (CNTLB1: I/O Address = 03H) Bit 7 5 0 CTS/ PS MP **MPBT** PEO DR SS2 SS1 SS₀ R/W R/W R/W R/W R/W R/W R/W R/W Figure 34. ASCI Channel Control Register B MPBT: Multiprocessor Bit Transmit (Bit 7). When multiprocessor communication format is selected (MP bit = 1), MPBT is used to specify the MPB data bit for transmission. If MPBT = 1, then MPB = 1 is transmitted. If MPBT = 0, then MPB = 0 is transmitted. The MPBT state is undefined during and after RESET. MP: Multiprocessor Mode (Bit 6). When MP is set to 1, the data format is configured for multiprocessor mode based on MOD2 (number of data bits) and MOD0 (number of stop bits) in CNTLA. The format is as follows: Start bit + 7 or 8 data bits + MPB bit + 1 or 2 stop bits Multiprocessor (MP = 1) format offers no provision for parity. If MP = 0, the data format is based on MOD0, MOD1, MOD2, and may include parity. The MP bit is cleared to 0 during RESET. CTS/PS: Clear to Send/Prescale (Bit 5). When read, CTS/PS reflects the state of the external CTS input. If the CTS input pin is High, CTS/PS is read as 1. **Note:** When the \overline{CTS} input pin is High, the TDRE bit is inhibited (that is, held at 0). For channel 1, the $\overline{\text{CTS}}$ input is multiplexed with RXS pin (Clocked Serial Receive Data). Thus, $\overline{\text{CTS}}/\text{PS}$ is only valid when read if the channel 1 CTS1E bit = 1 and the $\overline{\text{CTS}}$ input pin function is selected. The READ data of $\overline{\text{CTS}}/\text{PS}$ is not affected by $\overline{\text{RESET}}$. If the SS2-0 bits in this register are not 111, and the BRG mode bit in the ASEXT register is 0, then writing to this bit sets the prescale (PS) control. Under those circumstances, a 0 indicates a divide-by-10 prescale function while a 1 indicates divide-by-30. The bit resets to 0. **PEO:** Parity Even Odd (Bit 4) . PEO selects oven or odd parity. PEO does not affect the enabling/disabling of parity (MOD1 bit of CNTLA). If PEO is cleared to 0, even parity is selected. If PEO is set to 1, odd parity is selected. PEO is cleared to 0 during RESET. **DR: Divide Ratio (Bit 3).** If the X1 bit in the ASEXT register is 0, this bit specifies the divider used to obtain baud rate from the data sampling clock. If DR is reset to 0, divideby-16 is used, while if DR is set to 1, divide-by-64 is used. DR is cleared to 0 during RESET. **SS2,1,0:** Source/Speed Select 2,1,0 (Bits 2–0). First, if these bits are 111, as they are after a RESET, the CKA pin is used as a clock input, and is divided by 1, 16, or 64 depending on the DR bit and the X1 bit in the ASEXT register. If these bits are not 111 and the BRG mode bit is ASEXT is 0, then these bits specify a power-of-two divider for the PHI clock as indicated in Table 10. Setting or leaving these bits as 111 makes sense for a channel only when its CKA pin is selected for the CKA function. CKAO/CKS offers the CKAO function when bit 4 of the System Configuration Register is 0. DCDO/CKA1 offers the CKA1 function when bit 0 of the Interrupt Edge register is 1. Table 10. Divide Ratio | SS2 | SS1 | SS0 | Divide Ratio | |-----|-----|-----|----------------| | 0 | 0 | 0 | ÷1 | | 0 | 0 | 1 | ÷2 | | 0 | 1 | 0 | ÷4 | | 0 | 1 | 1 | ÷8 | | 1 | 0 | 0 | ÷16 | | 1 | 0 | 1 | ÷32 | | 1 | 1 | 0 | ÷64 | | 1 | 1 | 1 | External Clock | | | | | | never both set to 1 at the same time. TE is cleared to 0 during RESET and IOSTOP mode. SS2, 1, 0: Speed Select 2, 1, 0 (Bits 2–0). SS2, SS1 and SS0 select the CSI/O transmit/receive clock source and speed. SS2, SS1 and SS0 are all set to 1 during RESET. Table 11 indicates CSI/O Baud Rate Selection. Table 11. CSI/O Baud Rate Selection | SS2 | SS1 | SS0 | Divide Ratio | |-----|-----|-----|---| | 0 | 0 | 0 | ÷20 | | 0 | 0 | 1 | ÷40 | | 0 | 1 | 0 | ÷80 | | 0 | 1 | 1 | ÷160 | | 1 | 0 | 0 | ÷320 | | 1 | 0 | 1 | ÷640 | | 1 | 1 | 0 | ÷1280 | | 1 | 1 | 1 | External Clock Input
(Less Than ÷20) | After $\overline{\text{RESET}}$, the CKS pin is configured as an external clock input (SS2, SS1, SS0 = 1). Changing these values causes CKS to become an output pin and the selected clock is output when transmit or receive operations are enabled. #### CSI/O Transmit/Receive Data Register #### Mnemonic TRDR Address 0BH Figure 41. CSI/O Transmit/Receive Data Register # Timer Data Register Channel 0 Low Mnemonic TMDR0L Address 0CH Figure 42. Timer Register Channel 0 Low ### **Timer Data Register Channel 0H** # Mnemonic TMDR0H Address 0DH Figure 43. Timer Data Register Channel 0 High #### **Timer Reload Register Channel 0 Low** Mnemonic RLDR0L Address 0EH Figure 44. Timer Reload Register Low #### **Timer Reload Register Channel 0 High** Mnemonic RLDR0H Address 0FH Figure 45. Timer Reload Register Channel 0 High #### ASCI EXTENSION CONTROL REGISTER CHANNEL 0 AND CHANNEL 1 The ASCI Extension Control Registers (ASEXTO and ASEXT1) control functions that have been added to the ASCIs in the Z8S180/Z8L180 family. All bits in this register reset to 0. Figure 47. ASCI Extension Control Registers, Channels 0 and 1 **DCD0 Disable (Bit 6, ASCIO Only).** If this bit is 0, then the $\overline{DCD0}$ pin auto-enables the ASCI0 receiver, such that when the pin is negated/High, the Receiver is held in a RE-SET state. If this bit is 1, the state of the \overline{DCD} -pin has no effect on receiver operation. In either state of this bit, software can read the state of the $\overline{DCD0}$ pin in the STAT0 register, and the receiver interrupts on a rising edge of $\overline{DCD0}$. CTSO Disable (Bit 5, ASCIO Only). If this bit is 0, then the $\overline{\text{CTSO}}$ pin auto-enables the ASCIO transmitter, in that when the pin is negated/High, the TDRE bit in the STATO register is forced to 0. If this bit is 1, the state of the $\overline{\text{CTSO}}$ pin has no effect on the transmitter. Regardless of the state of this bit, software can read the state of the $\overline{\text{CTSO}}$ pin the CNTLBO register. **X1** (**Bit 4**). If this bit is 1, the clock from the Baud Rate Generator or CKA pin is taken as a 1X-bit clock (sometimes called *isochronous mode*). In this mode, receive data on the RXA pin must be synchronized to the clock on the CKA pin, regardless of whether CKA is an input or an output. If this bit is 0, the clock from the Baud Rate Generator or CKA pin is divided by 16 or 64 per the DR bit in the CNTLB register, to obtain the actual bit rate. In this mode, receive data on the RXA pin is not required to be synchronized to a clock. **BRG Mode (Bit 3).** If the SS2-0 bits in the CNTLB register are not 111, and this bit is 0, the ASCI Baud Rate Generator divides PHI by 10 or 30, depending on the PS bit in CNTLB, and factored by a power of two (selected by the SS2–0 bits), to obtain the clock that is presented to the transmitter and receiver and output on the CKA pin. If SS2–0 are not 111, and this bit is 1, the Baud Rate Generator divides PHI by twice the sum of the 16-bit value (programmed into the Time Constant registers) and 2. This mode is identical to the operation of the baud rate generator in the ESCC. **Break Enable (Bit 2).** If this bit is 1, the receiver detects BREAK conditions and report them in bit 1, and the transmitter sends BREAKs under the control of bit 0. Break Detect (Bit 1). The receiver sets this read-only bit to 1 when an all-zero character with a Framing Error becomes the oldest character in the Rx FIFO. The bit is cleared when software writes a 0 to the EFR bit in CNTLA register, also by RESET, by IOSTOP mode, and for ASCIO, if the DCDO pin is auto-enabled and is negated (High). **Send Break (Bit 0).** If this bit and bit 2 are both 1, the transmitter holds the TXA pin Low to send a BREAK condition. The duration of the BREAK is under software control (one of the PRTs or CTCs can be used to time it). This bit resets to 0, in which state TXA carries the serial output of the transmitter. #### DMA DESTINATION ADDRESS REGISTER CHANNEL 0 The DMA Destination Address Register Channel 0 specifies the physical destination address for channel 0 transfers. The register contains 20 bits and can specify up to 1024-KB memory addresses or up to 64-KB I/O addresses. Channel 0 destination can be memory, I/O, or memory mapped I/O. For I/O, the MS bits of this register identify the Request Handshake signal for channel 0. # DMA Destination Address Register Channel 0 Low Mnemonic DAR0L Address 23H Figure 58. DMA Destination Address Register Channel 0 Low # **DMA Destination Address Register Channel 0 High** Mnemonic DAR0H Address 24H Figure 59. DMA Destination Address Register Channel 0 High # DMA Destination Address Register Channel OB Mnemonic DAR0B Address 25H Figure 60. DMA Destination Address Register Channel OB If the DMA destination is in I/O space, bits 1–0 of this register select the DMA request signal for DMA0, as follows: | Bit 1
(A17) | Bit 0
(A16) | DMA Transfer Request | |----------------|----------------|----------------------| | 0 | 0 | DREQ0 (external) | | 0 | 1 | TDR0 (ASCI0) | | 1 | 0 | TDR1 (ASCI1) | | 1 | 1 | Not Used | #### **DMA/WAIT CONTROL REGISTER** The DMA/WAIT Control Register (DCNTL) controls the insertion of wait states into DMAC (and CPU) accesses of memory or I/O. Also, the register defines the Request signal for each channel as level or edge sense. DCNTL also sets the DMA transfer mode for channel 1, which is limited to memory to/from I/O transfers. Figure 73. DMA/WAIT Control Register (DCNTL: I/O Address = 32H) MWI1, MWI0: Memory Wait Insertion (Bits 7–6). This bit specifies the number of wait states introduced into CPU or DMAC memory access cycles. MWI1 and MWI0 are set to 1 during RESET. | MWI1 | MWIO | Wait State | |------|------|------------| | 0 | 0 | 0 | | 0 | 1 | 1 | | 1 | 0 | 2 | | 1 | 1 | 3 | **IWI1, IWI0:** I/O Wait Insertion (Bits 5–4). This bit specifies the number of wait states introduced into CPU or DMAC I/O access cycles. IWI1 and IWI0 are set to 1 during RESET. | IWIO | Wait State | |------|------------------| | 0 | 1 | | 1 | 2 | | 0 | 3 | | 1 | 4 | | | 0
1
0
1 | **Note:** These wait states are added to the 3-clock I/O cycle that is used to access the on-chip I/O registers. It is equally valid to regard these as 0 to 3 wait states added to a 4-clock external I/O cycle. **DMS1**, **DMS0**: **DMA** Request Sense (Bits 3–2). DMS1 and DMS0 specify the DMA request sense for channel 0 and channel 1 respectively. When reset to 0, the input is level sense. When set to 1, the input is edge sense. DMS1 and DMS0 are cleared to 0 during RESET. | DMSi | Sense | |------|-------------| | 1 | Edge Sense | | 0 | Level Sense | Typically, for an input/source device, the associated DMS bit should be programmed as 0 for level sense. The device takes a relatively long time to update its Request signal after the DMA channel reads data (in the first of the two machine cycles involved in transferring a byte). An output/destination device takes much less time to update its Request signal after the DMA channel starts a WRITE operation to it (the second machine cycle of the two cycles involved in transferring a byte). With zero-wait state I/O cycles, a device cannot update its request signal in the required time, so edge sensing must be used. A one-wait-state I/O cycle also does not provide sufficient time for updating, so edge sensing is again required. **DIM1**, **DIM0**: **DMA Channel 1 I/O** and **Memory Mode (Bits 1–0)**. Specifies the source/destination and address modifier for channel 1 memory to/from I/O transfer modes. DIM1 and DIM0 are cleared to 0 during RESET. Table 17. Channel 1 Transfer Mode | DIM1 | DMIO | Transfer Mode | Address
Increment/Decrement | |-------|--------|----------------|--------------------------------| | DIIVI | DIVIIO | Transfer Wiode | mcrement/Decrement | | 0 | 0 | Memory→I/O | MAR1 +1, IAR1 fixed | | 0 | 1 | Memory→I/O | MAR1 -1, IAR1 fixed | | 1 | 0 | I/O→Memory | IAR1 fixed, MAR1 +1 | | 1 | 1 | I/O→Memory | IAR1 fixed, MAR1 -1 | All TRAPs occur after fetching an undefined second opcode byte following one of the prefix opcodes (CBH, DDH, EDH, or FDH) or after fetching an undefined third opcode byte following one of the double-prefix opcodes (DDCBH or FDCBH). The state of the Undefined Fetch Object (UFO) bit in ITC allows TRAP software to correctly *adjust* the stacked PC, depending on whether the second or third byte of the opcode generated the TRAP. If UFO = 0, the starting address of the invalid instruction is the stacked PC-1. If UFO = 1, the starting address of the invalid instruction is equal to the stacked PC-2. Figure 75. TRAP Timing - 2nd Opcode Undefined #### MMU COMMON BASE REGISTER The Common Base Register (CBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit phys- ical address for Common Area 1 accesses. All bits of CBR are reset to 0 during RESET. #### **MMU Common Base Register** Mnemonic CBR Address 38H Figure 78. MMU Common Base Register (CBR: I/O Address = 38H) #### MMU BANK BASE REGISTER The Bank Base Register (BBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit physical ad- dress for Bank Area accesses. All bits of BBR are reset to 0 during RESET. #### **MMU Bank Base Register** Mnemonic BBR Address 39H Figure 79. MMU Bank Base Register (BBR: I/O Address = 39H) #### MMU COMMON/BANK AREA REGISTER The Common/Bank Area Register (CBAR) specifies boundaries within the Z8S180/Z8L180 64-KB logical address space for up to three areas; Common Area), Bank Area and Common Area 1. #### MMU Common/Bank Area Register Mnemonic CBAR Address 3AH Figure 80. MMU Common/Bank Area Register (CBAR: I/O Address = 3AH) **CA3–CA0:CA** (Bits 7–4). CA specifies the start (Low) address (on 4-KB boundaries) for Common Area 1. This condition also determines the most recent address of the Bank Area. All bits of CA are set to 1 during RESET. **BA3-BA0** (Bits 3-0). BA specifies the start (Low) address (on 4-KB boundaries) for the Bank Area. This condition also determines the most recent address of Common Area 0. All bits of BA are set to 1 during RESET. #### **OPERATION MODE CONTROL REGISTER** The Z8S180/Z8L180 is descended from two different ancestor processors, ZiLOG's original Z80 and the Hitachi 64180. The Operating Mode Control Register (OMCR) can be programmed to select between certain differences between the Z80 and the 64180. #### **Operation Mode Control Register** Mnemonic OMCR Address 3EH Figure 81. Operating Control Register (OMCR: I/O Address = 3EH) M1E ($\overline{M1}$ Enable). This bit controls the $\overline{M1}$ output and is set to a 1 during reset. When M1E = 1, the $\overline{\text{M1}}$ output is asserted Low during the opcode fetch cycle, the $\overline{\text{INTO}}$ acknowledge cycle, and the first machine cycle of the $\overline{\text{NMI}}$ acknowledge. On the Z8S180/Z8L180, this choice makes the processor fetch one RETI instruction. When fetching a RETI from zero-wait-state memory, the processor uses three clock machine cycles that are not fully Z80-timing-compatible. When M1E = 0, the processor does not drive $\overline{\text{M1}}$ Low during instruction fetch cycles. After fetching one RETI instruction with normal timing, the processor returns and refetches the instruction using Z80-compatible cycles that drive $\overline{\text{M1}}$ Low. This timing compatibility may be required by external Z80 peripherals to properly decode the RETI instruction. Figure 82. RETI Instruction Sequence with M1E = 0 #### I/O CONTROL REGISTER The I/O Control Register (ICR) allows relocation of the internal I/O addresses. ICR also controls the enabling and disabling of IOSTOP mode (Figure 83). Figure 83. I/O Control Register (ICR: I/O Address = 3FH) IOA7, 6: I/O Address Relocation (Bits 7,6). IOA7 and IOA6 relocate internal I/O as indicated in Figure 84. **Note:** The high-order 8 bits of 16-bit internal I/O address are always 0. IOA7 and IOA6 are cleared to 0 during RESET. Figure 84. I/O Address Relocation **IOSTP: IOSTOP Mode (Bit 5).** IOSTOP mode is enabled when IOSTP is set to 1. Normal I/O operation resumes when IOSTP is reprogrammed or RESET to 0. PRELIMINARY DS006002-ZMP0200