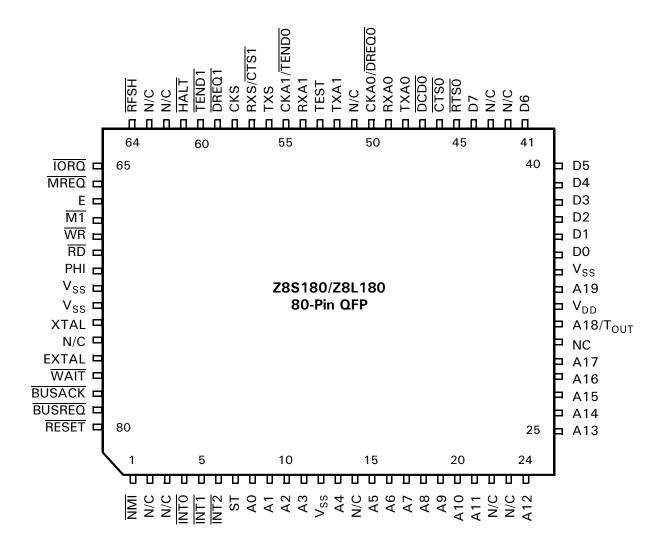
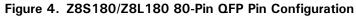

Zilog - Z8S18010PSC Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.


Applications of **Embedded - Microprocessors**


Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	Z8S180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	10MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	64-DIP (0.750", 19.05mm)
Supplier Device Package	64-DIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8s18010psc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

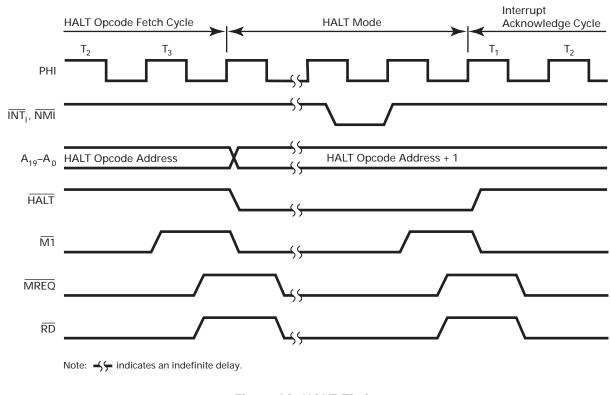
Pin Num	ber and Packa	age Type	Default	Secondary	
QFP	PLCC	DIP	Function	Function	Control
1	9	8	NMI		
2			NC		
3			NC		
4	10	9	INTO		
5	11	10	INT1		
6	12	11	INT2		
7	13	12	ST		
8	14	13	AO		
9	15	14	A1		
10	16	15	A2		
11	17	16	A3		
12	18		V _{SS}		

Table 1. Z8S180/Z8L180 Pin Identification

Pin Number and Package Type **Pin Status** Default Secondary QFP PLCC DIP Function Function RESET BUSACK SLEEP D4 39 41 38 3T 3T 3T 40 42 39 D5 ЗT 3T ЗT 41 43 40 D6 ЗT ЗT ЗT 42 NC NC 43 D7 44 ЗT ЗT ЗT 44 41 45 45 42 **RTSO** OUT High High 46 46 43 CTS0 OUT IN IN DCD0 47 47 44 IN IN IN OUT OUT 48 48 45 TXA0 High 49 49 46 RXA0 IN IN IN 47 ЗT I/O I/O 50 50 CKA0 **DREQ0** N/A IN IN 51 NC 52 51 48 TXA1 OUT OUT High 52 TEST 53 53 49 RXA1 IN IN IN 54 I/O I/O 55 54 50 CKA1 ЗT **TENDO** N/A High High TXS OUT OUT 56 55 51 High 57 56 52 RXS IN IN IN CTS1 N/A IN IN 58 57 53 CKS 3T I/O I/O 58 54 DREQ1 IN ЗT IN 59 60 59 55 TEND1 OUT High High HALT 60 56 High 61 High Low 62 NC NC 63 RFSH 57 OUT 64 61 High High 58 IORQ 3T 65 62 High High 66 63 59 MREQ High ЗT High 67 64 Е Low OUT 60 OUT M1 68 65 61 High High High WR 69 66 62 3T High High 70 67 63 RD ЗT High High 71 68 64 PHI OUT OUT OUT V_{SS} 72 1 1 GND GND GND 73 2 GND V_{SS} GND GND 3 74 **XTAL** OUT OUT 2 OUT NC 75

Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes (Continued)

PIN IDENTIFICATION (Continued)

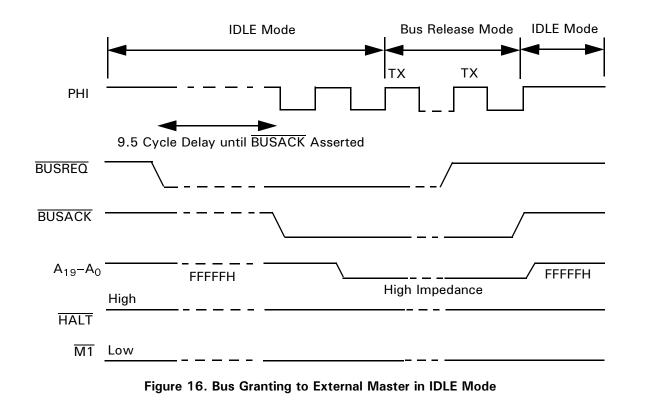

Pin Num	ber and Packa	age Type	Pin Status				
QFP	PLCC	DIP	Default Function	Secondary Function	RESET	BUSACK	SLEEP
76	4	3	EXTAL		IN	IN	IN
77	5	4	WAIT		IN	IN	IN
78	6	5	BUSACK		High	OUT	OUT
79	7	6	BUSREQ		IN	IN	IN
80	8	7	RESET		IN	IN	IN

OPERATION MODES (Continued)

The Z8S180/Z8L180 leaves HALT mode in response to:

- Low on RESET
- Interrupt from an enabled on-chip source
- External request on NMI
- Enabled external request on INTO, INT1, or INT2

In case of an interrupt, the return address is the instruction following the HALT instruction. The program can either branch back to the HALT instruction to wait for another interrupt or can examine the new state of the system/application and respond appropriately.



SLEEP Mode. This mode is entered by keeping the IOSTOP bit (ICR5) and bits 3 and 6 of the CPU Control Register (CCR3, CCR6) all zero and executing the SLP instruction. The oscillator and PHI output continue operating, but are blocked from the CPU core and DMA channels to reduce power consumption. DRAM refresh stops, but interrupts and granting to an external Master can occur. Except when the bus is granted to an external Master, A19–0 and all control signals except HALT are maintained High. HALT is Low. I/O operations continue as before the SLP instruction, except for the DMA channels.

The Z8S180/Z8L180 leaves SLEEP mode in response to a Low on RESET, an interrupt request from an on-chip source,

an external request on $\overline{\text{NMI}}$, or an external request on $\overline{\text{INTO}}$, $\overline{\text{INT1}}$, or $\overline{\text{INT2}}$.

If an interrupt source is individually disabled, it cannot bring the Z8S180/Z8L180 out of SLEEP mode. If an interrupt source is individually enabled, and the IEF bit is 1 so that interrupts are globally enabled (by an EI instruction), the highest priority active interrupt occurs with the return address being the instruction after the SLP instruction. If an interrupt source is individually enabled, but the IEF bit is 0 so that interrupts are globally disabled (by a DI instruction), the Z8S180/Z8L180 leaves SLEEP mode by simply executing the following instruction(s).

STANDBY Mode (With or Without QUICK RECOVERY).

Software can put the Z8S180/Z8L180 into this mode by setting the IOSTOP bit (ICR5) to 1, CCR6 to 1, and executing the SLP instruction. This mode stops the on-chip oscillator and thus draws the least power of any mode, less than 10μ A.

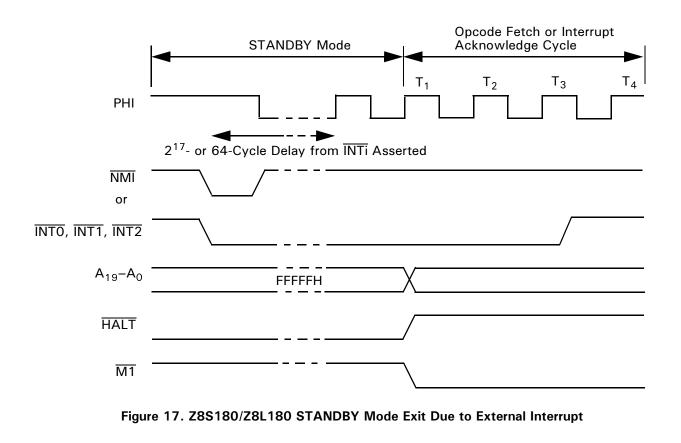
As with IDLE mode, the Z8S180/Z8L180 leaves STANDBY mode in response to a Low on $\overline{\text{RESET}}$, on $\overline{\text{NMI}}$, or a Low on $\overline{\text{INTO-2}}$ that is enabled by a 1 in the corresponding bit in the INT/TRAP Control Register. This action grants the bus to an external Master if the BREXT bit in the CPU Control Register (CCR5) is 1. The time required for all of these operations is greatly increased by the necessity for restarting the on-chip oscillator, and ensuring that it stabilizes to square-wave operation.

When an external clock is connected to the EXTAL pin rather than a crystal to the XTAL and EXTAL pins and the external clock runs continuously, there is little necessity to use STANDBY mode because no time is required to restart the oscillator, and other modes restart faster. However, if external logic stops the clock during STANDBY mode (for example, by decoding HALT Low and M1 High for several clock cycles), then STANDBY mode can be useful to allow the external clock source to stabilize after it is re-enabled.

When external logic drives **RESET** Low to bring the device out of **STANDBY** mode, and a crystal is in use or an external clock source is stopped, the external logic must hold **RESET** Low until the on-chip oscillator or external clock source is restarted and stabilized.

The clock-stability requirements of the Z8S180/Z8L180 are much less in the divide-by-two mode that is selected by a RESET sequence and controlled by the Clock Divide bit in the CPU Control Register (CCR7). As a result, software performs the following actions:

- 1. Sets CCR7 to 0 for divide-by-two mode before an SLP instruction and STANDBY mode.
- 2. Delays setting CCR7 back to 1 for divide-by-one mode as long as possible to allow additional clock stabilization time after a RESET, interrupt, or in-line RESTART after an SLP 01 instruction.


If CCR6 is set to 1 before the SLP instruction places the MPU in STANDBY mode, the value of the CCR3 bit determines the length of the delay before the oscillator restarts and stabilizes when it leaves STANDBY mode due to an external interrupt request. When CCR3 is 0, the Z8S180/Z8L180 waits 2^{17} (131,072) clock cycles. When CCR3 is 1, it waits 64 clock cycles. This state is called QUICK RECOVERY mode. The same delay applies to grant-

ing the bus to an external Master during STANDBY mode, when the BREXT bit in the CPU Control Register (CCR5) is 1.

As described previously for SLEEP and IDLE modes, when the MPU leaves STANDBY mode due to $\overline{\text{NMI}}$ Low or an enabled $\overline{\text{INTO}}$ - $\overline{\text{INT2}}$ Low when the IEF, flag is 1 due to an IE instruction, it starts by performing the interrupt with the return address being that of the instruction following the SLP instruction. If the Z8S180/Z8L180 leaves STANDBY mode due to an external interrupt request that's enabled in the INT/TRAP Control Register, but the IEF, bit is 0 due to a DI instruction, the processor restarts by executing the instruction(s) following the SLP instruction. If \overline{INTO} , or $\overline{INT1}$ or $\overline{INT2}$ goes inactive before the end of the clock stabilization delay, the Z8S180/Z8L180 stays in STANDBY mode.

Figure 17 indicates the timing for leaving STANDBY mode due to an interrupt request.

Note: The Z8S180/Z8L180 takes either 64 or 2^{17} (131,072) clocks to restart, depending on the CCR3 bit.

While the Z8S180/Z8L180 is in STANDBY mode, it grants the bus to an external Master if the BREXT bit (CCR5) is 1. Figure 18 indicates the timing of this sequence. The device takes 64 or 2^{17} (131,072) clock cycles to grant the bus depending on the CCR3 bit. The latter (not the QUICK RE-COVERY) case may be prohibitive for many demand-driven external Masters. If so, QUICK RECOVERY or IDLE mode can be used.

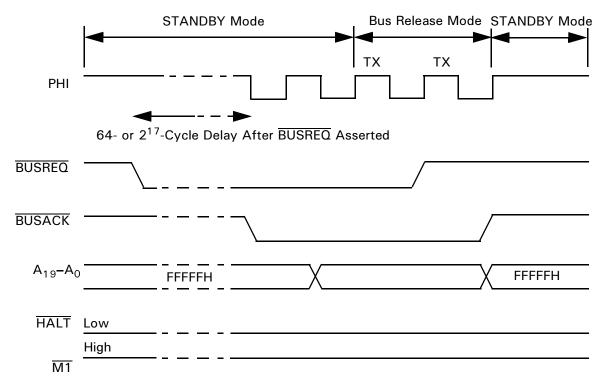


Figure 18. Bus Granting to External Master During STANDBY Mode

DC CHARACTERISTICS-Z8S180

Table 6.	Z8S1	80 DC (Charact	eristics
V_{DD}	= 5V	±10%;	$V_{SS} =$	0V

Symbol	ltem	Condition	Min	Тур	Max	Unit
V _{IH1}	Input H Voltage RESET, EXTAL, NMI		V _{DD} -0.6	_	V _{DD} +0.3	V
V _{IH2}	Input H Voltage Except RESET, EXTAL, NMI		2.0	_	V _{DD} +0.3	V
V _{IH3}	Input H Voltage CKS, CKA0, CKA1		2.4	—	V _{DD} +0.3	V
V _{IL1}	Input L Voltage RESET, EXTAL, NMI		-0.3	_	0.6	V
V _{IL2}	Input L Voltage Except RESET, EXTAL, NMI		-0.3	_	0.8	V
V _{OH}	Outputs H Voltage	I _{OH} = -200 μA	2.4	_	_	V
	All outputs	$I_{OH} = -20 \ \mu A$	V _{DD} –1.2		_	
V _{OL}	Outputs L Voltage All outputs	$I_{OL} = 2.2 \text{ mA}$	_	_	0.45	V
I _{IL}	Input Leakage Current All Inputs Except XTAL, EXTAL	$V_{\rm IN} = 0.5 \sim V_{\rm DD} - 0.5$	-	_	1.0	μA
I _{TL}	Three State Leakage Current	$V_{IN} = 0.5 \sim V_{DD} - 0.5$	_	_	1.0	μA
I _{DD} ¹	Power Dissipation	F = 10 MHz	—	25	60	mA
	(Normal Operation)	20		30	50	
		33		60	100	
	Power Dissipation	F = 10 MHz	_	2	5	
	(SYSTEM STOP mode)	20		3	6	
		33		5	9	
C _P	Pin Capacitance	$V_{ N} = O_V, f = 1 MHz$ $T_A = 25^{\circ}C$	—	_	12	pF

			Z8S180—20 MHz Z8S180—33 MHz				
Number	Symbol	Item	Min	Max	Min	Max	Unit
63	t _{REH}	RESET Hold Time from PHI Fall	25	_	15	_	ns
64	t _{osc}	Oscillator Stabilization Time	_	20	_	20	ns
65	t _{EXR}	External Clock Rise Time (EXTAL)	_	5		5	ns
66	t _{EXF}	External Clock Fall Time (EXTAL)	_	5	_	5	ns
67	t _{RR}	RESET Rise Time	—	50		50	ms
68	t _{RF}	RESET Fall Time	—	50		50	ms
69	t _{IR}	Input Rise Time (except EXTAL, RESET)	_	50		50	ns
70	t _{IF}	Input Fall Time (except EXTAL, RESET)	—	50	—	50	ns

Table 8. Z8S180 AC Characteristics (Continued) $V_{DD} = 5V \pm 10\%$ or $V_{DD} = 3.3V \pm 10\%$; 33-MHz Characteristics Apply Only to 5V Operation

TIMING DIAGRAMS (Continued)

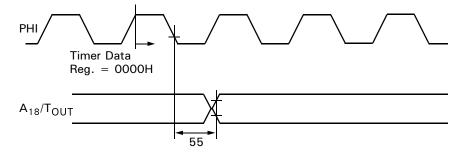


Figure 27. Timer Output Timing

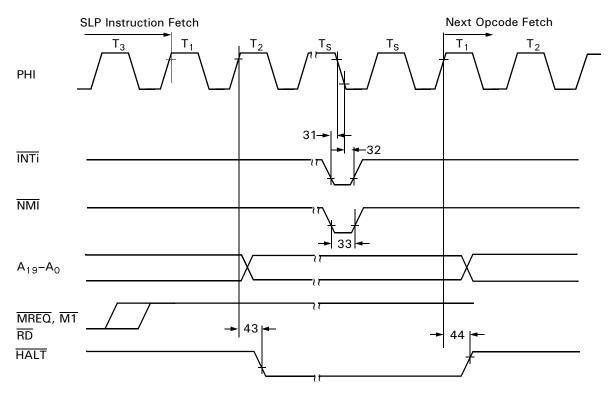
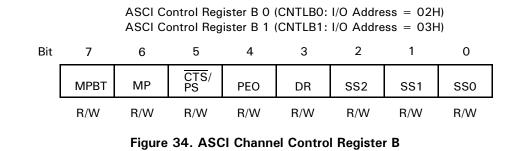



Figure 28. SLP Execution Cycle

ASCI CHANNEL CONTROL REGISTER B

MPBT: Multiprocessor Bit Transmit (Bit 7). When multiprocessor communication format is selected (MP bit = 1), MPBT is used to specify the MPB data bit for transmission. If MPBT = 1, then MPB = 1 is transmitted. If MPBT = 0, then MPB = 0 is transmitted. The MPBT state is undefined during and after RESET.

MP: Multiprocessor Mode (Bit 6). When MP is set to 1, the data format is configured for multiprocessor mode based on MOD2 (number of data bits) and MOD0 (number of stop bits) in CNTLA. The format is as follows:

Start bit + 7 or 8 data bits + MPB bit + 1 or 2 stop bits

Multiprocessor (MP = 1) format offers no provision for parity. If MP = 0, the data format is based on MODO, MOD1, MOD2, and may include parity. The MP bit is cleared to 0 during RESET.

 $\overline{\text{CTS}}/\text{PS}$: Clear to Send/Prescale (Bit 5). When read, $\overline{\text{CTS}}/\text{PS}$ reflects the state of the external $\overline{\text{CTS}}$ input. If the $\overline{\text{CTS}}$ input pin is High, $\overline{\text{CTS}}/\text{PS}$ is read as 1.

Note: When the $\overline{\text{CTS}}$ input pin is High, the TDRE bit is inhibited (that is, held at 0).

For channel 1, the $\overline{\text{CTS}}$ input is multiplexed with RXS pin (Clocked Serial Receive Data). Thus, $\overline{\text{CTS}}/\text{PS}$ is only valid when read if the channel 1 CTS1E bit = 1 and the $\overline{\text{CTS}}$ input pin function is selected. The READ data of $\overline{\text{CTS}}/\text{PS}$ is not affected by $\overline{\text{RESET}}$.

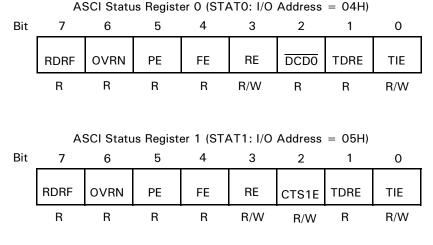
If the SS2-0 bits in this register are not 111, and the BRG mode bit in the ASEXT register is 0, then writing to this bit sets the prescale (PS) control. Under those circumstances, a 0 indicates a divide-by-10 prescale function while a 1 indicates divide-by-30. The bit resets to 0.

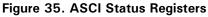
PEO: Parity Even Odd (Bit 4) . PEO selects oven or odd parity. PEO does not affect the enabling/disabling of parity (MOD1 bit of CNTLA). If PEO is cleared to 0, even parity is selected. If PEO is set to 1, odd parity is selected. PEO is cleared to 0 during RESET.

DR: Divide Ratio (Bit 3). If the X1 bit in the ASEXT register is 0, this bit specifies the divider used to obtain baud rate from the data sampling clock. If DR is reset to 0, divide-by-16 is used, while if DR is set to 1, divide-by-64 is used. DR is cleared to 0 during RESET.

SS2,1,0: Source/Speed Select 2,1,0 (Bits 2–0). First, if these bits are 111, as they are after a RESET, the CKA pin is used as a clock input, and is divided by 1, 16, or 64 depending on the DR bit and the X1 bit in the ASEXT register.

If these bits are not 111 and the BRG mode bit is ASEXT is 0, then these bits specify a power-of-two divider for the PHI clock as indicated in Table 10.


Setting or leaving these bits as 111 makes sense for a channel only when its CKA pin is selected for the CKA function. CKAO/CKS offers the CKAO function when bit 4 of the System Configuration Register is 0. $\overline{DCDO}/CKA1$ offers the CKA1 function when bit 0 of the Interrupt Edge register is 1.


Table 10. Divide Ratio

SS2	SS1	SS0	Divide Ratio
0	0	0	÷1
0	0	1	÷2
0	1	0	÷4
0	1	1	÷8
1	0	0	÷16
1	0	1	÷32
1	1	0	÷64
1	1	1	External Clock

ASCI STATUS REGISTER 0,1

Each ASCI channel status register (STAT0,1) allows interrogation of ASCI communication, error and modem control signal status, and the enabling or disabling of ASCI interrupts.

RDRF: Receive Data Register Full (Bit 7). RDRF is set to 1 when an incoming data byte is loaded into an empty Rx FIFO. If a framing or parity error occurs, RDRF is still set and the receive data (which generated the error) is still loaded into the FIFO. RDRF is cleared to 0 by reading RDR and most recently received character in the FIFO from IOSTOP mode, during RESET and for ASCI0 if the DCD0 input is auto-enabled and is negated (High).

OVRN: Overrun Error (Bit 6). An overrun condition occurs if the receiver finishes assembling a character but the Rx FIFO is full so there is no room for the character. However, this status bit is not set until the most recent character received before the overrun becomes the oldest byte in the FIFO. This bit is cleared when software writes a 1 to the EFR bit in the CNTLA register. The bit may also be cleared by RESET in IOSTOP mode or ASCIO if the DCDO pin is auto enabled and is negated (High).

Note: When an overrun occurs, the receiver does not place the character in the shift register into the FIFO, nor any subsequent characters, until the most recent good character enters the top of the FIFO so that OVRN is set. Software then writes a 1 to EFR to clear it.

PE: Parity Error (Bit 5). A parity error is detected when parity checking is enabled. When the MOD1 bit in the

CNTLA register is 1, a character is assembled in which the parity does not match the PEO bit in the CNTLB register. However, this status bit is not set until or unless the error character becomes the oldest one in the Rx FIFO. PE is cleared when software writes a 1 to the EFR bit in the CNTRLA register. PE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

FE: Framing Error (Bit 4). A framing error is detected when the stop bit of a character is sampled as O/SPACE. However, this status bit is not set until/unless the error character becomes the oldest one in the Rx FIFO. FE is cleared when software writes a 1 to the EFR bit in the CNTLA register. FE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

REI: Receive Interrupt Enable (Bit 3). RIE should be set to 1 to enable ASCI receive interrupt requests. When RIE is 1, the Receiver requests an interrupt when a character is received and RDRF is set, but only if neither DMA channel requires its request-routing field to be set to receive data from this ASCI. That is, if SM1–0 are 11 and SAR17–16 are 10, or DIM1 is 1 and IAR17–16 are 10, then ASCI1 does not request an interrupt for RDRF. If RIE is 1, either ASCI requests an interrupt when OVRN, PE or FE is set, and ASCIO requests an interrupt when $\overline{\text{DCDO}}$ goes High. RIE is cleared to 0 by RESET.

DCDO: Data Carrier Detect (Bit 2 STATO). This bit is set to 1 when the pin is High. It is cleared to 0 on the first READ of STATO following the pin's transition from High to Low and during RESET. When bit 6 of the ASEXTO register is 0 to select auto-enabling, and the pin is negated (High), the receiver is reset and its operation is inhibited.

CTS1E: **Clear To Send (Bit 2 STAT1).** Channel 1 features an external $\overline{\text{CTS1}}$ input, which is multiplexed with the receive data pin RSX for the CSI/O. Setting this bit to 1 selects the CTS1 function; clearing the bit to 0 selects the RXS function.

TDRE: Transmit Data Register Empty (Bit 1). TDRE = 1 indicates that the TDR is empty and the next transmit data byte is written to TDR. After the byte is written to TDR, TDRE is cleared to 0 until the ASCI transfers the byte from TDR to the TSR and then TDRE is again set to 1. TDRE is set to 1 in IOSTOP mode and during RESET. On ASCIO, if the CTSO pin is auto-enabled in the ASEXTO register and the pin is High, TDRE is reset to 0.

TIE: Transmit Interrupt Enable (Bit 0). TIE should be set to 1 to enable ASCI transmit interrupt requests. If TIE = 1, an interrupt is requested when TDRE = 1. TIE is cleared to 0 during RESET.

ASCI TRANSMIT DATA REGISTERS

Register addresses 06H and 07H hold the ASCI transmit data for channel 0 and channel 1, respectively.

ASCI Transmit Data Registers Channel 0

Mnemonic TDR0 Address 06H

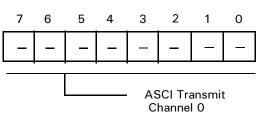
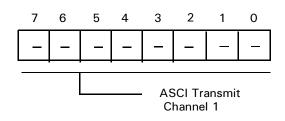
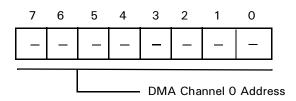


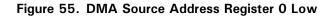
Figure 36. ASCI Register

ASCI Transmit Data Registers Channel 1

Mnemonic TDR1 Address 07H

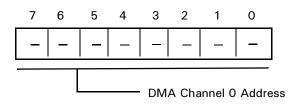



Figure 37. ASCI Register


DMA SOURCE ADDRESS REGISTER CHANNEL 0

The DMA Source Address Register Channel 0 specifies the physical source address for channel 0 transfers. The register contains 20 bits and can specify up to 1024 KB memory addresses or up to 64-KB I/O addresses. Channel 0 source can be memory, I/O, or memory mapped I/O. For I/O, bits 17–16 of this register identify the Request Handshake signal.

DMA Source Address Register, Channel 0 Low


Mnemonic SAR0L Address 20H

DMA Source Address Register, Channel 0 High

Mnemonic SAR0H Address 21H

DMA Source Address Register Channel OB

Mnemonic SAR0B Address 22H

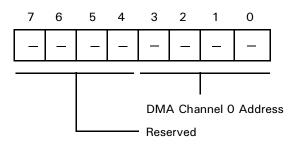


Figure 57. DMA Source Address Register 0B

If the source is in I/O space, bits 1–0 of this register select the DMA request signal for DMA0, as follows:

Bit 1 (A17)	Bit 0 (A16)	DMA Transfer Request
0	0	DREQ0 (external)
0	1	RDRF (ASCIO)
1	0	RDRF (ASCI1)
1	1	Reserved

DMA DESTINATION ADDRESS REGISTER CHANNEL 0

The DMA Destination Address Register Channel 0 specifies the physical destination address for channel 0 transfers. The register contains 20 bits and can specify up to 1024-KB memory addresses or up to 64-KB I/O addresses. Channel 0 destination can be memory, I/O, or memory mapped I/O. For I/O, the MS bits of this register identify the Request Handshake signal for channel 0.

DMA Destination Address Register Channel 0 Low

Mnemonic DAR0L Address 23H

Figure 58. DMA Destination Address Register Channel 0 Low

DMA Destination Address Register Channel 0 High

Mnemonic DAR0H Address 24H

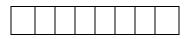


Figure 59. DMA Destination Address Register Channel 0 High

DMA Destination Address Register Channel 0B

Mnemonic DAR0B Address 25H

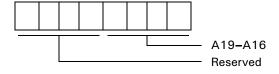
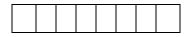


Figure 60. DMA Destination Address Register Channel 0B

If the DMA destination is in I/O space, bits 1–0 of this register select the DMA request signal for DMA0, as follows:

Bit 1 (A17)	Bit 0 (A16)	DMA Transfer Request
0	0	DREQ0 (external)
0	1	TDR0 (ASCI0)
1	0	TDR1 (ASCI1)
1	1	Not Used


DMA BYTE COUNT REGISTER CHANNEL 0

The DMA Byte Count Register Channel 0 specifies the number of bytes to be transferred. This register contains 16 bits and may specify up to 64-KB transfers. When one byte is transferred, the register is decremented by one. If n bytes should be transferred, n must be stored before the DMA operation.

Note: All DMA Count Register channels are undefined during RESET.

DMA Byte Count Register Channel 0 Low

Mnemonic BCR0L Address 26H

DMA Byte Count Register Channel 0 High

Mnemonic BCR0H Address 27H

Figure 62. DMA Byte Count Register 0 High

DMA Byte Count Register Channel 1 Low

Mnemonic BCR1L Address 2EH

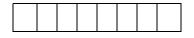


Figure 63. DMA Byte Count Register 1 Low

DMA Byte Count Register Channel 1 High

Mnemonic BCR1H Address 2FH

Figure 64. DMA Byte Count Register 1 High

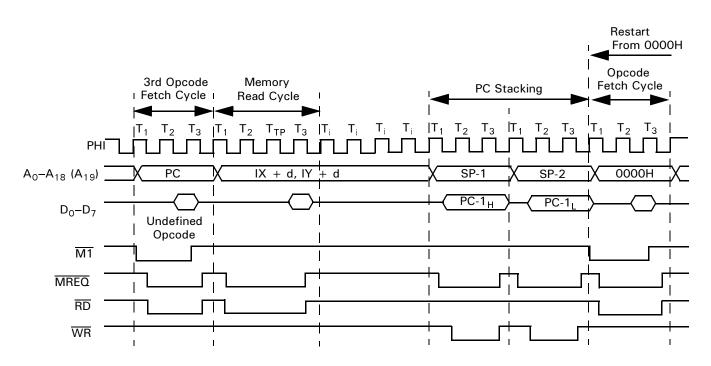


Figure 76. TRAP Timing-3rd Opcode Undefined

MMU COMMON BASE REGISTER

The Common Base Register (CBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit phys-

MMU Common Base Register

Mnemonic CBR Address 38H

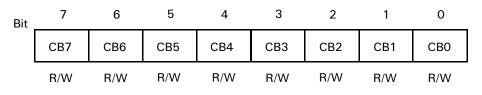


Figure 78. MMU Common Base Register (CBR: I/O Address = 38H)

0 during RESET.

MMU BANK BASE REGISTER

The Bank Base Register (BBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit physical ad-

MMU Bank Base Register

Mnemonic BBR Address 39H

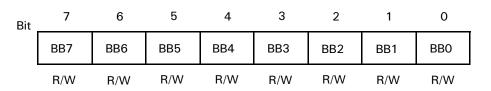


Figure 79. MMU Bank Base Register (BBR: I/O Address = 39H)

MMU COMMON/BANK AREA REGISTER

The Common/Bank Area Register (CBAR) specifies boundaries within the Z8S180/Z8L180 64-KB logical address space for up to three areas; Common Area), Bank Area and Common Area 1.

ical address for Common Area 1 accesses. All bits of CBR

dress for Bank Area accesses. All bits of BBR are reset to

are reset to 0 during RESET.

MMU Common/Bank Area Register

Mnemonic CBAR Address 3AH

Bit	7	6	5	4	3	2	1	0	
	CA3	CA2	CA1	CA0	BA3	BA2	BA1	BA0	
-	R/W								

Figure 80. MMU Common/Bank Area Register (CBAR: I/O Address = 3AH)

I/O CONTROL REGISTER

The I/O Control Register (ICR) allows relocation of the internal I/O addresses. ICR also controls the enabling and disabling of IOSTOP mode (Figure 83).

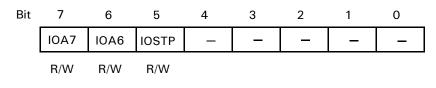
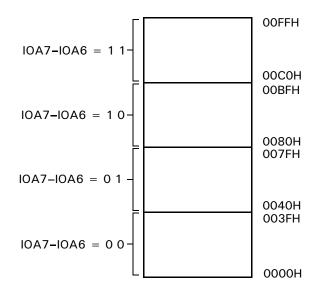
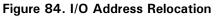
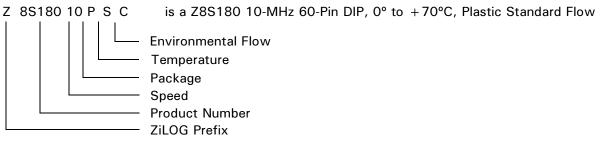




Figure 83. I/O Control Register (ICR: I/O Address = 3FH)

IOA7, 6: I/O Address Relocation (Bits 7,6). IOA7 and IOA6 relocate internal I/O as indicated in Figure 84.

Note: The high-order 8 bits of 16-bit internal I/O address are always 0. IOA7 and IOA6 are cleared to 0 during RESET.


IOSTP: IOSTOP Mode (Bit 5). IOSTOP mode is enabled when IOSTP is set to 1. Normal I/O operation resumes when IOSTP is reprogrammed or RESET to 0.

ORDERING INFORMATION

Codes	
Speed	10 = 10 MHz
	20 = 20 MHz
	33 = 33 MHz
Package	P = 60-Pin Plastic DIP
	V = 68-Pin PLCC
	F = 80-Pin QFP
Temperature	$S = 0^{\circ}C \text{ to } + 70^{\circ}C$
	$E = -40^{\circ}C \text{ to } +85^{\circ}C$
Environmental	C = Plastic Standard

For fast results, contact your local ZiLOG sales office for assistance in ordering the part(s) required.

Example:

Pre-Characterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or non-conformance

©2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. with some aspects of the document may be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery may be uncertain at times, due to start-up yield issues.

Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

ZiLOG, Inc. 910 East Hamilton Avenue, Suite 110 Campbell, CA 95008 Telephone (408) 558-8500 FAX (408) 558-8300 Internet: <u>http://www.zilog.com</u>