E·XFL

Zilog - Z8S18020VSC00TR Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	Z8S180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	20MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8s18020vsc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Number and Package Type **Pin Status** Default Secondary QFP PLCC DIP Function Function RESET BUSACK SLEEP D4 39 41 38 3T 3T 3T 40 42 39 D5 ЗT 3T ЗT 41 43 40 D6 ЗT ЗT ЗT 42 NC NC 43 D7 44 ЗT ЗT ЗT 44 41 45 45 42 **RTSO** OUT High High 46 46 43 CTS0 OUT IN IN DCD0 47 47 44 IN IN IN OUT OUT 48 48 45 TXA0 High 49 49 46 RXA0 IN IN IN 47 ЗT I/O I/O 50 50 CKA0 **DREQ0** N/A IN IN 51 NC 52 51 48 TXA1 OUT OUT High 52 TEST 53 53 49 RXA1 IN IN IN 54 I/O I/O 55 54 50 CKA1 ЗT **TENDO** N/A High High TXS OUT OUT 56 55 51 High 57 56 52 RXS IN IN IN CTS1 N/A IN IN 58 57 53 CKS 3T I/O I/O 58 54 DREQ1 IN ЗT IN 59 60 59 55 TEND1 OUT High High HALT 60 56 High 61 High Low 62 NC NC 63 RFSH 57 OUT 64 61 High High 58 IORQ 3T 65 62 High High 66 63 59 MREQ High ЗT High 67 64 Е Low OUT 60 OUT M1 68 65 61 High High High WR 69 66 62 3T High High 70 67 63 RD ЗT High High 71 68 64 PHI OUT OUT OUT V_{SS} 72 1 1 GND GND GND 73 2 GND V_{SS} GND GND 3 74 **XTAL** OUT OUT 2 OUT NC 75

Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes (Continued)

PIN IDENTIFICATION (Continued)

Pin Num	ber and Packa	age Type		Pin Status			
QFP	PLCC	DIP	Default Function	Secondary Function	RESET	BUSACK	SLEEP
76	4	3	EXTAL		IN	IN	IN
77	5	4	WAIT		IN	IN	IN
78	6	5	BUSACK		High	OUT	OUT
79	7	6	BUSREQ		IN	IN	IN
80	8	7	RESET		IN	IN	IN

A18/TOUT	During RESET, this pin is initialized as A18. If either the TOC1 or the TOC0 bit of the Timer
	Control register (TCR) is set to 1, the T_{OUT} function is selected. If TOC1 and TOC0 are cleared
	to 0, the A18 function is selected.
CKA0/DREQ0	During RESET, this pin is initialized as CKA0. If either DM1 or SM1 in the DMA Mode register (DMODE) is set to 1, the DREQ0 function is selected.
CKA1/TENDO	During RESET, this pin is initialized as CKA1. If the CKA1D bit in ASCI control register ch1 (CNTLA1) is set to 1, the TENDO function is selected. If the CKA1D bit is set to 0, the CKA1 function is selected.
RXS/CTS1	During RESET, this pin is initialized as RXS. If the CTS1E bit in the ASCI status register ch1 (STAT1) is set to 1, the CTS1 function is selected. If the CTS1E bit is set to 0, the RXS function is selected.

Table 4. Multiplexed Pin Descriptions

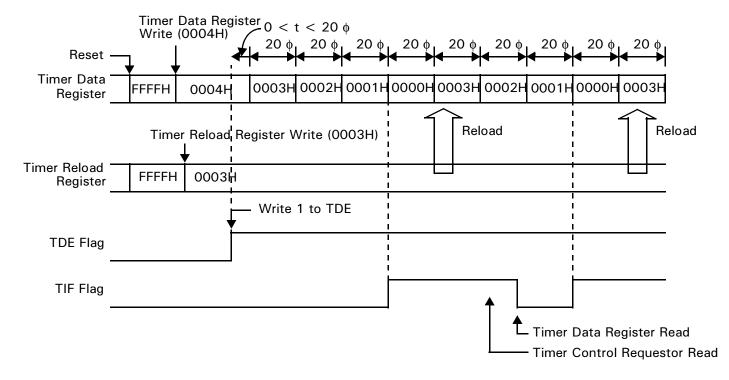
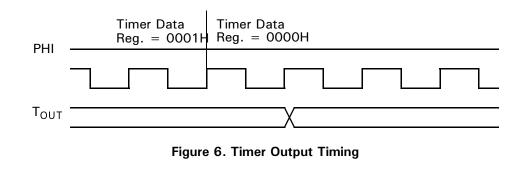



Figure 5. Timer Initialization, Count Down, and Reload Timing

Clocked Serial I/O (CSI/O). The CSI/O channel provides a half-duplex serial transmitter and receiver. This channel can be used for simple high-speed data connection to another microprocessor or microcomputer. TRDR is used for both CSI/O transmission and reception. Thus, the system design must ensure that the constraints of half-duplex operation are met (Transmit and Receive operation cannot occur simultaneously). For example, if a CSI/O transmission is attempted while the CSI/O is receiving data, a CSI/O does not work.

Note: TRDR is not buffered. Performing a CSI/O transmit while the previous transmission is still in progress causes the data to be immediately updated and corrupts the transmit operation. Similarly, reading TRDR while a transmit or receive is in progress should be avoided.

OPERATION MODES

Z80 versus 64180 Compatibility. The Z8S180/Z8L180 is descended from two different "ancestor" processors, ZiLOG's original Z80 and the Hitachi 64180. The Operating Mode Control Register (OMCR), illustrated in Figure 8, can be programmed to select between certain Z80 and 64180 differences.

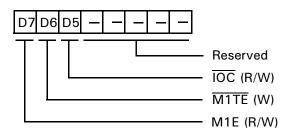


Figure 8. Operating Control Register (OMCR: I/O Address = 3EH)

M1E ($\overline{M1}$ Enable). This bit controls the $\overline{M1}$ output and is set to a 1 during RESET.

When M1E = 1, the $\overline{M1}$ output is asserted Low during opcode fetch cycles, Interrupt Acknowledge cycles, and the first machine cycle of an \overline{NMI} acknowledge.

On the Z8S180/Z8L180, this choice makes the processor fetch a RETI instruction one time. When fetching a RETI from a zero-wait-state memory location, the processor uses three clock bus cycles. These bus cycles are not fully Z80-timing compatible.

When M1E = 0, the processor does not drive $\overline{M1}$ Low during the instruction fetch cycles. After fetching a RETI instruction with normal timing, the processor goes back and refetches the instruction using fully Z80-compatible cycles that include driving $\overline{M1}$ Low. This option may be required by some external Z80 peripherals to properly decode the RETI instruction. Figure 9 and Table 5 show the RETI sequence when M1E is 0.

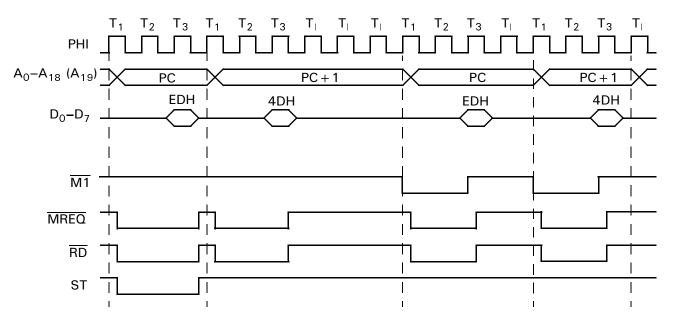
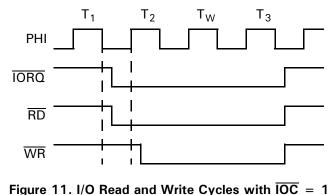
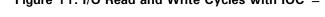
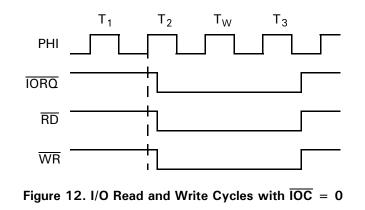





Figure 9. RETI Instruction Sequence with M1E = 0

When $\overline{\text{IOC}} = 0$, the timing of the $\overline{\text{IORQ}}$ and $\overline{\text{RD}}$ signals match the timing of the Z80. The $\overline{\text{IORQ}}$ and $\overline{\text{RD}}$ signals go active as a result of the rising edge of T2. (Figure 12.)

HALT and Low-Power Operating Modes. $Th\,e$

Z8S180/Z8L180 can operate in seven modes with respect to activity and power consumption:

- Normal Operation
- HALT Mode
- IOSTOP Mode
- SLEEP Mode
- SYSTEM STOP Mode
- IDLE Mode
- STANDBY Mode (with or without QUICK RECOV-ERY)

Normal Operation. In this state, the Z8S180/Z8L180 processor is fetching and running a program. All enabled functions and portions of the device are active, and the \overline{HALT} pin is High.

HALT Mode. This mode is entered by the HALT instruction. Thereafter, the Z8S180/Z8L180 processor continually fetches the following opcode but does not execute it and drives the HALT, ST and $\overline{M1}$ pins all Low. The oscillator and PHI pin remain Active. Interrupts and bus granting to external Masters, and DRAM refresh can occur, and all onchip I/O devices continue to operate including the DMA channels.

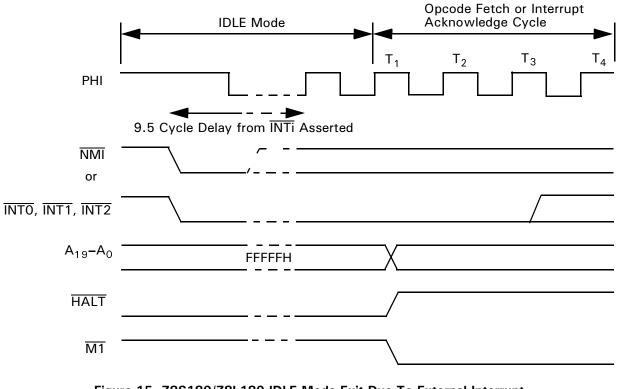
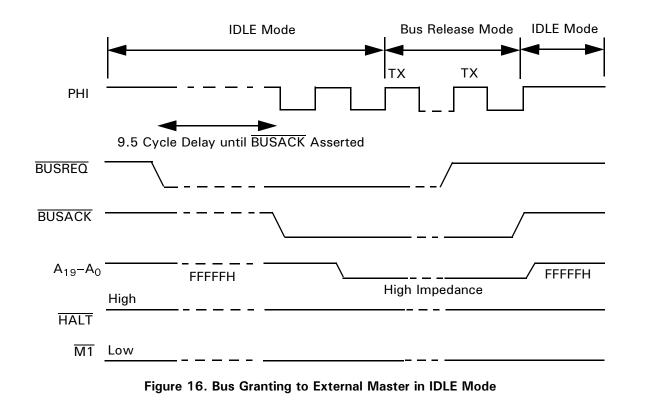



Figure 15. Z8S180/Z8L180 IDLE Mode Exit Due To External Interrupt

While the Z8S180/Z8L180 is in IDLE mode, it grants the bus to an external Master if the BREXT bit (CCR5) is 1. Figure 16 depicts the timing for this sequence.

Note: A response to a bus request takes 8 clock cycles longer than in normal operation.

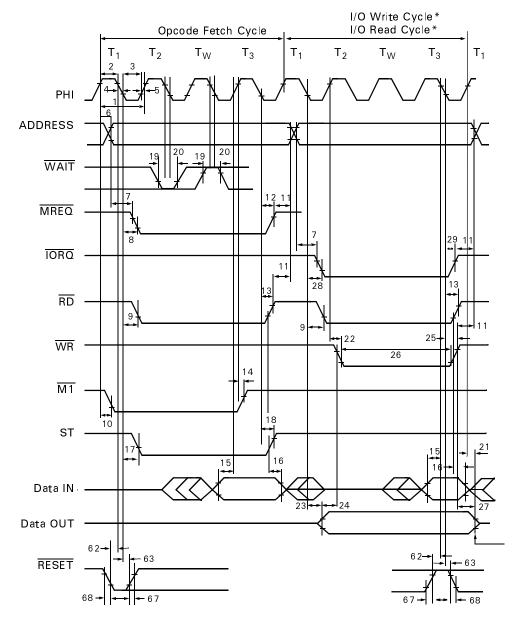
After the external Master negates the Bus Request, the Z8S180/Z8L180 disables the PHI clock and remains in IDLE mode.

STANDBY Mode (With or Without QUICK RECOVERY).

Software can put the Z8S180/Z8L180 into this mode by setting the IOSTOP bit (ICR5) to 1, CCR6 to 1, and executing the SLP instruction. This mode stops the on-chip oscillator and thus draws the least power of any mode, less than 10μ A.

As with IDLE mode, the Z8S180/Z8L180 leaves STANDBY mode in response to a Low on $\overline{\text{RESET}}$, on $\overline{\text{NMI}}$, or a Low on $\overline{\text{INTO-2}}$ that is enabled by a 1 in the corresponding bit in the INT/TRAP Control Register. This action grants the bus to an external Master if the BREXT bit in the CPU Control Register (CCR5) is 1. The time required for all of these operations is greatly increased by the necessity for restarting the on-chip oscillator, and ensuring that it stabilizes to square-wave operation.

When an external clock is connected to the EXTAL pin rather than a crystal to the XTAL and EXTAL pins and the external clock runs continuously, there is little necessity to use STANDBY mode because no time is required to restart the oscillator, and other modes restart faster. However, if external logic stops the clock during STANDBY mode (for example, by decoding HALT Low and M1 High for several clock cycles), then STANDBY mode can be useful to allow the external clock source to stabilize after it is re-enabled.


When external logic drives **RESET** Low to bring the device out of **STANDBY** mode, and a crystal is in use or an external clock source is stopped, the external logic must hold **RESET** Low until the on-chip oscillator or external clock source is restarted and stabilized.

The clock-stability requirements of the Z8S180/Z8L180 are much less in the divide-by-two mode that is selected by a RESET sequence and controlled by the Clock Divide bit in the CPU Control Register (CCR7). As a result, software performs the following actions:

- 1. Sets CCR7 to 0 for divide-by-two mode before an SLP instruction and STANDBY mode.
- 2. Delays setting CCR7 back to 1 for divide-by-one mode as long as possible to allow additional clock stabilization time after a RESET, interrupt, or in-line RESTART after an SLP 01 instruction.

If CCR6 is set to 1 before the SLP instruction places the MPU in STANDBY mode, the value of the CCR3 bit determines the length of the delay before the oscillator restarts and stabilizes when it leaves STANDBY mode due to an external interrupt request. When CCR3 is 0, the Z8S180/Z8L180 waits 2^{17} (131,072) clock cycles. When CCR3 is 1, it waits 64 clock cycles. This state is called QUICK RECOVERY mode. The same delay applies to grant-

TIMING DIAGRAMS

Note: *Memory Read/Write Cycle timing is the same as I/O Read/Write Cycle except there are no automatic wait states (T_W), and MREQ is active instead of IORQ.

Figure 20. CPU Timing (Opcode Fetch Cycle, Memory Read Cycle, Memory Write Cycle, I/O Write Cycle, I/O Read Cycle)

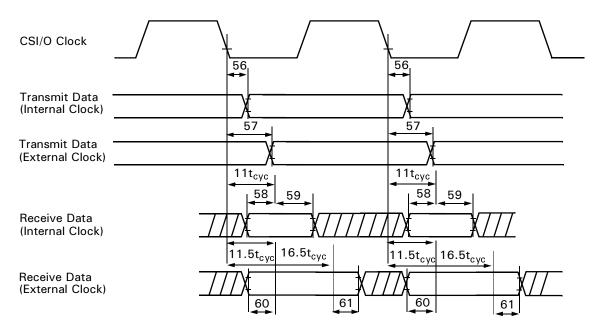
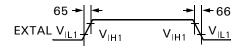



Figure 29. CSI/O Receive/Transmit Timing

External Clock Rise Time and Fall Time Input Rise Time and Fall Time (Except EXTAL, RESET)

Figure 30. Rise Time and Fall Times

CPU CONTROL REGISTER

CPU Control Register (CCR). This register controls the basic clock rate, certain aspects of Power-Down modes, and output drive/low-noise options (Figure 31).

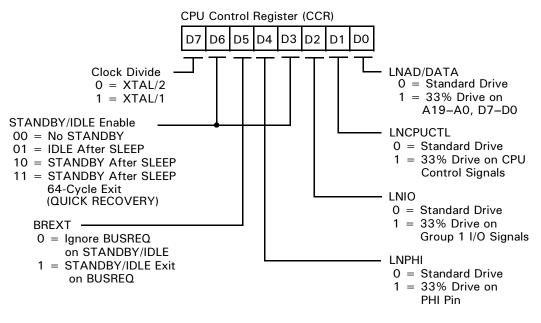


Figure 31. CPU Control Register (CCR) Address 1FH

Bit 7. Clock Divide Select. If this bit is 0, as it is after a RE-SET, the Z8S180/Z8L180 divides the frequency on the XTAL pin(s) by two to obtain its Master clock PHI. If this bit is programmed as 1, the part uses the XTAL frequency as PHI without division.

If an external oscillator is used in divide-by-one mode, the minimum pulse width requirement provided in the AC Characteristics must be satisfied.

Bits 6 and 3. STANDBY/IDLE Control. When these bits are both 0, a SLP instruction makes the Z8S180/Z8L180 enter SLEEP or SYSTEM STOP mode, depending on the IOSTOP bit (ICR5).

When D6 is 0 and D3 is 1, setting the IOSTOP bit (ICR5) and executing a SLP instruction puts the Z8S180/Z8L180 into IDLE mode in which the on-chip oscillator runs, but its output is blocked from the rest of the part, including PHI out.

When D6 is 1 and D3 is 0, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into STANDBY mode, in which the on-chip oscillator is stopped and the part allows 2^{17} (128K) clock cycles for the oscillator to stabilize when it restarts.

When D6 and D3 are both 1, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into QUICK RE-COVERY STANDBY mode, in which the on-chip oscillator is stopped, and the part allows only 64 clock cycles for the oscillator to stabilize when it restarts.

The latter section, HALT and LOW POWER modes, describes the subject more fully.

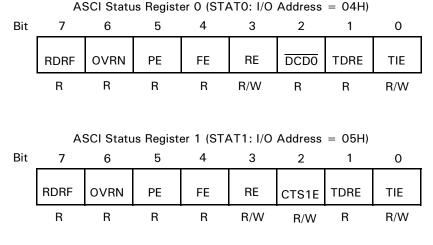
Bit 5 BREXT. This bit controls the ability of the Z8S180/Z8L180 to honor a bus request during STANDBY mode. If this bit is set to 1 and the part is in STANDBY mode, a BUSREQ is honored after the clock stabilization timer is timed out.

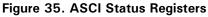
Bit 4 LNPHI. This bit controls the drive capability on the PHI Clock output. If this bit is set to 1, the PHI Clock output is reduced to 33 percent of its drive capability.

ZiLOG

Bit 2 LNIO. This bit controls the drive capability of certain external I/O pins of the Z8S180/Z8L180. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability:

TxS	
CKA0/DREQ0	
TXA1	
CKS	
	CKA0/DREQ0 TXA1


Bit 1 LNCPUCTL. This bit controls the drive capability of the CPU Control pins. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability:


BUSACK	RD
WR	M1
MREQ	IORQ
RFSH	HALT
E	TEST
ST	

Bit O LNAD/DATA. This bit controls the drive capability of the Address/Data bus output drivers. If this bit is set to 1, the output drive capability of the Address and Data bus outputs is reduced to 33 percent of its original drive capability.

ASCI STATUS REGISTER 0,1

Each ASCI channel status register (STAT0,1) allows interrogation of ASCI communication, error and modem control signal status, and the enabling or disabling of ASCI interrupts.

RDRF: Receive Data Register Full (Bit 7). RDRF is set to 1 when an incoming data byte is loaded into an empty Rx FIFO. If a framing or parity error occurs, RDRF is still set and the receive data (which generated the error) is still loaded into the FIFO. RDRF is cleared to 0 by reading RDR and most recently received character in the FIFO from IOSTOP mode, during RESET and for ASCI0 if the DCD0 input is auto-enabled and is negated (High).

OVRN: Overrun Error (Bit 6). An overrun condition occurs if the receiver finishes assembling a character but the Rx FIFO is full so there is no room for the character. However, this status bit is not set until the most recent character received before the overrun becomes the oldest byte in the FIFO. This bit is cleared when software writes a 1 to the EFR bit in the CNTLA register. The bit may also be cleared by RESET in IOSTOP mode or ASCIO if the DCDO pin is auto enabled and is negated (High).

Note: When an overrun occurs, the receiver does not place the character in the shift register into the FIFO, nor any subsequent characters, until the most recent good character enters the top of the FIFO so that OVRN is set. Software then writes a 1 to EFR to clear it.

PE: Parity Error (Bit 5). A parity error is detected when parity checking is enabled. When the MOD1 bit in the

CNTLA register is 1, a character is assembled in which the parity does not match the PEO bit in the CNTLB register. However, this status bit is not set until or unless the error character becomes the oldest one in the Rx FIFO. PE is cleared when software writes a 1 to the EFR bit in the CNTRLA register. PE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

FE: Framing Error (Bit 4). A framing error is detected when the stop bit of a character is sampled as O/SPACE. However, this status bit is not set until/unless the error character becomes the oldest one in the Rx FIFO. FE is cleared when software writes a 1 to the EFR bit in the CNTLA register. FE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

REI: Receive Interrupt Enable (Bit 3). RIE should be set to 1 to enable ASCI receive interrupt requests. When RIE is 1, the Receiver requests an interrupt when a character is received and RDRF is set, but only if neither DMA channel requires its request-routing field to be set to receive data from this ASCI. That is, if SM1–0 are 11 and SAR17–16 are 10, or DIM1 is 1 and IAR17–16 are 10, then ASCI1 does not request an interrupt for RDRF. If RIE is 1, either ASCI requests an interrupt when OVRN, PE or FE is set, and ASCIO requests an interrupt when $\overline{\text{DCDO}}$ goes High. RIE is cleared to 0 by RESET.

DCDO: Data Carrier Detect (Bit 2 STATO). This bit is set to 1 when the pin is High. It is cleared to 0 on the first READ of STATO following the pin's transition from High to Low and during RESET. When bit 6 of the ASEXTO register is 0 to select auto-enabling, and the pin is negated (High), the receiver is reset and its operation is inhibited.

CTS1E: **Clear To Send (Bit 2 STAT1).** Channel 1 features an external $\overline{\text{CTS1}}$ input, which is multiplexed with the receive data pin RSX for the CSI/O. Setting this bit to 1 selects the CTS1 function; clearing the bit to 0 selects the RXS function.

TDRE: Transmit Data Register Empty (Bit 1). TDRE = 1 indicates that the TDR is empty and the next transmit data byte is written to TDR. After the byte is written to TDR, TDRE is cleared to 0 until the ASCI transfers the byte from TDR to the TSR and then TDRE is again set to 1. TDRE is set to 1 in IOSTOP mode and during RESET. On ASCIO, if the CTSO pin is auto-enabled in the ASEXTO register and the pin is High, TDRE is reset to 0.

TIE: Transmit Interrupt Enable (Bit 0). TIE should be set to 1 to enable ASCI transmit interrupt requests. If TIE = 1, an interrupt is requested when TDRE = 1. TIE is cleared to 0 during RESET.

ASCI TRANSMIT DATA REGISTERS

Register addresses 06H and 07H hold the ASCI transmit data for channel 0 and channel 1, respectively.

ASCI Transmit Data Registers Channel 0

Mnemonic TDR0 Address 06H

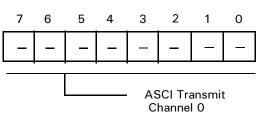


Figure 36. ASCI Register

ASCI Transmit Data Registers Channel 1

Mnemonic TDR1 Address 07H

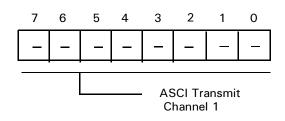
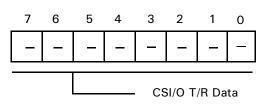


Figure 37. ASCI Register

never both set to 1 at the same time. TE is cleared to 0 during RESET and IOSTOP mode.

SS2, **1**, **0**: **Speed Select 2**, **1**, **0** (**Bits 2–0**). SS2, SS1 and SS0 select the CSI/O transmit/receive clock source and speed. SS2, SS1 and SS0 are all set to 1 during RESET. Table 11 indicates CSI/O Baud Rate Selection.


Table 11. CSI/O Baud Rate Selection	Table	11.	CSI/O	Baud	Rate	Selection
-------------------------------------	-------	-----	-------	------	------	-----------

SS2	SS1	SS0	Divide Ratio
0	0	0	÷20
0	0	1	÷40
0	1	0	÷80
0	1	1	÷160
1	0	0	÷320
1	0	1	÷640
1	1	0	÷1280
1	1	1	External Clock Input (Less Than ÷20)

After $\overline{\text{RESET}}$, the CKS pin is configured as an external clock input (SS2, SS1, SS0 = 1). Changing these values causes CKS to become an output pin and the selected clock is output when transmit or receive operations are enabled.

CSI/O Transmit/Receive Data Register

Mnemonic TRDR Address 0BH

Timer Data Register Channel 0 Low

Mnemonic TMDR0L Address 0CH

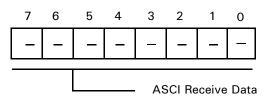


Figure 42. Timer Register Channel 0 Low

Timer Data Register Channel OH

Mnemonic TMDR0H Address 0DH

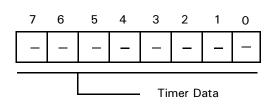


Figure 43. Timer Data Register Channel 0 High

Timer Reload Register Channel 0 Low

Mnemonic RLDROL Address 0EH

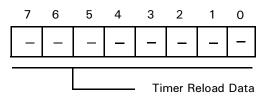
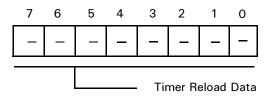
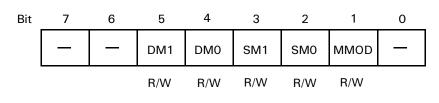


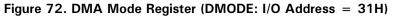
Figure 44. Timer Reload Register Low

Timer Reload Register Channel 0 High

Mnemonic RLDROH Address OFH




Figure 45. Timer Reload Register Channel 0 High


DMA MODE REGISTER

The DMA Mode Register (DMODE) is used to set the addressing and transfer mode for channel 0.

DMA Mode Register

Mnemonic DMODE Address 31H

DM1, DM0: Destination Mode Channel 0 (Bits 5,4). This mode specifies whether the destination for channel 0 transfers is memory or I/O, and whether the address should be incremented or decremented for each byte transferred. DM1 and DM0 are cleared to 0 during RESET.

SM1, SM0: Source Mode Channel 0 (Bits 3, 2). This mode specifies whether the source for channel 0 transfers is memory or I/O, and whether the address should be incremented or decremented for each byte transferred.

Table	15.	Channel	0	Source

Table 14. Channel 0 Destination				
DM1	DM1 DM0 Memory I/O		Memory Increment/Decrement	
0	0	Memory	+ 1	
0	1	Memory	-1	
1	0	Memory	fixed	
1	1	I/O	fixed	

SM1	SM0	Memory I/O	Memory Increment/Decrement
0	0	Memory	+ 1
0	1	Memory	-1
1	0	Memory	fixed
1	1	I/O	fixed

Table 16 indicates all DMA transfer mode combinations of DMO, DM1, SMO, and SM1. Because I/O to/from I/O transfers are not implemented, 12 combinations are available.

DM1	DM0	SM1	SM0	Transfer Mode	Address Increment/Decrement
0	0	0	0	Memory→Memory	SAR0 + 1, DAR0 + 1
0	0	0	1	Memory→Memory	SAR0-1, DAR0+1
0	0	1	0	Memory*→Memory	SAR0 fixed, DAR0+1
0	0	1	1	I/O→Memory	SAR0 fixed, DAR0+1
0	1	0	0	Memory→Memory	SAR0+1, DAR0-1
0	1	0	1	Memory→Memory	SAR0-1, DAR0-1
0	1	1	0	Memory *→Memory	SAR0 fixed, DAR0-1
0	1	1	1	I/O→Memory	SAR0 fixed, DAR0-1
1	0	0	0	Memory→Memory *	SAR0+1, DAR0 fixed
1	0	0	1	Memory→Memory *	SAR0-1, DAR0 fixed
1	0	1	0	Reserved	
1	0	1	1	Reserved	
1	1	0	0	Memory→I/O	SAR0+1, DAR0 fixed
1	1	0	1	Memory→I/O	SAR0-1, DAR0 fixed
1	1	1	0	Reserved	
1	1	1	1	Reserved	
ote: * Inc	cludes memo	ory mapped	I/O.		

Table 16. Transfer Mode Combinations

MMOD: Memory Mode Channel 0 (Bit 1). When channel 0 is configured for memory to/from memory transfers there is no Request Handshake signal to control the transfer timing. Instead, two automatic transfer timing modes are selectable: burst (MMOD = 1) and cycle steal (MMOD = 0). For burst memory to/from memory transfers, the DMAC takes control of the bus continuously until the DMA transfer

completes (as indicated by the byte count register = 0). In cycle steal mode, the CPU is provided a cycle for each DMA byte transfer cycle until the transfer is completed.

For channel 0 DMA with I/O source or destination, the selected Request signal times the transfer ignoring MMOD. MMOD is cleared to 0 during RESET.

DMA/WAIT CONTROL REGISTER

The DMA/WAIT Control Register (DCNTL) controls the insertion of wait states into DMAC (and CPU) accesses of memory or I/O. Also, the register defines the Request signal

for each channel as level or edge sense. DCNTL also sets the DMA transfer mode for channel 1, which is limited to memory to/from I/O transfers.

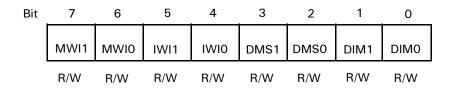


Figure 73. DMA/WAIT Control Register (DCNTL: I/O Address = 32H)

MWI1, MWI0: Memory Wait Insertion (Bits 7–6). This bit specifies the number of wait states introduced into CPU or DMAC memory access cycles. MWI1 and MWI0 are set to 1 during RESET.

MWI1	MWIO	Wait State
0	0	0
0	1	1
1	0	2
1	1	3

IWI1, IWI0: I/O Wait Insertion (Bits 5–4). This bit specifies the number of wait states introduced into CPU or DMAC I/O access cycles. IWI1 and IWI0 are set to 1 during RESET.

IWI1	IWIO	Wait State
0	0	1
0	1	2
1	0	3
1	1	4

Note: These wait states are added to the 3-clock I/O cycle that is used to access the on-chip I/O registers. It is equally valid to regard these as 0 to 3 wait states added to a 4-clock external I/O cycle.

DMS1, DMS0: DMA Request Sense (Bits 3–2). DMS1 and DMS0 specify the DMA request sense for channel 0 and channel 1 respectively. When reset to 0, the input is level sense. When set to 1, the input is edge sense. DMS1 and DMS0 are cleared to 0 during RESET.

DMSi	Sense
1	Edge Sense
0	Level Sense

Typically, for an input/source device, the associated DMS bit should be programmed as 0 for level sense. The device takes a relatively long time to update its Request signal after the DMA channel reads data (in the first of the two machine cycles involved in transferring a byte).

An output/destination device takes much less time to update its Request signal after the DMA channel starts a WRITE operation to it (the second machine cycle of the two cycles involved in transferring a byte). With zero-wait state I/O cycles, a device cannot update its request signal in the required time, so edge sensing must be used.

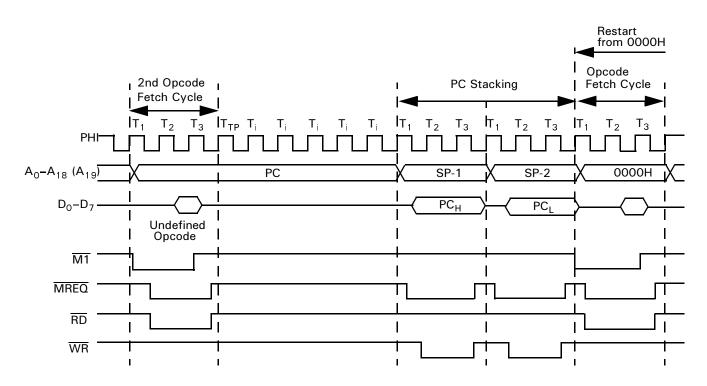
A one-wait-state I/O cycle also does not provide sufficient time for updating, so edge sensing is again required.

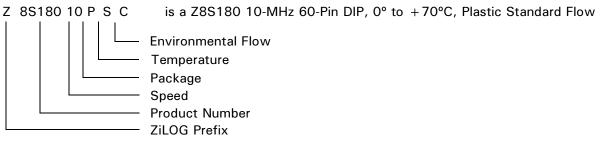
DIM1, DIMO: DMA Channel 1 I/O and Memory Mode (Bits 1–0). Specifies the source/destination and address modifier for channel 1 memory to/from I/O transfer modes. DIM1 and DIMO are cleared to 0 during RESET.

Table 17. Channel 1 Transfer Mode

DIM1	DMI0	Transfer Mode	Address Increment/Decrement
0	0	Memory→I/O	MAR1 +1, IAR1 fixed
0	1	Memory→I/O	MAR1 -1, IAR1 fixed
1	0	I/O→Memory	IAR1 fixed, MAR1 +1
1	1	I/O→Memory	IAR1 fixed, MAR1 -1

All TRAPs occur after fetching an undefined second opcode byte following one of the prefix opcodes (CBH, DDH, EDH, or FDH) or after fetching an undefined third opcode byte following one of the double-prefix opcodes (DDCBH or FDCBH). The state of the Undefined Fetch Object (UFO) bit in ITC allows TRAP software to correctly *adjust* the stacked PC, depending on whether the second or third byte of the opcode generated the TRAP. If UFO = 0, the starting address of the invalid instruction is the stacked PC-1. If UFO = 1, the starting address of the invalid instruction is equal to the stacked PC-2.




Figure 75. TRAP Timing – 2nd Opcode Undefined

ORDERING INFORMATION

Codes	
Speed	10 = 10 MHz
	20 = 20 MHz
	33 = 33 MHz
Package	P = 60-Pin Plastic DIP
	V = 68-Pin PLCC
	F = 80-Pin QFP
Temperature	$S = 0^{\circ}C \text{ to } + 70^{\circ}C$
	$E = -40^{\circ}C \text{ to } +85^{\circ}C$
Environmental	C = Plastic Standard

For fast results, contact your local ZiLOG sales office for assistance in ordering the part(s) required.

Example:

Pre-Characterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or non-conformance

©2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. with some aspects of the document may be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery may be uncertain at times, due to start-up yield issues.

Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

ZiLOG, Inc. 910 East Hamilton Avenue, Suite 110 Campbell, CA 95008 Telephone (408) 558-8500 FAX (408) 558-8300 Internet: http://www.zilog.com