Welcome to **E-XFL.COM** #### **Understanding Embedded - Microprocessors** Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications. ## **Applications of Embedded - Microprocessors** Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in | Details | | |---------------------------------|--| | Product Status | Obsolete | | Core Processor | Z8S180 | | Number of Cores/Bus Width | 1 Core, 8-Bit | | Speed | 10MHz | | Co-Processors/DSP | - | | RAM Controllers | DRAM | | Graphics Acceleration | No | | Display & Interface Controllers | - | | Ethernet | - | | SATA | - | | USB | - | | Voltage - I/O | 5.0V | | Operating Temperature | 0°C ~ 70°C (TA) | | Security Features | - | | Package / Case | 68-LCC (J-Lead) | | Supplier Device Package | 68-PLCC | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/z8s18010vsg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **GENERAL DESCRIPTION** (Continued) Power connections follow the conventional descriptions below: | Connection | Circuit | Device | | |------------|-----------------|-----------------|--| | Power | V _{CC} | V _{DD} | | | Ground | GND | V _{SS} | | Figure 1. Z8S180/Z8L180 Functional Block Diagram # PIN IDENTIFICATION (Continued) Table 1. Z8S180/Z8L180 Pin Identification (Continued) | OFP PLCC DIP Function Secondary Function 13 19 17 A4 14 NC 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 19 24 22 A9 | | |--|--| | 14 NC 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 | | | 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 | | | 16 21 19 A6 17 22 20 A7 18 23 21 A8 | | | 17 22 20 A7
18 23 21 A8 | | | 18 23 21 A8 | | | | | | 19 24 22 A9 | | | | | | 20 25 23 A10 | | | 21 26 24 A11 | | | 22 NC | | | 23 NC | | | 24 27 25 A12 | | | 25 28 26 A13 | | | 26 29 27 A14 | | | 27 30 28 A15 | | | 28 31 29 A16 | | | 29 32 30 A17 | | | 30 NC | | | 31 33 31 A18 T _{OUT} Bit 2 or Bit 3 of TCR | | | 32 34 32 V _{DD} | | | 33 35 A19 | | | 34 36 33 V _{SS} | | | 35 37 34 D0 | | | 36 38 35 D1 | | | 37 39 36 D2 | | | 38 40 37 D3 | | | 39 41 38 D4 | | | 40 42 39 D5 | | | 41 43 40 D6 | | | 42 NC | | | 43 NC | | | 44 44 41 D7 | | | 45 45 42 <u>RTSO</u> | | | 46 46 43 <u>CTSO</u> | | | 47 47 44 <u>DCD0</u> | | | 48 48 45 TXA0 | | | 49 49 46 RXA0 | | | 50 50 47 CKAO DREQO Bit 3 or Bit 5 of DMODE | | | 51 NC | | | 52 51 48 TXA1 | | Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes (Continued) | Pin Num | ber and Packa | age Type | | | | Pin Status | | |---------|---------------|----------|---------------------|-----------------------|-------|------------|-------| | QFP | PLCC | DIP | Default
Function | Secondary
Function | RESET | BUSACK | SLEEF | | 39 | 41 | 38 | D4 | | 3T | 3T | 3T | | 40 | 42 | 39 | D5 | | 3T | 3T | 3T | | 41 | 43 | 40 | D6 | | 3T | 3T | 3T | | 42 | | | NC | | | | | | 43 | | | NC | | | | | | 44 | 44 | 41 | D7 | | 3T | 3T | 3T | | 45 | 45 | 42 | RTS0 | | High | OUT | High | | 46 | 46 | 43 | CTS0 | | IN | OUT | IN | | 47 | 47 | 44 | DCD0 | | IN | IN | IN | | 48 | 48 | 45 | TXA0 | | High | OUT | OUT | | 49 | 49 | 46 | RXA0 | | IN | IN | IN | | 50 | 50 | 47 | CKA0 | | 3T | I/O | I/O | | | | | DREQ0 | | N/A | IN | IN | | 51 | | | NC | | | | | | 52 | 51 | 48 | TXA1 | | High | OUT | OUT | | 53 | 52 | | TEST | | | | | | 54 | 53 | 49 | RXA1 | | IN | IN | IN | | 55 | 54 | 50 | CKA1 | | 3T | I/O | I/O | | | | | TEND0 | | N/A | High | High | | 56 | 55 | 51 | TXS | | High | OUT | OUT | | 57 | 56 | 52 | RXS | | IN | IN | IN | | | | | CTS1 | | N/A | IN | IN | | 58 | 57 | 53 | CKS | | 3T | I/O | I/O | | 59 | 58 | 54 | DREQ1 | | IN | 3T | IN | | 60 | 59 | 55 | TEND1 | | High | OUT | High | | 61 | 60 | 56 | HALT | | High | High | Low | | 62 | | | NC | | | | | | 63 | | | NC | | | | | | 64 | 61 | 57 | RFSH | | High | OUT | High | | 65 | 62 | 58 | ĪORQ | | High | 3T | High | | 66 | 63 | 59 | MREQ | | High | 3T | High | | 67 | 64 | 60 | Е | | Low | OUT | OUT | | 68 | 65 | 61 | M1 | | High | High | High | | 69 | 66 | 62 | WR | | High | 3T | High | | 70 | 67 | 63 | RD | | High | 3T | High | | 71 | 68 | 64 | PHI | | OUT | OUT | OUT | | 72 | 1 | 1 | V _{SS} | | GND | GND | GND | | 73 | 2 | | V _{SS} | | GND | GND | GND | | 74 | 3 | 2 | XTAL | | OUT | OUT | OUT | | 75 | | | NC | | | | | ### PIN DESCRIPTIONS **A0–A19** Address Bus (Output, 3-state). A0–A19 form a 20-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 1 MB) and I/O data bus exchanges (up to 64 KB). The address bus enters a high–impedance state during reset and external bus acknowledge cycles. Address line A18 is multiplexed with the output of PRT channel 1 (T_{OUT}, selected as address output on reset), and address line A19 is not available in DIP versions of the Z8S180. **BUSACK**. Bus Acknowledge (Output, active Low). BUSACK indicates that the requesting device, the MPU address and data bus, and some control signals enter their high-impedance state. **BUSREQ.** Bus Request (Input, active Low). This input is used by external devices (such as DMA controllers) to request access to the system bus. This request demands a higher priority than $\overline{\text{NMI}}$ and is always recognized at the end of the current machine cycle. This signal stops the CPU from executing further instructions, places addresses, data buses, and other control signals into the high-impedance state. **CKAO**, **CKA1**. Asynchronous Clock 0 and 1 (bidirectional). When in output mode, these pins are the transmit and receive clock outputs from the ASCI baud rate generators. When in input mode, these pins serve as the external clock inputs for the ASCI baud rate generators. CKAO is multiplexed with $\overline{\text{DREQO}}$, and CKA1 is multiplexed with $\overline{\text{TENDO}}$. **CKS.** Serial Clock (bidirectional). This line is the clock for the CSI/O channel. **CTS0**-**CTS1**. Clear to send 0 and 1 (Inputs, active Low). These lines are modem control signals for the ASCI channels. CTS1 is multiplexed with RXS. **D0–D7.** Data Bus = (bidirectional, 3-state). D0–D7 constitute an 8-bit bidirectional data bus, used for the transfer of information to and from I/O and memory devices. The data bus enters the high-impedance state during reset and external bus acknowledge cycles. **DCDO.** Data Carrier Detect 0 (Input, active Low); a programmable modem control signal for ASCI channel 0. DREQO, DREQT. DMA Request 0 and 1 (Input, active Low). DREQ is used to request a DMA transfer from one of the on-chip DMA channels. The DMA channels monitor these inputs to determine when an external device is ready for a READ or WRITE operation. These inputs can be programmed to be either level or edge sensed. DREQO is multiplexed with CKAO. **E.** Enable Clock (Output). This pin functions as a synchronous, machine-cycle clock output during bus transactions. **EXTAL.** External Clock Crystal (Input). Crystal oscillator connections. An external clock can be input to the Z8S180/Z8L180 on this pin when a crystal is not used. This input is Schmitt triggered. HALT. HALT/SLEEP (Output, active Low). This output is asserted after the CPU executes either the HALT or SLEEP instruction and is waiting for either a nonmaskable or a maskable interrupt before operation can resume. It is also used with the M1 and ST signals to decode the status of the CPU machine cycle. **INTO.** Maskable Interrupt Request 0 (Input, active Low). This signal is generated by external I/O devices. The CPU honors these requests at the end of the current instruction cycle as long as the NMI and BUSREQ signals are inactive. The CPU acknowledges this interrupt request with an interrupt acknowledge cycle. During this cycle, both the M1 and \overline{IORQ} signals become active. **INT1**, **INT2**. Maskable Interrupt Request 1 and 2 (Inputs, active Low). This signal is generated by external I/O devices. The CPU honors these requests at the end of the current instruction cycle as long as the NMI, BUSREQ, and INTO signals are inactive. The CPU acknowledges these requests with an interrupt acknowledge cycle. Unlike the acknowledgment for INTO, neither the MT or IORQ signals become active during this cycle. $\overline{\text{IORQ}}$. I/O Request (Output, active Low, 3-state). $\overline{\text{IORQ}}$ indicates that the address bus contains a valid I/O address for an I/O READ or I/O WRITE operation. $\overline{\text{IORQ}}$ is also generated, along with $\overline{\text{M1}}$, during the acknowledgment of the $\overline{\text{INTO}}$ input signal to indicate that an interrupt response vector can be place onto the data bus. This signal is analogous to the $\overline{\text{IOE}}$ signal of the Z64180. M1. Machine Cycle 1 (Output, active Low). Together with MREQ, M1 indicates that the current cycle is the opcodefetch cycle of instruction execution. Together with IORQ, M1 indicates that the current cycle is for interrupt acknowledgment. It is also used with the HALT and ST signal to decode the status of the CPU machine cycle. This signal is analogous to the LIR signal of the Z64180. MREQ. Memory Request (Output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory READ or memory WRITE operation. This signal is analogous to the ME signal of Z64180. **NMI.** Nonmaskable Interrupt (Input, negative edge triggered). NMI demands a higher priority than INT and is al- ### **OPERATION MODES** (Continued) The Z8S180/Z8L180 leaves HALT mode in response to: - Low on RESET - Interrupt from an enabled on-chip source - External request on NMI - Enabled external request on INTO, INT1, or INT2 In case of an interrupt, the return address is the instruction following the HALT instruction. The program can either branch back to the HALT instruction to wait for another interrupt or can examine the new state of the system/application and respond appropriately. Figure 13. HALT Timing SLEEP Mode. This mode is entered by keeping the IOSTOP bit (ICR5) and bits 3 and 6 of the CPU Control Register (CCR3, CCR6) all zero and executing the SLP instruction. The oscillator and PHI output continue operating, but are blocked from the CPU core and DMA channels to reduce power consumption. DRAM refresh stops, but interrupts and granting to an external Master can occur. Except when the bus is granted to an external Master, A19–0 and all control signals except HALT are maintained High. HALT is Low. I/O operations continue as before the SLP instruction, except for the DMA channels. The Z8S180/Z8L180 leaves SLEEP mode in response to a Low on RESET, an interrupt request from an on-chip source, an external request on $\overline{\text{NMI}}$, or an external request on $\overline{\text{INTO}}$, $\overline{\text{INT1}}$, or $\overline{\text{INT2}}$. If an interrupt source is individually disabled, it cannot bring the Z8S180/Z8L180 out of SLEEP mode. If an interrupt source is individually enabled, and the IEF bit is 1 so that interrupts are globally enabled (by an EI instruction), the highest priority active interrupt occurs with the return address being the instruction after the SLP instruction. If an interrupt source is individually enabled, but the IEF bit is 0 so that interrupts are globally disabled (by a DI instruction), the Z8S180/Z8L180 leaves SLEEP mode by simply executing the following instruction(s). ing the bus to an external Master during STANDBY mode, when the BREXT bit in the CPU Control Register (CCR5) is 1. As described previously for SLEEP and IDLE modes, when the MPU leaves STANDBY mode due to NMI Low or an enabled INTO-INT2 Low when the IEF, flag is 1 due to an IE instruction, it starts by performing the interrupt with the return address being that of the instruction following the SLP instruction. If the Z8S180/Z8L180 leaves STANDBY mode due to an external interrupt request that's enabled in the INT/TRAP Control Register, but the IEF, bit is 0 due to a DI instruction, the processor restarts by executing the instruction(s) following the SLP instruction. If INTO, or INT1 or INT2 goes inactive before the end of the clock stabilization delay, the Z8S180/Z8L180 stays in STANDBY mode. Figure 17 indicates the timing for leaving STANDBY mode due to an interrupt request. **Note:** The Z8S180/Z8L180 takes either 64 or 2¹⁷ (131,072) clocks to restart, depending on the CCR3 bit. Figure 17. Z8S180/Z8L180 STANDBY Mode Exit Due to External Interrupt While the Z8S180/Z8L180 is in STANDBY mode, it grants the bus to an external Master if the BREXT bit (CCR5) is 1. Figure 18 indicates the timing of this sequence. The device takes 64 or 2^{17} (131,072) clock cycles to grant the bus de- pending on the CCR3 bit. The latter (not the QUICK RE-COVERY) case may be prohibitive for many demand-driven external Masters. If so, QUICK RECOVERY or IDLE mode can be used. ## DC CHARACTERISTICS—Z8S180 Table 6. Z8S180 DC Characteristics $V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$ | Symbol | Item | Condition | Min | Тур | Max | Unit | | |------------------------------|---|--|----------------------|-----|-------------------------|------|--| | V _{IH1} | Input H Voltage
RESET, EXTAL, NMI | | V _{DD} -0.6 | - | V _{DD}
+0.3 | V | | | V _{IH2} | Input H Voltage
Except RESET, EXTAL, NMI | | 2.0 | _ | V _{DD}
+0.3 | V | | | V _{IH3} | Input H Voltage
CKS, CKA0, CKA1 | | 2.4 | _ | V _{DD}
+0.3 | V | | | V _{IL1} | Input L Voltage
RESET, EXTAL, NMI | | -0.3 | | 0.6 | V | | | V _{IL2} | Input L Voltage
Except RESET, EXTAL, NMI | | -0.3 | _ | 0.8 | V | | | V _{OH} | Outputs H Voltage | $I_{OH} = -200 \mu A$ | 2.4 | _ | _ | V | | | | All outputs | $I_{OH} = -20 \mu\text{A}$ | V _{DD} -1.2 | _ | _ | | | | V _{OL} | Outputs L Voltage
All outputs | $I_{OL} = 2.2 \text{ mA}$ | _ | _ | 0.45 | V | | | I _{IL} | Input Leakage
Current All Inputs
Except XTAL, EXTAL | $V_{IN} = 0.5 \sim V_{DD} - 0.5$ | _ | _ | 1.0 | μΑ | | | I _{TL} | Three State Leakage
Current | $V_{IN} = 0.5 \sim V_{DD} - 0.5$ | _ | _ | 1.0 | μΑ | | | I _{DD} ¹ | Power Dissipation | F = 10 MHz | _ | 25 | 60 | mA | | | | (Normal Operation) | 20 | | 30 | 50 | | | | | | 33 | | 60 | 100 | | | | | Power Dissipation | F = 10 MHz | _ | 2 | 5 | | | | | (SYSTEM STOP mode) | 20 | | 3 | 6 | | | | | | 33 | | 5 | 9 | | | | C _P | Pin Capacitance | $V_{ N} = O_V$, $f = 1 \text{ MHz}$
$T_A = 25^{\circ}\text{C}$ | _ | _ | 12 | pF | | ## Note: ^{1.} $V_{IHmin} = V_{DD}$ -1.0V, $V_{ILmax} = 0.8V$ (All output terminals are at NO LOAD.) $V_{DD} = 5.0V$. # AC CHARACTERISTICS—Z8S180 (Continued) Table 8. Z8S180 AC Characteristics (Continued) $V_{DD}=5V\pm10\%$ or $V_{DD}=3.3V\pm10\%$; 33-MHz Characteristics Apply Only to 5V Operation | | | | Z8S180 | _20 MHz | Z8S180 | -33 MHz | | |--------|-------------------|---|--------|-----------------------------|--------|----------------------------|------| | Number | Symbol | Item | Min | Max | Min | Max | Unit | | 32 | t _{INTH} | INT Hold Time from PHI Fall | 10 | _ | 10 | _ | ns | | 33 | t _{NMIW} | NMI Pulse Width | 35 | _ | 25 | _ | ns | | 34 | t _{BRS} | BUSREQ Set-up Time to PHI Fall | 10 | _ | 10 | _ | ns | | 35 | t _{BRH} | BUSREQ Hold Time from PHI Fall | 10 | _ | 10 | | ns | | 36 | t _{BAD1} | PHI Rise to BUSACK Fall Delay | _ | 25 | _ | 15 | ns | | 37 | t _{BAD2} | PHI Fall to BUSACK Rise Delay | _ | 25 | _ | 15 | ns | | 38 | t _{BZD} | PHI Rise to Bus Floating Delay Time | | 40 | _ | 30 | ns | | 39 | t _{MEWH} | MREQ Pulse Width (High) | 35 | _ | 25 | _ | ns | | 40 | t _{MEWL} | MREQ Pulse Width (Low) | 35 | _ | 25 | _ | ns | | 41 | t _{RFD1} | PHI Rise to RFSH Fall Delay | _ | 20 | _ | 15 | ns | | 42 | t _{RFD2} | PHI Rise to RFSH Rise Delay | _ | 20 | _ | 15 | ns | | 43 | t _{HAD1} | PHI Rise to HALT Fall Delay | _ | 15 | _ | 15 | ns | | 44 | t _{HAD2} | PHI Rise to HALT Rise Delay | _ | 15 | _ | 15 | ns | | 45 | t _{DRQS} | DREQ1 Set-up Time to PHI Rise | 20 | _ | 15 | _ | ns | | 46 | t _{DRQH} | DREQ1 Hold Time from PHI Rise | 20 | _ | 15 | _ | ns | | 47 | t _{TED1} | PHI Fall to TENDi Fall Delay | _ | 25 | _ | 15 | ns | | 48 | t _{TED2} | PHI Fall to TENDi Rise Delay | _ | 25 | _ | 15 | ns | | 49 | t _{ED1} | PHI Rise to E Rise Delay | _ | 30 | _ | 15 | ns | | 50 | t _{ED2} | PHI Fall or Rise to E Fall Delay | _ | 30 | _ | 15 | ns | | 51 | P _{WEH} | E Pulse Width (High) | 25 | _ | 20 | _ | ns | | 52 | P _{WEL} | E Pulse Width (Low) | 50 | _ | 40 | _ | ns | | 53 | t _{Er} | Enable Rise Time | _ | 10 | _ | 10 | ns | | 54 | t _{Ef} | Enable Fall Time | _ | 10 | _ | 10 | ns | | 55 | t _{TOD} | PHI Fall to Timer Output Delay | _ | 75 | _ | 50 | ns | | 56 | t _{STDI} | CSI/O Transmit Data Delay Time (Internal Clock Operation) | _ | 2 | _ | 2 | tcyc | | 57 | t _{STDE} | CSI/O Transmit Data Delay Time (External Clock Operation) | _ | 7.5 t _{CYC}
+75 | - | 75 t _{CYC}
+60 | ns | | 58 | t _{SRSI} | CSI/O Receive Data Set-up Time (Internal Clock Operation) | 1 | _ | 1 | _ | tcyc | | 59 | t _{SRHI} | CSI/O Receive Data Hold Time (Internal Clock Operation) | 1 | _ | 1 | _ | tcyc | | 60 | t _{SRSE} | CSI/O Receive Data Set-up Time (External Clock Operation) | 1 | _ | 1 | _ | tcyc | | 61 | t _{SRHE} | CSI/O Receive Data Hold Time (External Clock Operation) | 1 | — | 1 | _ | tcyc | | 62 | t _{RES} | RESET Set-up Time to PHI Fall | 40 | _ | 25 | _ | ns | Figure 21. CPU Timing (INTO Acknowledge Cycle, Refresh Cycle, BUS RELEASE Mode, HALT Mode, SLEEP Mode, SYSTEM STOP Mode) # TIMING DIAGRAMS (Continued) Figure 27. Timer Output Timing Figure 28. SLP Execution Cycle #### **CPU CONTROL REGISTER** **CPU Control Register (CCR).** This register controls the basic clock rate, certain aspects of Power-Down modes, and output drive/low-noise options (Figure 31). Figure 31. CPU Control Register (CCR) Address 1FH **Bit 7.** Clock Divide Select. If this bit is 0, as it is after a RE-SET, the Z8S180/Z8L180 divides the frequency on the XTAL pin(s) by two to obtain its Master clock PHI. If this bit is programmed as 1, the part uses the XTAL frequency as PHI without division. If an external oscillator is used in divide-by-one mode, the minimum pulse width requirement provided in the AC Characteristics must be satisfied. **Bits 6 and 3.** STANDBY/IDLE Control. When these bits are both 0, a SLP instruction makes the Z8S180/Z8L180 enter SLEEP or SYSTEM STOP mode, depending on the IOSTOP bit (ICR5). When D6 is 0 and D3 is 1, setting the IOSTOP bit (ICR5) and executing a SLP instruction puts the Z8S180/Z8L180 into IDLE mode in which the on-chip oscillator runs, but its output is blocked from the rest of the part, including PHI out. When D6 is 1 and D3 is 0, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into STANDBY mode, in which the on-chip oscillator is stopped and the part allows 2¹⁷ (128K) clock cycles for the oscillator to stabilize when it restarts. When D6 and D3 are both 1, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into QUICK RE-COVERY STANDBY mode, in which the on-chip oscillator is stopped, and the part allows only 64 clock cycles for the oscillator to stabilize when it restarts. The latter section, HALT and LOW POWER modes, describes the subject more fully. **Bit 5 BREXT.** This bit controls the ability of the Z8S180/Z8L180 to honor a bus request during STANDBY mode. If this bit is set to 1 and the part is in STANDBY mode, a BUSREQ is honored after the clock stabilization timer is timed out. **Bit 4 LNPHI.** This bit controls the drive capability on the PHI Clock output. If this bit is set to 1, the PHI Clock output is reduced to 33 percent of its drive capability. #### **ASCI RECEIVE REGISTER** Register addresses 08H and 09H hold the ASCI receive data for channel 0 and channel 1, respectively. ### **ASCI Receive Register Channel 0** #### Mnemonic RDR0 Address 08H Figure 38. ASCI Receive Register Channel 0 # **ASCI Receive Register Channel 1** #### Mnemonic RDR1 Address 09H Figure 39. ASCI Receive Register Channel 1 #### CSI/O CONTROL/STATUS REGISTER The CSI/O Control/Status Register (CNTR) is used to monitor CSI/O status, enable and disable the CSI/O, enable and disable interrupt generation, and select the data clock speed and source. Figure 40. CSI/O Control Register (CNTR: I/O Address = 000AH) **EF:** End Flag (Bit 7). EF is set to 1 by the CSI/O to indicate completion of an 8-bit data transmit or receive operation. If End Interrupt Enable (EIE) bit = 1 when EF is set to 1, a CPU interrupt request is generated. Program access of TRDR only occurs if EF = 1. The CSI/O clears EF to 0 when TRDR is read or written. EF is cleared to 0 during RESET and IOSTOP mode. **EIE:** End Interrupt Enable (Bit 6). EIE is set to 1 to generate a CPU interrupt request. The interrupt request is inhibited if EIE is reset to 0. EIE is cleared to 0 during RESET. **RE:** Receive Enable (Bit 5). A CSI/O receive operation is started by setting RE to 1. When RE is set to 1, the data clock is enabled. In internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted in on the RXS pin in synchronization with the (internal or external) data clock. After receiving 8 bits of data, the CSI/O automatically clears RE to 0, EF is set to 1, and an interrupt (if enabled by EIE = 1) is generated. RE and TE are never both set to 1 at the same time. RE is cleared to 0 during RESET and IOSTOP mode. **TE: Transmit Enable (Bit 4).** A CSI/O transmit operation is started by setting TE to 1. When TE is set to 1, the data clock is enabled. When in internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted out on the TXS pin synchronous with the (internal or external) data clock. After transmitting 8 bits of data, the CSI/O automatically clears TE to 0, sets EF to 1, and requests an interrupt if enabled by EIE = 1. TE and RE are ### DMA BYTE COUNT REGISTER CHANNEL 0 The DMA Byte Count Register Channel 0 specifies the number of bytes to be transferred. This register contains 16 bits and may specify up to 64-KB transfers. When one byte is transferred, the register is decremented by one. If n bytes should be transferred, n must be stored before the DMA operation. **Note:** All DMA Count Register channels are undefined during RESET. # **DMA Byte Count Register Channel 0 Low** Mnemonic BCR0L Address 26H Figure 61. DMA Byte Count Register 0 Low ## **DMA Byte Count Register Channel 0 High** Mnemonic BCR0H Address 27H Figure 62. DMA Byte Count Register 0 High # **DMA Byte Count Register Channel 1 Low** Mnemonic BCR1L Address 2EH Figure 63. DMA Byte Count Register 1 Low # **DMA Byte Count Register Channel 1 High** Mnemonic BCR1H Address 2FH Figure 64. DMA Byte Count Register 1 High ### **DMA MEMORY ADDRESS REGISTER CHANNEL 1** The DMA Memory Address Register Channel 1 specifies the physical memory address for channel 1 transfers. The address may be a destination or a source memory location. The register contains 20 bits and may specify up to 1024 KB memory addresses. # **DMA Memory Address Register, Channel 1L** Address 28H **Mnemonic MAR1L** Figure 65. DMA Memory Address Register, Channel 1L ## **DMA Memory Address Register, Channel 1H** Mnemonic MAR1H Address 29H Figure 66. DMA Memory Address Register, Channel 1H # **DMA Memory Address Register, Channel 1B** Mnemonic MAR1B Address 2AH Figure 67. DMA Memory Address Register, Channel 1B #### INTERRUPT VECTOR LOW REGISTER Bits 7–5 of the Interrupt Vector Low Register (I_L) are used as bits 7–5 of the synthesized interrupt vector during interrupts for the $\overline{INT1}$ and $\overline{INT2}$ pins and for the DMAs, ASCIs, PRTs, and CSI/O. These three bits are cleared to 0 during RESET (Figure 74). ### **Interrupt Vector Low Register** Mnemonic: IL Address 33H Figure 74. Interrupt Vector Low Register (IL: I/O Address = 33H) ### INT/TRAP CONTROL REGISTER This register is used in handling TRAP interrupts and to enable or disable Maskable Interrupt Level 0 and the $\overline{\text{INT1}}$ and $\overline{\text{INT2}}$ pins. # **INT/TRAP Control Register** Mnemonics ITC Address 34H **TRAP (Bit 7).** This bit is set to 1 when an undefined opcode is fetched. TRAP can be reset under program control by writing it with a 0; however, TRAP cannot be written with 1 under program control. TRAP is reset to 0 during RESET. **UFO: Undefined Fetch Object (Bit 6).** When a TRAP interrupt occurs, the contents of UFO allow the starting address of the undefined instruction to be determined. This interrupt is necessary because the TRAP may occur on either the second or third byte of the opcode. UFO allows the stacked PC value to be correctly adjusted. If UFO = 0, the first opcode should be interpreted as the stacked PC-1. If UFO = 1, the first opcode address is stacked PC-2. UFO is Read-Only. ITE2, 1, 0: Interrupt Enable 2, 1, 0 (Bits 2–0). ITE2 and ITE1 enable and disable the external interrupt inputs INT2 and INT1, respectively. ITEO enables and disables interrupts from: - ESCC - Bidirectional Centronics controller - CTCs - External interrupt input INTO A 1 in a bit enables the corresponding interrupt level while a 0 disables it. A RESET sets ITEO to 1 and clears ITE1 and ITE2 to 0. **TRAP** Interrupt. The Z8S180/Z8L180 generates a TRAP sequence when an undefined opcode fetch occurs. This feature can be used to increase software reliability, implement an *extended* instruction set, or both. TRAP may occur during opcode fetch cycles and also if an undefined opcode is fetched during the interrupt acknowledge cycle for INTO when Mode O is used. When a TRAP sequence occurs, the Z8S180/Z8L180: - 1. Sets the TRAP bit in the Interrupt TRAP/Control (ITC) register to 1. - 2. Saves the current Program Counter (PC) value, reflecting the location of the undefined opcode, on the stack. - 3. Resumes execution at logical address 0. **Note:** If logical address 0000H is mapped to physical address 00000H, the vector is the same as for RESET. In this case, testing the TRAP bit in ITC reveals whether the restart at physical address 00000H was caused by RESET or TRAP. Figure 76. TRAP Timing—3rd Opcode Undefined #### REFRESH CONTROL REGISTER ### Mnemonic RCR Address 36H Figure 77. Refresh Control Register (RCR: I/O Address = 36H) The Refresh Control Register (RCR) specifies the interval and length of refresh cycles, while enabling or disabling the refresh function. **REFE:** Refresh Enable (Bit 7). REFE = 0 disables the refresh controller, while REFE = 1 enables refresh cycle insertion. REFE is set to 1 during RESET. **REFW:** Refresh Wait (Bit 6). REFW = 0 causes the refresh cycle to be two clocks in duration. REFW = 1 causes the refresh cycle to be three clocks in duration by adding a refresh wait cycle (TRW). REFW is set to 1 during RESET. **CYC1, 0: Cycle Interval (Bit 1,0).** CYC1 and CYC0 specify the interval (in clock cycles) between refresh cycles. When dynamic RAM requires 128 refresh cycles every 2 ms (or 256 cycles in every 4 ms), the required refresh interval is less than or equal to 15.625 μs. Thus, the underlined values indicate the best refresh interval depending on CPU clock frequency. CYC0 and CYC1 are cleared to 0 during RESET (see Table 18). Table 18. DRAM Refresh Intervals | | | | | | Time Interval | | | |------|------|--------------------|-------------------|--------------------|-----------------|-----------------|-----------------| | CYC1 | CYC0 | Insertion Interval | PHI: 10 MHz | 8 MHz | 6 MHz | 4 MHz | 2.5 MHz | | 0 | 0 | 10 states | (1.0 <i>µ</i> s)* | (1.25 <i>µ</i> s)* | 1.66 <i>μ</i> s | 2.5 <i>µ</i> s | 4.0 <i>μ</i> s | | 0 | 1 | 20 states | (2.0 µs)* | (2.5 <i>μ</i> s)* | 3.3 <i>μ</i> s | 5.0 <i>μ</i> s | 8.0 <i>μ</i> s | | 1 | 0 | 40 states | (4.0 μs)* | (5.0 <i>μ</i> s)* | 6.6 <i>μ</i> s | 10.0 <i>μ</i> s | 16.0 <i>μ</i> s | | 1 | 1 | 80 states | (8.0 µs)* | (10.0 µs)* | 13.3 <i>μ</i> s | 20.0 <i>μ</i> s | 32.0 <i>μ</i> s | Note: *calculated interval. Refresh Control and Reset. After RESET, based on the initialized value of RCR, refresh cycles occur with an interval of 10 clock cycles and be 3 clock cycles in duration. ### **Dynamic RAM Refresh Operation** - 1. Refresh Cycle insertion is stopped when the CPU is in the following states: - a. During RESET - b. When the bus is released in response to BUSREQ - c. During SLEEP mode - d. During \overline{WAIT} states - 2. Refresh cycles are suppressed when the bus is released in response to BUSREQ. However, the refresh timer continues to operate. The time at which the first refresh cycle occurs after the Z8S180/Z8L180 reacquires the bus depends on the refresh timer. This cycle offers no timing relationship with the bus exchange. - 3. Refresh cycles are suppressed during SLEEP mode. If a refresh cycle is requested during SLEEP mode, the refresh cycle request is internally latched (until replaced with the next refresh request). The latched refresh cycle is inserted at the end of the first machine cycle after SLEEP mode is exited. After this initial cycle, the time at which the next refresh cycle occurs depends on the refresh time and offers no relationship with the exit from SLEEP mode. - 4. The refresh address is incremented by one for each successful refresh cycle, not for each refresh. Thus, independent of the number of missed refresh requests, each refresh bus cycle uses a refresh address incremented by one from that of the previous refresh bus cycles. ## **PACKAGE INFORMATION** Figure 85. 64-Pin DIP Package Diagram Figure 86. 80-Pin QFP Package Diagram Figure 87. 68-Pin PLCC Package Diagram #### ORDERING INFORMATION | Codes | | |---------------|---| | Speed | 10 = 10 MHz | | | 20 = 20 MHz | | | 33 = 33 MHz | | Package | P = 60-Pin Plastic DIP | | | V = 68-Pin PLCC | | | F = 80-Pin QFP | | Temperature | $S = 0^{\circ}C \text{ to } +70^{\circ}C$ | | | E = -40 °C to $+85$ °C | | Environmental | C = Plastic Standard | For fast results, contact your local ZiLOG sales office for assistance in ordering the part(s) required. #### Example: #### **Pre-Characterization Product** The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or non-conformance with some aspects of the document may be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery may be uncertain at times, due to start-up yield issues. ©2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights. ZiLOG, Inc. 910 East Hamilton Avenue, Suite 110 Campbell, CA 95008 Telephone (408) 558-8500 FAX (408) 558-8300 Internet: http://www.zilog.com