Welcome to **E-XFL.COM** ### **Understanding Embedded - Microprocessors** Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications. # **Applications of Embedded - Microprocessors** Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in | Details | | |---------------------------------|--| | Product Status | Obsolete | | Core Processor | Z8S180 | | Number of Cores/Bus Width | 1 Core, 8-Bit | | Speed | 20MHz | | Co-Processors/DSP | - | | RAM Controllers | DRAM | | Graphics Acceleration | No | | Display & Interface Controllers | - | | Ethernet | - | | SATA | - | | USB | - | | Voltage - I/O | 5.0V | | Operating Temperature | 0°C ~ 70°C (TA) | | Security Features | - | | Package / Case | 68-LCC (J-Lead) | | Supplier Device Package | 68-PLCC | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/z8s18020vsg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **GENERAL DESCRIPTION** (Continued) Power connections follow the conventional descriptions below: | Connection | Circuit | Device | | |------------|-----------------|-----------------|--| | Power | V _{CC} | V _{DD} | | | Ground | GND | V _{SS} | | Figure 1. Z8S180/Z8L180 Functional Block Diagram # PIN IDENTIFICATION Figure 2. Z8S180 64-Pin DIP Pin Configuration 5 Figure 4. Z8S180/Z8L180 80-Pin QFP Pin Configuration Table 1. Z8S180/Z8L180 Pin Identification | Pin Num | ber and Packa | age Type | Default | Secondary | | |---------|---------------|----------|-----------------|-----------|---------| | QFP | PLCC | DIP | Function | Function | Control | | 1 | 9 | 8 | NMI | | | | 2 | | | NC | | | | 3 | | | NC | | | | 4 | 10 | 9 | ĪNTO | | | | 5 | 11 | 10 | ĪNT1 | | | | 6 | 12 | 11 | ĪNT2 | | | | 7 | 13 | 12 | ST | | | | 8 | 14 | 13 | Α0 | | | | 9 | 15 | 14 | A1 | | | | 10 | 16 | 15 | A2 | | | | 11 | 17 | 16 | А3 | | | | 12 | 18 | | V _{SS} | | | # PIN IDENTIFICATION (Continued) Table 1. Z8S180/Z8L180 Pin Identification (Continued) | OFP PLCC DIP Default Function Secondary Function 13 19 17 A4 14 NC 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 19 24 22 A9 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | |--|--| | 14 NC 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 19 24 22 A9 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 15 20 18 A5 16 21 19 A6 17 22 20 A7 18 23 21 A8 19 24 22 A9 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 16 21 19 A6 17 22 20 A7 18 23 21 A8 19 24 22 A9 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 17 22 20 A7 18 23 21 A8 19 24 22 A9 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 18 23 21 A8 19 24 22 A9 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 19 24 22 A9 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 20 25 23 A10 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 21 26 24 A11 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 22 NC 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 23 NC 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 24 27 25 A12 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 25 28 26 A13 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 26 29 27 A14 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 27 30 28 A15 28 31 29 A16 29 32 30 A17 | | | 28 31 29 A16
29 32 30 A17 | | | 29 32 30 A17 | | | | | | 20 NO | | | 30 NC | | | 31 33 31 A18 T _{OUT} Bit 2 or Bit 3 of TCR | | | 32 34 32 V _{DD} | | | 33 35 A19 | | | 34 36 33 V _{SS} | | | 35 37 34 D0 | | | 36 38 35 D1 | | | 37 39 36 D2 | | | 38 40 37 D3 | | | 39 41 38 D4 | | | 40 42 39 D5 | | | 41 43 40 D6 | | | 42 NC | | | 43 NC | | | 44 44 41 D7 | | | 45 45 42 <u>RTS0</u> | | | 46 46 43 <u>CTSO</u> | | | 47 47 44 <u>DCD0</u> | | | 48 48 45 TXA0 | | | 49 49 46 RXA0 | | | 50 50 47 CKAO DREQO Bit 3 or Bit 5 of DMODE | | | 51 NC | | | 52 51 48 TXA1 | | # PIN IDENTIFICATION (Continued) Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes | Pin Num | ber and Packa | age Type | | | | Pin Status | | |----------|---------------|----------|---------------------|-----------------------|-----------------|-----------------|-----------------| | QFP | PLCC | DIP | Default
Function | Secondary
Function | RESET | BUSACK | SLEEP | | | | | NMI | runction | | | | | 1 | 9 | 8 | | | IN | IN | IN | | 3 | | | NC | | | | | | | 10 | 9 | NC
INTO | | INI | INI | INI | | 4 | | 10 | INTO
INT1 | | IN | IN | IN | | 5 | 11
12 | 11 | INT 1 | | IN
IN | IN
IN | IN
IN | | 6
7 | 13 | 12 | ST | | | | | | | 14 | | | | High | High | High | | 9 | 15 | 13
14 | A0 | | 3T
3T | 3T
3T | High | | 10 | 16 | 15 | A1 | | 3T | | High | | | 17 | 16 | A2
A3 | | 3T | 3T
3T | High | | 11 | 17 | 10 | | | | | High | | | | 47 | V _{SS} | | V _{SS} | V _{SS} | V _{SS} | | 13 | 19 | 17 | A4 | | 3T | 3T | High | | 14 | 00 | 40 | NC | | 0.7 | 0.7 | | | 15 | 20 | 18 | A5 | | 3T | 3T | High | | 16 | 21 | 19 | A6 | | 3T | 3T | High | | 17 | 22 | 20 | A7 | | 3T | 3T | High | | 18 | 23 | 21 | A8 | | 3T | 3T | High | | 19 | 24 | 22 | A9 | | 3T | 3T | High | | 20 | 25 | 23 | A10 | | 3T | 3T | High | | 21 | 26 | 24 | A11 | | 3T | 3T | High | | 22 | | | NC | | | | | | 23 | 0.7 | 0.5 | NC
A 1 2 | | 0.7 | O.T. | 11.1 | | 24 | 27 | 25 | A12 | | 3T | 3T | High | | 25 | 28 | 26 | A13 | | 3T | 3T | High | | 26
27 | 29
30 | 27 | A14 | | 3T
3T | 3T | High | | 28 | 30 | 28
29 | A15
A16 | | 31
3T | 3T
3T | High
High | | 29 | 31 | 30 | A16 | | 31
3T | 3T | High | | 30 | ٥٧ | 30 | NC | | ا ا | 31 | піуп | | 31 | 33 | 31 | A18 | | 3T | 3T | High | | JI | JJ | JI | | | N/A | OUT | OUT | | 22 | 2.4 | 20 | T _{OUT} | | | | | | 32 | 34 | 32 | V _{DD} | | V _{DD} | V _{DD} | V _{DD} | | 33 | 35 | | A19 | | 3T | 3T | High | | 34 | 36 | 33 | V _{SS} | | V_{SS} | V _{SS} | V _{SS} | | 35 | 37 | 34 | D0 | | 3T | 3T | 3T | | 36 | 38 | 35 | D1 | | 3T | 3T | 3T | | 37 | 39 | 36 | D2 | | 3T | 3T | 3T | | 38 | 40 | 37 | D3 | | 3T | 3T | 3T | Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes (Continued) | Pin Num | ber and Packa | age Type | | | | Pin Status | | |---------|---------------|--------------|---------------------|-----------------------|-------|------------|-------| | QFP | PLCC | DIP | Default
Function | Secondary
Function | RESET | BUSACK | SLEEF | | 39 | 41 | 38 | D4 | | 3T | 3T | 3T | | 40 | 42 | 39 | D5 | | 3T | 3T | 3T | | 41 | 43 | 40 | D6 | | 3T | 3T | 3T | | 42 | | | NC | | | | | | 43 | | | NC | | | | | | 44 | 44 | 41 | D7 | | 3T | 3T | 3T | | 45 | 45 | 42 | RTS0 | | High | OUT | High | | 46 | 46 | 43 | CTS0 | | IN | OUT | IN | | 47 | 47 | 44 | DCD0 | | IN | IN | IN | | 48 | 48 | 45 | TXA0 | | High | OUT | OUT | | 49 | 49 | 46 | RXA0 | | IN | IN | IN | | 50 | 50 | 47 | CKA0 | | 3T | I/O | I/O | | | | | DREQ0 | | N/A | IN | IN | | 51 | | | NC | | | | | | 52 | 51 | 48 | TXA1 | | High | OUT | OUT | | 53 | 52 | | TEST | | | | | | 54 | 53 | 49 | RXA1 | | IN | IN | IN | | 55 | 54 | 50 | CKA1 | | 3T | I/O | I/O | | | | | TEND0 | | N/A | High | High | | 56 | 55 | 51 | TXS | | High | OUT | OUT | | 57 | 56 | 52 | RXS | | IN | IN | IN | | | | | CTS1 | | N/A | IN | IN | | 58 | 57 | 53 | CKS | | 3T | I/O | I/O | | 59 | 58 | 54 | DREQ1 | | IN | 3T | IN | | 60 | 59 | 55 | TEND1 | | High | OUT | High | | 61 | 60 | 56 | HALT | | High | High | Low | | 62 | | | NC | | | | | | 63 | | | NC | | | | | | 64 | 61 | 57 | RFSH | | High | OUT | High | | 65 | 62 | 58 | ĪORQ | | High | 3T | High | | 66 | 63 | 59 | MREQ | | High | 3T | High | | 67 | 64 | 60 | E | | Low | OUT | OUT | | 68 | 65 | 61 | M1 | | High | High | High | | 69 | 66 | 62 | WR | | High | 3T | High | | 70 | 67 | 63 | RD | | High | 3T | High | | 71 | 68 | 64 | PHI | | OUT | OUT | OUT | | 72 | 1 | 1 | V _{SS} | | GND | GND | GND | | 73 | 2 | | V _{SS} | | GND | GND | GND | | 74 | 3 | 2 | XTAL | | OUT | OUT | OUT | | 75 | - | - | NC | | | | | This condition provides a technique for synchronization with high-speed external events without incurring the latency imposed by an interrupt-response sequence. Figure 14 depicts the timing for exiting SLEEP mode due to an interrupt request. **Note:** The Z8S180/Z8L180 takes about 1.5 clock ticks to restart. **IOSTOP Mode.** IOSTOP mode is entered by setting the IOSTOP bit of the I/O Control Register (ICR) to 1. In this case, on-chip I/O (ASCI, CSI/O, PRT) stops operating. However, the CPU continues to operate. Recovery from IOSTOP mode is performed by resetting the IOSTOP bit in ICR to 0. **SYSTEM STOP Mode.** SYSTEM STOP mode is the combination of SLEEP and IOSTOP modes. SYSTEM STOP mode is entered by setting the IOSTOP bit in ICR to 1 followed by execution of the SLP instruction. In this mode, onchip I/O and CPU stop operating, reducing power consumption, but the PHI output continues to operate. Recovery from SYSTEM STOP mode is the same as recovery from SLEEP mode except that internal I/O sources (disabled by IOSTOP) cannot generate a recovery interrupt. **IDLE Mode.** Software puts the Z8S180/Z8L180 into this mode by performing the following actions: - Set the IOSTOP bit (ICR5) to 1 - Set CCR6 to 0 - Set CCR3 to 1 - Execute the SLP instruction The oscillator keeps operating but its output is blocked to all circuitry including the PHI pin. DRAM refresh and all internal devices stop, but external interrupts can occur. Bus granting to external Masters can occur if the BREST bit in the CPU control Register (CCR5) was set to 1 before IDLE mode was entered. The Z8S180/Z8L180 leaves IDLE mode in response to a Low on $\overline{\text{RESET}}$, an external interrupt request on $\overline{\text{NMI}}$, or an external interrupt request on $\overline{\text{INT0}}$, $\overline{\text{INT1}}$ or $\overline{\text{INT2}}$ that is enabled in the INT/TRAP Control Register. As previously described for SLEEP mode, when the Z8S180/Z8L180 leaves IDLE mode due to an $\overline{\text{NMI}}$, or due to an enabled external interrupt request when the $\overline{\text{IEF}}$ flag is 1 due to an EI instruction, the device starts by performing the interrupt with the return address of the instruction after the SLP instruction. If an external interrupt enables the INT/TRAP control register while the IEF1 bit is 0, Z8S180/Z8L180 leaves IDLE mode; specifically, the processor restarts by executing the instructions following the SLP instruction. Figure 15 indicates the timing for exiting IDLE mode due to an interrupt request. **Note:** The Z8S180/Z8L180 takes about 9.5 clocks to restart. # **OPERATION MODES** (Continued) Figure 15. Z8S180/Z8L180 IDLE Mode Exit Due To External Interrupt While the Z8S180/Z8L180 is in IDLE mode, it grants the bus to an external Master if the BREXT bit (CCR5) is 1. Figure 16 depicts the timing for this sequence. After the external Master negates the Bus Request, the Z8S180/Z8L180 disables the PHI clock and remains in IDLE mode. **Note:** A response to a bus request takes 8 clock cycles longer than in normal operation. Figure 18. Bus Granting to External Master During STANDBY Mode # **AC CHARACTERISTICS—Z8S180** Table 8. Z8S180 AC Characteristics $V_{DD}=5V~\pm10\%$ or $V_{DD}=3.3V~\pm10\%$; 33-MHz Characteristics Apply Only to 5V Operation | | | | Z8S180- | -20 MHz | Z8S180- | -33 MHz | | |--------|-------------------|---|---------|---------|---------|---------|------| | Number | Symbol | Item | Min | Max | Min | Max | Unit | | 1 | t _{CYC} | Clock Cycle Time | 50 | DC | 30 | DC | ns | | 2 | t _{CHW} | Clock "H" Pulse Width | 15 | _ | 10 | _ | ns | | 3 | t _{CLW} | Clock "L" Pulse Width | 15 | _ | 10 | _ | ns | | 4 | t _{CF} | Clock Fall Time | _ | 10 | _ | 5 | ns | | 5 | t _{CR} | Clock Rise Time | _ | 10 | _ | 5 | ns | | 6 | t _{AD} | PHI Rise to Address Valid Delay | _ | 30 | _ | 15 | ns | | 7 | t _{AS} | Address Valid to MREQ Fall or IORQ Fall) | 5 | _ | 5 | _ | ns | | 8 | t _{MED1} | PHI Fall to MREQ Fall Delay | _ | 25 | _ | 15 | ns | | 9 | t _{RDD1} | PHI Fall to \overline{RD} Fall Delay $\overline{IOC} = 1$ | _ | 25 | _ | 15 | ns | | | | PHI Rise to \overline{RD} Rise Delay $\overline{IOC} = 0$ | _ | 25 | _ | 15 | _ | | 10 | t _{M1D1} | PHI Rise to M1 Fall Delay | _ | 35 | _ | 15 | ns | | 11 | t _{AH} | Address Hold Time from MREQ, IOREQ, RD, WR High | 5 | _ | 5 | _ | ns | | 12 | t _{MED2} | PHI Fall to MREQ Rise Delay | _ | 25 | _ | 15 | ns | | 13 | t _{RDD2} | PHI Fall to RD Rise Delay | _ | 25 | _ | 15 | ns | | 14 | t _{M1D2} | PHI Rise to M1 Rise Delay | _ | 40 | _ | 15 | ns | | 15 | t _{DRS} | Data Read Set-up Time | 10 | _ | 5 | _ | ns | | 16 | t _{DRH} | Data Read Hold Time | 0 | _ | 0 | _ | ns | | 17 | t _{STD1} | PHI Fall to ST Fall Delay | _ | 30 | _ | 15 | ns | | 18 | t _{STD2} | PHI Fall to ST Rise Delay | _ | 30 | _ | 15 | ns | | 19 | t _{WS} | WAIT Set-up Time to PHI Fall | 15 | _ | 10 | _ | ns | | 20 | t _{WH} | WAIT Hold Time from PHI Fall | 10 | _ | 5 | _ | ns | | 21 | t _{WDZ} | PHI Rise to Data Float Delay | _ | 35 | _ | 20 | ns | | 22 | t _{WRD1} | PHI Rise to WR Fall Delay | _ | 25 | _ | 15 | ns | | 23 | t _{WDD} | PHI Fall to Write Data Delay Time | _ | 25 | _ | 15 | ns | | 24 | t _{WDS} | Write Data Set-up Time to WR Fall | 10 | _ | 10 | _ | ns | | 25 | t _{WRD2} | PHI Fall to WR Rise Delay | _ | 25 | _ | 15 | ns | | 26 | t _{WRP} | WR Pulse Width (Memory Write Cycle) | 80 | _ | 45 | _ | ns | | 26a | | WR Pulse Width (I/O Write Cycle) | 150 | _ | 70 | _ | ns | | 27 | t _{WDH} | Write Data Hold Time from WR Rise | 10 | _ | 5 | _ | ns | | 28 | t _{IOD1} | PHI Fall to \overline{IORQ} Fall Delay $\overline{IOC} = 1$ | _ | 25 | _ | 15 | ns | | | | PHI Rise to \overline{IORQ} Fall Delay $\overline{IOC} = 0$ | _ | 25 | _ | 15 | = | | 29 | t_{IOD2} | PHI Fall to IORQ Rise Delay | _ | 25 | _ | 15 | ns | | 30 | t _{IOD3} | M1 Fall to IORQ Fall Delay | 125 | _ | 80 | _ | ns | | 31 | t _{INTS} | INT Set-up Time to PHI Fall | 20 | | 15 | _ | ns | Figure 24. E Clock Timing (Memory Read/Write Cycle, I/O Read/Write Cycle) Figure 25. E Clock Timing (BUS RELEASE Mode, SLEEP Mode, SYSTEM STOP Mode) Figure 26. E Clock Timing (Minimum Timing Example of \mathbf{P}_{WEL} and $\mathbf{P}_{WEH})$ #### **CPU CONTROL REGISTER** **CPU Control Register (CCR).** This register controls the basic clock rate, certain aspects of Power-Down modes, and output drive/low-noise options (Figure 31). Figure 31. CPU Control Register (CCR) Address 1FH **Bit 7.** Clock Divide Select. If this bit is 0, as it is after a RE-SET, the Z8S180/Z8L180 divides the frequency on the XTAL pin(s) by two to obtain its Master clock PHI. If this bit is programmed as 1, the part uses the XTAL frequency as PHI without division. If an external oscillator is used in divide-by-one mode, the minimum pulse width requirement provided in the AC Characteristics must be satisfied. **Bits 6 and 3.** STANDBY/IDLE Control. When these bits are both 0, a SLP instruction makes the Z8S180/Z8L180 enter SLEEP or SYSTEM STOP mode, depending on the IOSTOP bit (ICR5). When D6 is 0 and D3 is 1, setting the IOSTOP bit (ICR5) and executing a SLP instruction puts the Z8S180/Z8L180 into IDLE mode in which the on-chip oscillator runs, but its output is blocked from the rest of the part, including PHI out. When D6 is 1 and D3 is 0, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into STANDBY mode, in which the on-chip oscillator is stopped and the part allows 2¹⁷ (128K) clock cycles for the oscillator to stabilize when it restarts. When D6 and D3 are both 1, setting IOSTOP (ICR5) and executing a SLP instruction puts the part into QUICK RE-COVERY STANDBY mode, in which the on-chip oscillator is stopped, and the part allows only 64 clock cycles for the oscillator to stabilize when it restarts. The latter section, HALT and LOW POWER modes, describes the subject more fully. **Bit 5 BREXT.** This bit controls the ability of the Z8S180/Z8L180 to honor a bus request during STANDBY mode. If this bit is set to 1 and the part is in STANDBY mode, a BUSREQ is honored after the clock stabilization timer is timed out. **Bit 4 LNPHI.** This bit controls the drive capability on the PHI Clock output. If this bit is set to 1, the PHI Clock output is reduced to 33 percent of its drive capability. **Bit 2 LNIO.** This bit controls the drive capability of certain external I/O pins of the Z8S180/Z8L180. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability: | RTS0 | TxS | |------------|------------| | CKA1/TENDO | CKA0/DREQ0 | | TXA0 | TXA1 | | TENDi | CKS | **Bit 1 LNCPUCTL.** This bit controls the drive capability of the CPU Control pins. When this bit is set to 1, the output drive capability of the following pins is reduced to 33 percent of the original drive capability: | BUSACK | RD | |--------|------| | WR | M1 | | MREQ | ĪORQ | | RFSH | HALT | | Е | TEST | | ST | | **Bit O LNAD/DATA.** This bit controls the drive capability of the Address/Data bus output drivers. If this bit is set to 1, the output drive capability of the Address and Data bus outputs is reduced to 33 percent of its original drive capability. ASCIO requests an interrupt when \overline{DCDO} goes High. RIE is cleared to 0 by RESET. **DCDO:** Data Carrier Detect (Bit 2 STATO). This bit is set to 1 when the pin is High. It is cleared to 0 on the first READ of STATO following the pin's transition from High to Low and during RESET. When bit 6 of the ASEXTO register is 0 to select auto-enabling, and the pin is negated (High), the receiver is reset and its operation is inhibited. CTS1E: Clear To Send (Bit 2 STAT1). Channel 1 features an external CTS1 input, which is multiplexed with the receive data pin RSX for the CSI/O. Setting this bit to 1 selects the CTS1 function; clearing the bit to 0 selects the RXS function. **TDRE:** Transmit Data Register Empty (Bit 1). TDRE = 1 indicates that the TDR is empty and the next transmit data byte is written to TDR. After the byte is written to TDR, TDRE is cleared to 0 until the ASCI transfers the byte from TDR to the TSR and then TDRE is again set to 1. TDRE is set to 1 in IOSTOP mode and during RESET. On ASCIO, if the $\overline{\text{CTSO}}$ pin is auto-enabled in the ASEXTO register and the pin is High, TDRE is reset to 0. **TIE: Transmit Interrupt Enable (Bit 0).** TIE should be set to 1 to enable ASCI transmit interrupt requests. If TIE = 1, an interrupt is requested when TDRE = 1. TIE is cleared to 0 during RESET. #### **ASCI TRANSMIT DATA REGISTERS** Register addresses 06H and 07H hold the ASCI transmit data for channel 0 and channel 1, respectively. # **ASCI Transmit Data Registers Channel 0** ### Mnemonic TDR0 Address 06H Figure 36. ASCI Register # **ASCI Transmit Data Registers Channel 1** #### Mnemonic TDR1 Address 07H Figure 37. ASCI Register #### **ASCI RECEIVE REGISTER** Register addresses 08H and 09H hold the ASCI receive data for channel 0 and channel 1, respectively. ## **ASCI Receive Register Channel 0** #### Mnemonic RDR0 Address 08H Figure 38. ASCI Receive Register Channel 0 # **ASCI Receive Register Channel 1** ### Mnemonic RDR1 Address 09H Figure 39. ASCI Receive Register Channel 1 ### CSI/O CONTROL/STATUS REGISTER The CSI/O Control/Status Register (CNTR) is used to monitor CSI/O status, enable and disable the CSI/O, enable and disable interrupt generation, and select the data clock speed and source. Figure 40. CSI/O Control Register (CNTR: I/O Address = 000AH) **EF:** End Flag (Bit 7). EF is set to 1 by the CSI/O to indicate completion of an 8-bit data transmit or receive operation. If End Interrupt Enable (EIE) bit = 1 when EF is set to 1, a CPU interrupt request is generated. Program access of TRDR only occurs if EF = 1. The CSI/O clears EF to 0 when TRDR is read or written. EF is cleared to 0 during RESET and IOSTOP mode. **EIE:** End Interrupt Enable (Bit 6). EIE is set to 1 to generate a CPU interrupt request. The interrupt request is inhibited if EIE is reset to 0. EIE is cleared to 0 during RESET. **RE:** Receive Enable (Bit 5). A CSI/O receive operation is started by setting RE to 1. When RE is set to 1, the data clock is enabled. In internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted in on the RXS pin in synchronization with the (internal or external) data clock. After receiving 8 bits of data, the CSI/O automatically clears RE to 0, EF is set to 1, and an interrupt (if enabled by EIE = 1) is generated. RE and TE are never both set to 1 at the same time. RE is cleared to 0 during RESET and IOSTOP mode. **TE: Transmit Enable (Bit 4).** A CSI/O transmit operation is started by setting TE to 1. When TE is set to 1, the data clock is enabled. When in internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted out on the TXS pin synchronous with the (internal or external) data clock. After transmitting 8 bits of data, the CSI/O automatically clears TE to 0, sets EF to 1, and requests an interrupt if enabled by EIE = 1. TE and RE are never both set to 1 at the same time. TE is cleared to 0 during RESET and IOSTOP mode. SS2, 1, 0: Speed Select 2, 1, 0 (Bits 2–0). SS2, SS1 and SS0 select the CSI/O transmit/receive clock source and speed. SS2, SS1 and SS0 are all set to 1 during RESET. Table 11 indicates CSI/O Baud Rate Selection. Table 11. CSI/O Baud Rate Selection | SS2 | SS1 | SS0 | Divide Ratio | |-----|-----|-----|---| | 0 | 0 | 0 | ÷20 | | 0 | 0 | 1 | ÷40 | | 0 | 1 | 0 | ÷80 | | 0 | 1 | 1 | ÷160 | | 1 | 0 | 0 | ÷320 | | 1 | 0 | 1 | ÷640 | | 1 | 1 | 0 | ÷1280 | | 1 | 1 | 1 | External Clock Input
(Less Than ÷20) | After $\overline{\text{RESET}}$, the CKS pin is configured as an external clock input (SS2, SS1, SS0 = 1). Changing these values causes CKS to become an output pin and the selected clock is output when transmit or receive operations are enabled. # CSI/O Transmit/Receive Data Register ### Mnemonic TRDR Address 0BH Figure 41. CSI/O Transmit/Receive Data Register # Timer Data Register Channel 0 Low Mnemonic TMDR0L Address 0CH Figure 42. Timer Register Channel 0 Low # **Timer Data Register Channel 0H** ## Mnemonic TMDR0H Address 0DH Figure 43. Timer Data Register Channel 0 High ## **Timer Reload Register Channel 0 Low** Mnemonic RLDR0L Address 0EH Figure 44. Timer Reload Register Low ## **Timer Reload Register Channel 0 High** Mnemonic RLDR0H Address 0FH Figure 45. Timer Reload Register Channel 0 High ## **ASCI TIME CONSTANT REGISTERS** If the SS2-0 bits of the CNTLB register are not 111, and the BRG mode bit in the ASEXT register is 1, the ASCI divides the PHI clock by two times the registers' 16-bit value, plus two. As a result, the clock is presented to the transmitter and receiver for division by 1, 16, or 64, and is output on the CKA pin. If the SS2-0 bits in an ASCI CNTLB register are not 111, and the BRG mode bit in its Extension Control Register is 1, its *new* baud rate generator divides PHI for serial clocking, as follows: bits/second = $$f_{PHI}/(2*(TC+2) \times sampling rate)$$ where TC is the 16-bit value programmed into the ASCI Time Constant High and Low registers. If the ASCI multiplexed CKA pin is selected for the CKA function, it outputs the clock before the final division by the sampling rate, as follows: $$f_{CKAout} = f_{PHI}/(2*(TC+2))$$ Find the TC value for a particular serial bit rate as follows: $TC = (f_{PHI}/(2 \text{ x bits/second x sampling rate})) - 2$ Figure 53. ASCI Time Constant Registers Table 16 indicates all DMA transfer mode combinations of DMO, DM1, SMO, and SM1. Because I/O to/from I/O transfers are not implemented, 12 combinations are available. **Table 16. Transfer Mode Combinations** | DM1 | DM0 | SM1 | SM0 | Transfer Mode | Address Increment/Decrement | |-----|-----|-----|-----|----------------|-----------------------------| | 0 | 0 | 0 | 0 | Memory→Memory | SAR0 + 1, DAR0 + 1 | | 0 | 0 | 0 | 1 | Memory→Memory | SAR0-1, DAR0+1 | | 0 | 0 | 1 | 0 | Memory*→Memory | SAR0 fixed, DAR0+1 | | 0 | 0 | 1 | 1 | I/O→Memory | SAR0 fixed, DAR0+1 | | 0 | 1 | 0 | 0 | Memory→Memory | SAR0+1, DAR0-1 | | 0 | 1 | 0 | 1 | Memory→Memory | SAR0-1, DAR0-1 | | 0 | 1 | 1 | 0 | Memory*→Memory | SAR0 fixed, DAR0-1 | | 0 | 1 | 1 | 1 | I/O→Memory | SAR0 fixed, DAR0-1 | | 1 | 0 | 0 | 0 | Memory→Memory* | SAR0+1, DAR0 fixed | | 1 | 0 | 0 | 1 | Memory→Memory* | SAR0-1, DAR0 fixed | | 1 | 0 | 1 | 0 | Reserved | | | 1 | 0 | 1 | 1 | Reserved | | | 1 | 1 | 0 | 0 | Memory→I/O | SAR0+1, DAR0 fixed | | 1 | 1 | 0 | 1 | Memory→I/O | SAR0-1, DAR0 fixed | | 1 | 1 | 1 | 0 | Reserved | | | 1 | 1 | 1 | 1 | Reserved | | **Note:** * Includes memory mapped I/O. **MMOD:** Memory Mode Channel 0 (Bit 1). When channel 0 is configured for memory to/from memory transfers there is no Request Handshake signal to control the transfer timing. Instead, two automatic transfer timing modes are selectable: burst (MMOD = 1) and cycle steal (MMOD = 0). For burst memory to/from memory transfers, the DMAC takes control of the bus continuously until the DMA transfer completes (as indicated by the byte count register = 0). In cycle steal mode, the CPU is provided a cycle for each DMA byte transfer cycle until the transfer is completed. For channel 0 DMA with I/O source or destination, the selected Request signal times the transfer ignoring MMOD. MMOD is cleared to 0 during RESET. #### REFRESH CONTROL REGISTER ## Mnemonic RCR Address 36H Figure 77. Refresh Control Register (RCR: I/O Address = 36H) The Refresh Control Register (RCR) specifies the interval and length of refresh cycles, while enabling or disabling the refresh function. **REFE:** Refresh Enable (Bit 7). REFE = 0 disables the refresh controller, while REFE = 1 enables refresh cycle insertion. REFE is set to 1 during RESET. **REFW:** Refresh Wait (Bit 6). REFW = 0 causes the refresh cycle to be two clocks in duration. REFW = 1 causes the refresh cycle to be three clocks in duration by adding a refresh wait cycle (TRW). REFW is set to 1 during RESET. **CYC1, 0: Cycle Interval (Bit 1,0).** CYC1 and CYC0 specify the interval (in clock cycles) between refresh cycles. When dynamic RAM requires 128 refresh cycles every 2 ms (or 256 cycles in every 4 ms), the required refresh interval is less than or equal to 15.625 μs. Thus, the underlined values indicate the best refresh interval depending on CPU clock frequency. CYC0 and CYC1 are cleared to 0 during RESET (see Table 18). Table 18. DRAM Refresh Intervals | | | | Time Interval | | | | | | | | |------|------|--------------------|-------------------|--------------------|-----------------|-----------------|-----------------|--|--|--| | CYC1 | CYC0 | Insertion Interval | PHI: 10 MHz | 8 MHz | 6 MHz | 4 MHz | 2.5 MHz | | | | | 0 | 0 | 10 states | (1.0 <i>µ</i> s)* | (1.25 <i>µ</i> s)* | 1.66 <i>μ</i> s | 2.5 <i>μ</i> s | 4.0 <i>μ</i> s | | | | | 0 | 1 | 20 states | (2.0 µs)* | (2.5 <i>μ</i> s)* | 3.3 <i>μ</i> s | 5.0 <i>μ</i> s | 8.0 <i>μ</i> s | | | | | 1 | 0 | 40 states | (4.0 μs)* | (5.0 <i>μ</i> s)* | 6.6 <i>μ</i> s | 10.0 <i>μ</i> s | 16.0 <i>μ</i> s | | | | | 1 | 1 | 80 states | (8.0 µs)* | (10.0 µs)* | 13.3 <i>μ</i> s | 20.0 μs | 32.0 <i>μ</i> s | | | | Note: *calculated interval. Refresh Control and Reset. After RESET, based on the initialized value of RCR, refresh cycles occur with an interval of 10 clock cycles and be 3 clock cycles in duration. ### **Dynamic RAM Refresh Operation** - 1. Refresh Cycle insertion is stopped when the CPU is in the following states: - a. During RESET - b. When the bus is released in response to BUSREQ - c. During SLEEP mode - d. During \overline{WAIT} states - 2. Refresh cycles are suppressed when the bus is released in response to BUSREQ. However, the refresh timer continues to operate. The time at which the first refresh cycle occurs after the Z8S180/Z8L180 reacquires the bus depends on the refresh timer. This cycle offers no timing relationship with the bus exchange. - 3. Refresh cycles are suppressed during SLEEP mode. If a refresh cycle is requested during SLEEP mode, the refresh cycle request is internally latched (until replaced with the next refresh request). The latched refresh cycle is inserted at the end of the first machine cycle after SLEEP mode is exited. After this initial cycle, the time at which the next refresh cycle occurs depends on the refresh time and offers no relationship with the exit from SLEEP mode. - 4. The refresh address is incremented by one for each successful refresh cycle, not for each refresh. Thus, independent of the number of missed refresh requests, each refresh bus cycle uses a refresh address incremented by one from that of the previous refresh bus cycles. ### MMU COMMON BASE REGISTER The Common Base Register (CBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit phys- ical address for Common Area 1 accesses. All bits of CBR are reset to 0 during RESET. ## **MMU Common Base Register** Mnemonic CBR Address 38H Figure 78. MMU Common Base Register (CBR: I/O Address = 38H) #### MMU BANK BASE REGISTER The Bank Base Register (BBR) specifies the base address (on 4-KB boundaries) used to generate a 20-bit physical ad- dress for Bank Area accesses. All bits of BBR are reset to 0 during RESET. ## **MMU Bank Base Register** Mnemonic BBR Address 39H Figure 79. MMU Bank Base Register (BBR: I/O Address = 39H) ### MMU COMMON/BANK AREA REGISTER The Common/Bank Area Register (CBAR) specifies boundaries within the Z8S180/Z8L180 64-KB logical address space for up to three areas; Common Area), Bank Area and Common Area 1. ## MMU Common/Bank Area Register Mnemonic CBAR Address 3AH Figure 80. MMU Common/Bank Area Register (CBAR: I/O Address = 3AH)