

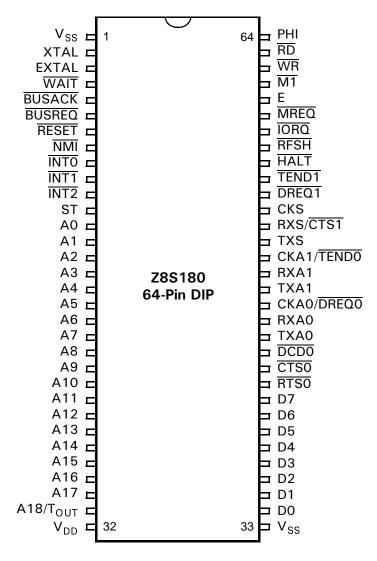
Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in


Details

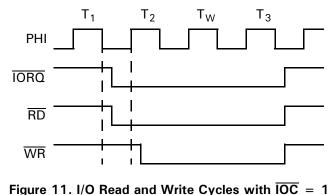
Product Status	Obsolete
Core Processor	Z8S180
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	33MHz
Co-Processors/DSP	-
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8s18033veg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN IDENTIFICATION

Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes


Pin Num	ber and Packa	ige Type				Pin Status	
QFP	PLCC	DIP	Default Function	Secondary Function	RESET	BUSACK	SLEEI
1	9	8	NMI		IN	IN	IN
2			NC				
3			NC				
4	10	9	INTO		IN	IN	IN
5	11	10	INT1		IN	IN	IN
6	12	11	INT2		IN	IN	IN
7	13	12	ST		High	High	High
8	14	13	A0		3T	3Т	High
9	15	14	A1		3T	3Т	High
10	16	15	A2		3T	3Т	High
11	17	16	A3		ЗT	3Т	High
12	18		V _{SS}		V _{SS}	V _{SS}	V _{SS}
13	19	17	A4		3T	3Т	High
14			NC				
15	20	18	A5		3T	3T	High
16	21	19	A6		3T	3T	High
17	22	20	A7		3T	3T	High
18	23	21	A8		3T	3T	High
19	24	22	A9		3T	3T	High
20	25	23	A10		3T	3T	High
21	26	24	A11		3T	3T	High
22			NC				
23			NC				
24	27	25	A12		3T	3Т	High
25	28	26	A13		3T	3Т	High
26	29	27	A14		ЗT	3Т	High
27	30	28	A15		ЗT	3Т	High
28	31	29	A16		3T	3Т	High
29	32	30	A17		3T	3Т	High
30			NC				
31	33	31	A18		3T	3T	High
			T _{OUT}		N/A	OUT	OUT
32	34	32	V _{DD}		V _{DD}	V _{DD}	V _{DD}
33	35		A19		3T	3Т	High
34	36	33	V _{SS}		V _{SS}	V _{SS}	V _{SS}
35	37	34	DO		35 3T	3T	30 3T
36	38	35	D1		3T	3T	3T
37	39	36	D2		3T	3T	3T
38	40	37	D3		3T	3T	3T

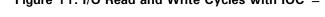
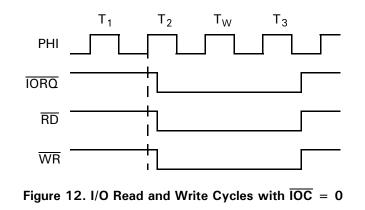

Pin Number and Package Type **Pin Status** Default Secondary QFP PLCC DIP Function Function RESET BUSACK SLEEP D4 39 41 38 3T 3T 3T 40 42 39 D5 ЗT 3T ЗT 41 43 40 D6 ЗT ЗT ЗT 42 NC NC 43 D7 44 ЗT ЗT ЗT 44 41 45 45 42 **RTSO** OUT High High 46 46 43 CTS0 OUT IN IN DCD0 47 47 44 IN IN IN OUT OUT 48 48 45 TXA0 High 49 49 46 RXA0 IN IN IN 47 ЗT I/O I/O 50 50 CKA0 **DREQ0** N/A IN IN 51 NC 52 51 48 TXA1 OUT OUT High 52 TEST 53 53 49 RXA1 IN IN IN 54 I/O I/O 55 54 50 CKA1 ЗT **TENDO** N/A High High TXS OUT OUT 56 55 51 High 57 56 52 RXS IN IN IN CTS1 N/A IN IN 58 57 53 CKS 3T I/O I/O 58 54 DREQ1 IN ЗT IN 59 60 59 55 TEND1 OUT High High HALT 60 56 High 61 High Low 62 NC NC 63 RFSH 57 OUT 64 61 High High 58 IORQ 3T 65 62 High High 66 63 59 MREQ High ЗT High 67 64 Е Low OUT 60 OUT M1 68 65 61 High High High WR 69 66 62 3T High High 70 67 63 RD ЗT High High 71 68 64 PHI OUT OUT OUT V_{SS} 72 1 1 GND GND GND 73 2 GND V_{SS} GND GND 3 74 **XTAL** OUT OUT 2 OUT NC 75

Table 2. Pin Status During RESET, BUSACK, and SLEEP Modes (Continued)


PIN IDENTIFICATION (Continued)

Pin Num	Pin Number and Package Type					Pin Status		
QFP	PLCC	DIP	Default Function	Secondary Function	RESET	BUSACK	SLEEP	
76	4	3	EXTAL		IN	IN	IN	
77	5	4	WAIT		IN	IN	IN	
78	6	5	BUSACK		High	OUT	OUT	
79	7	6	BUSREQ		IN	IN	IN	
80	8	7	RESET		IN	IN	IN	

When $\overline{\text{IOC}} = 0$, the timing of the $\overline{\text{IORQ}}$ and $\overline{\text{RD}}$ signals match the timing of the Z80. The $\overline{\text{IORQ}}$ and $\overline{\text{RD}}$ signals go active as a result of the rising edge of T2. (Figure 12.)

HALT and Low-Power Operating Modes. $Th\,e$

Z8S180/Z8L180 can operate in seven modes with respect to activity and power consumption:

- Normal Operation
- HALT Mode
- IOSTOP Mode
- SLEEP Mode
- SYSTEM STOP Mode
- IDLE Mode
- STANDBY Mode (with or without QUICK RECOV-ERY)

Normal Operation. In this state, the Z8S180/Z8L180 processor is fetching and running a program. All enabled functions and portions of the device are active, and the \overline{HALT} pin is High.

HALT Mode. This mode is entered by the HALT instruction. Thereafter, the Z8S180/Z8L180 processor continually fetches the following opcode but does not execute it and drives the HALT, ST and $\overline{M1}$ pins all Low. The oscillator and PHI pin remain Active. Interrupts and bus granting to external Masters, and DRAM refresh can occur, and all onchip I/O devices continue to operate including the DMA channels.

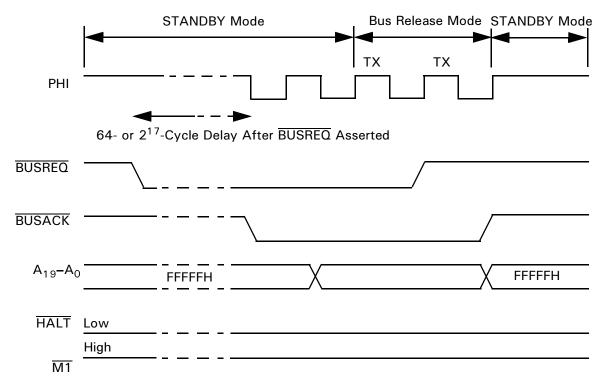


Figure 18. Bus Granting to External Master During STANDBY Mode

AC CHARACTERISTICS-Z8S180

			Z8S180-	-20 MHz	Z8S180-	–33 MHz	
Number	Symbol	Item	Min	Max	Min	Max	Unit
1	t _{CYC}	Clock Cycle Time	50	DC	30	DC	ns
2	t _{CHW}	Clock "H" Pulse Width	15		10	_	ns
3	t _{CLW}	Clock "L" Pulse Width	15	_	10	_	ns
4	t _{CF}	Clock Fall Time	_	10		5	ns
5	t _{CR}	Clock Rise Time	_	10	_	5	ns
6	t _{AD}	PHI Rise to Address Valid Delay	_	30	_	15	ns
7	t _{AS}	Address Valid to MREQ Fall or IORQ Fall)	5	_	5	_	ns
8	t _{MED1}	PHI Fall to MREQ Fall Delay	_	25		15	ns
9	t _{RDD1}	PHI Fall to \overline{RD} Fall Delay $\overline{IOC} = 1$	_	25	_	15	ns
		PHI Rise to \overline{RD} Rise Delay $\overline{IOC} = 0$	—	25		15	
10	t _{M1D1}	PHI Rise to $\overline{M1}$ Fall Delay	—	35	—	15	ns
11	t _{AH}	Address Hold Time from MREQ, IOREQ, RD, WR High	5	_	5	—	ns
12	t _{MED2}	PHI Fall to MREQ Rise Delay	_	25	_	15	ns
13	t _{RDD2}	PHI Fall to RD Rise Delay	_	25	_	15	ns
14	t _{M1D2}	PHI Rise to $\overline{M1}$ Rise Delay	—	40	_	15	ns
15	t _{DRS}	Data Read Set-up Time	10		5	_	ns
16	t _{DRH}	Data Read Hold Time	0		0	_	ns
17	t _{STD1}	PHI Fall to ST Fall Delay	—	30	_	15	ns
18	t _{STD2}	PHI Fall to ST Rise Delay	_	30	_	15	ns
19	t _{WS}	WAIT Set-up Time to PHI Fall	15		10	_	ns
20	t _{WH}	WAIT Hold Time from PHI Fall	10	_	5	_	ns
21	t _{WDZ}	PHI Rise to Data Float Delay	_	35	_	20	ns
22	t _{WRD1}	PHI Rise to WR Fall Delay	_	25		15	ns
23	t _{WDD}	PHI Fall to Write Data Delay Time	_	25		15	ns
24	t _{WDS}	Write Data Set-up Time to WR Fall	10		10	_	ns
25	t _{WRD2}	PHI Fall to WR Rise Delay	_	25		15	ns
26	t _{WRP}	WR Pulse Width (Memory Write Cycle)	80		45	_	ns
26a		WR Pulse Width (I/O Write Cycle)	150		70	_	ns
27	t _{WDH}	Write Data Hold Time from WR Rise	10	_	5	_	ns
28	t _{IOD1}	PHI Fall to $\overline{\text{IORQ}}$ Fall Delay $\overline{\text{IOC}} = 1$	_	25		15	ns
		PHI Rise to \overline{IORQ} Fall Delay $\overline{IOC} = 0$		25		15	
29	t _{IOD2}	PHI Fall to IORQ Rise Delay	_	25	_	15	ns

Table 8. Z8S180 AC Characteristics

 $t_{\rm IOD3}$

t_{INTS}

30

31

125

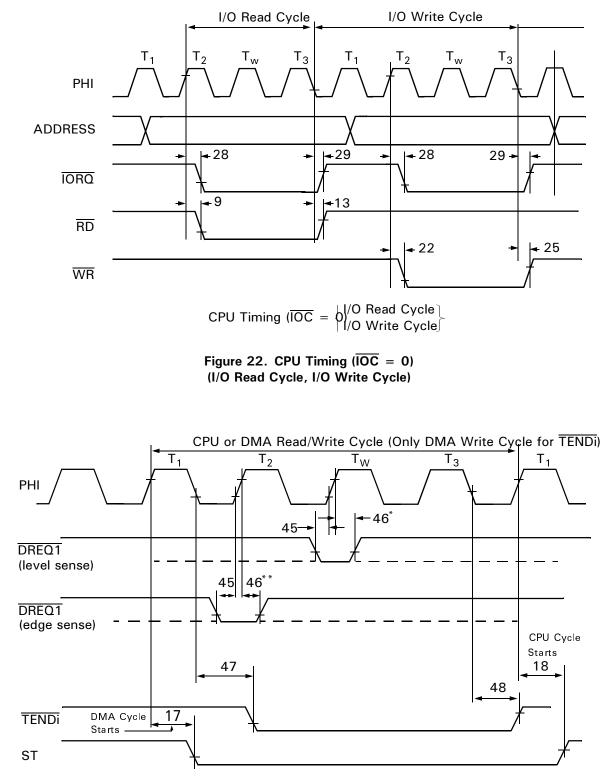
20

_

—

80

15


M1 Fall to IORQ Fall Delay

INT Set-up Time to PHI Fall

ns

ns

TIMING DIAGRAMS (Continued)

Notes:

 $^{*}T_{\text{DRQS}}$ and T_{DRQH} are specified for the rising edge of the clock followed by $T_{3}.$

 $^{*\,*}T_{DRQS}$ and T_{DRQH} are specified for the rising edge of the clock.

Figure 23. DMA Control Signals

TIMING DIAGRAMS (Continued)

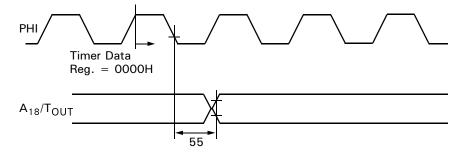


Figure 27. Timer Output Timing

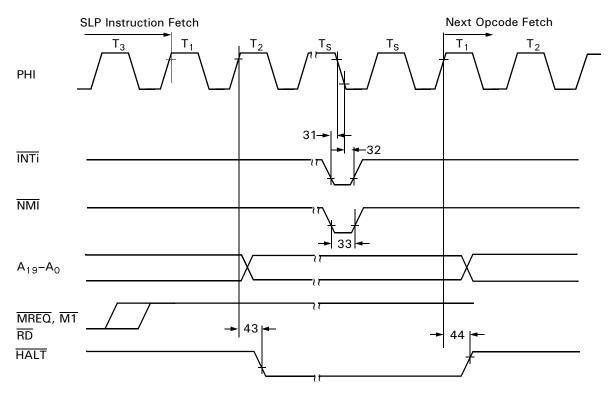
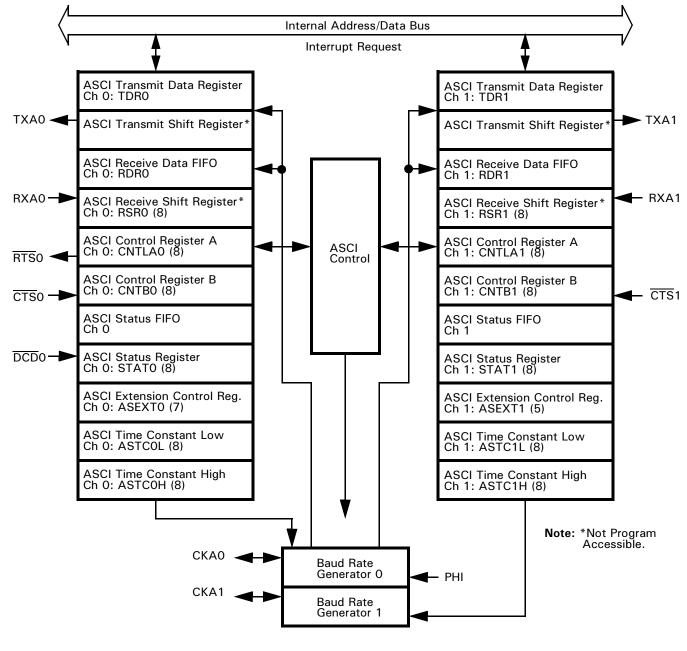



Figure 28. SLP Execution Cycle

ASCI REGISTER DESCRIPTION

ASCI Transmit Shift Register 0,1. When the ASCI Transmit Shift Register (TSR) receives data from the ASCI Transmit Data Register (TDR), the data is shifted out to the TXA pin. When transmission is completed, the next byte (if available) is automatically loaded from TDR into TSR and the next transmission starts. If no data is available for trans-

mission, TSR idles by outputting a continuous High level. This register is not program-accessible

ASCI Transmit Data Register 0,1 (TDR0, 1: I/O address = 06H, 07H). Data written to the ASCI Transmit Data Register is transferred to the TSR as soon as TSR is empty. Data can be written while TSR is shifting out the previous byte of data. Thus, the ASCI transmitter is double buffered. Data can be written into and read from the ASCI Transmit Data Register. If data is read from the ASCI Transmit Data Register, the ASCI data transmit operation is not affected by this READ operation.

ASCI Receive Shift Register 0,1 (RSR0,1). This register receives data shifted in on the RXA pin. When full, data is automatically transferred to the ASCI Receive Data Register (RDR) if it is empty. If RSR is not empty when the next incoming data byte is shifted in, an overrun error occurs. This register is not program accessible.

ASCI Receive Data FIFO 0,1 (RDR0, 1:I/O Address = **08H**, **09H**). The ASCI Receive Data Register is a read-only register. When a complete incoming data byte is assembled in RSR, it is automatically transferred to the 4 character Receive Data First-In First-Out (FIFO) memory. The oldest character in the FIFO (if any) can be read from the Receive Data Register (RDR). The next incoming data byte can be shifted into RSR while the FIFO is full. Thus, the ASCI receiver is well buffered.

ASCI STATUS FIFO

This four-entry FIFO contains Parity Error, Framing Error, Rx Overrun, and Break status bits associated with each character in the receive data FIFO. The status of the oldest character (if any) can be read from the ASCI status registers.

ASCI CHANNEL CONTROL REGISTER A

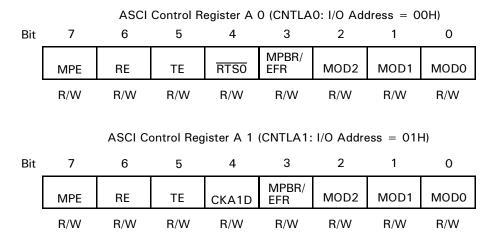
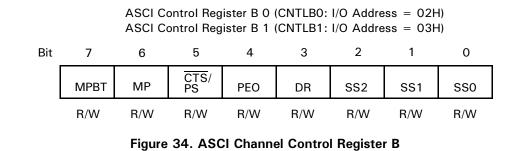


Figure 33. ASCI Channel Control Register A


MPE: Multi-Processor Mode Enable (Bit 7). The ASCI features a multiprocessor communication mode that utilizes an extra data bit for selective communication when a number of processors share a common serial bus. Multiprocessor data format is selected when the MP bit in CNTLB is set to 1. If multiprocessor mode is not selected (MP bit in CNTLB = 0), MPE has no effect. If multiprocessor mode is selected, MPE enables or disables the wake-up feature as follows. If MBE is set to 1, only received bytes in which the multiprocessor bit (MPB) = 1 can affect the RDRF and error flags. Effectively, other bytes (with MPB = 0) are *ignored* by the ASCI. If MPE is reset to 0, all bytes, regardless of

the state of the MPB data bit, affect the REDR and error flags. MPE is cleared to 0 during RESET.

RE: Receiver Enable (Bit 6). When RE is set to 1, the ASCI transmitter is enabled. When TE is reset to 0, the transmitter is disables and any transmit operation in progress is interrupted. However, the TDRE flag is not reset and the previous contents of TDRE are held. TE is cleared to 0 in IOSTOP mode during RESET.

TE: Transmitter Enable (Bit 5). When TE is set to 1, the ASCI receiver is enabled. When \overline{TE} is reset to 0, the transmitter is disabled and any transmit operation in progress is interrupted. However, the TDRE flag is not reset and the pre-

ASCI CHANNEL CONTROL REGISTER B

MPBT: Multiprocessor Bit Transmit (Bit 7). When multiprocessor communication format is selected (MP bit = 1), MPBT is used to specify the MPB data bit for transmission. If MPBT = 1, then MPB = 1 is transmitted. If MPBT = 0, then MPB = 0 is transmitted. The MPBT state is undefined during and after RESET.

MP: Multiprocessor Mode (Bit 6). When MP is set to 1, the data format is configured for multiprocessor mode based on MOD2 (number of data bits) and MOD0 (number of stop bits) in CNTLA. The format is as follows:

Start bit + 7 or 8 data bits + MPB bit + 1 or 2 stop bits

Multiprocessor (MP = 1) format offers no provision for parity. If MP = 0, the data format is based on MODO, MOD1, MOD2, and may include parity. The MP bit is cleared to 0 during RESET.

 $\overline{\text{CTS}}/\text{PS}$: Clear to Send/Prescale (Bit 5). When read, $\overline{\text{CTS}}/\text{PS}$ reflects the state of the external $\overline{\text{CTS}}$ input. If the $\overline{\text{CTS}}$ input pin is High, $\overline{\text{CTS}}/\text{PS}$ is read as 1.

Note: When the \overline{CTS} input pin is High, the TDRE bit is inhibited (that is, held at 0).

For channel 1, the $\overline{\text{CTS}}$ input is multiplexed with RXS pin (Clocked Serial Receive Data). Thus, $\overline{\text{CTS}}/\text{PS}$ is only valid when read if the channel 1 CTS1E bit = 1 and the $\overline{\text{CTS}}$ input pin function is selected. The READ data of $\overline{\text{CTS}}/\text{PS}$ is not affected by $\overline{\text{RESET}}$.

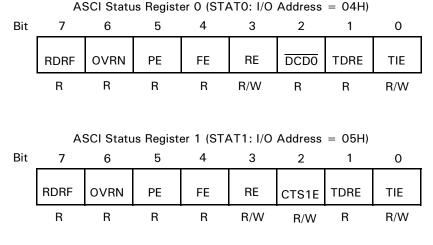
If the SS2-0 bits in this register are not 111, and the BRG mode bit in the ASEXT register is 0, then writing to this bit sets the prescale (PS) control. Under those circumstances, a 0 indicates a divide-by-10 prescale function while a 1 indicates divide-by-30. The bit resets to 0.

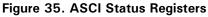
PEO: Parity Even Odd (Bit 4) . PEO selects oven or odd parity. PEO does not affect the enabling/disabling of parity (MOD1 bit of CNTLA). If PEO is cleared to 0, even parity is selected. If PEO is set to 1, odd parity is selected. PEO is cleared to 0 during RESET.

DR: Divide Ratio (Bit 3). If the X1 bit in the ASEXT register is 0, this bit specifies the divider used to obtain baud rate from the data sampling clock. If DR is reset to 0, divide-by-16 is used, while if DR is set to 1, divide-by-64 is used. DR is cleared to 0 during RESET.

SS2,1,0: Source/Speed Select 2,1,0 (Bits 2–0). First, if these bits are 111, as they are after a RESET, the CKA pin is used as a clock input, and is divided by 1, 16, or 64 depending on the DR bit and the X1 bit in the ASEXT register.

If these bits are not 111 and the BRG mode bit is ASEXT is 0, then these bits specify a power-of-two divider for the PHI clock as indicated in Table 10.


Setting or leaving these bits as 111 makes sense for a channel only when its CKA pin is selected for the CKA function. CKAO/CKS offers the CKAO function when bit 4 of the System Configuration Register is 0. $\overline{DCDO}/CKA1$ offers the CKA1 function when bit 0 of the Interrupt Edge register is 1.


Table 10. Divide Ratio

SS2	SS1	SS0	Divide Ratio
0	0	0	÷1
0	0	1	÷2
0	1	0	÷4
0	1	1	÷8
1	0	0	÷16
1	0	1	÷32
1	1	0	÷64
1	1	1	External Clock

ASCI STATUS REGISTER 0,1

Each ASCI channel status register (STAT0,1) allows interrogation of ASCI communication, error and modem control signal status, and the enabling or disabling of ASCI interrupts.

RDRF: Receive Data Register Full (Bit 7). RDRF is set to 1 when an incoming data byte is loaded into an empty Rx FIFO. If a framing or parity error occurs, RDRF is still set and the receive data (which generated the error) is still loaded into the FIFO. RDRF is cleared to 0 by reading RDR and most recently received character in the FIFO from IOSTOP mode, during RESET and for ASCI0 if the DCD0 input is auto-enabled and is negated (High).

OVRN: Overrun Error (Bit 6). An overrun condition occurs if the receiver finishes assembling a character but the Rx FIFO is full so there is no room for the character. However, this status bit is not set until the most recent character received before the overrun becomes the oldest byte in the FIFO. This bit is cleared when software writes a 1 to the EFR bit in the CNTLA register. The bit may also be cleared by RESET in IOSTOP mode or ASCIO if the DCDO pin is auto enabled and is negated (High).

Note: When an overrun occurs, the receiver does not place the character in the shift register into the FIFO, nor any subsequent characters, until the most recent good character enters the top of the FIFO so that OVRN is set. Software then writes a 1 to EFR to clear it.

PE: Parity Error (Bit 5). A parity error is detected when parity checking is enabled. When the MOD1 bit in the

CNTLA register is 1, a character is assembled in which the parity does not match the PEO bit in the CNTLB register. However, this status bit is not set until or unless the error character becomes the oldest one in the Rx FIFO. PE is cleared when software writes a 1 to the EFR bit in the CNTRLA register. PE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

FE: Framing Error (Bit 4). A framing error is detected when the stop bit of a character is sampled as O/SPACE. However, this status bit is not set until/unless the error character becomes the oldest one in the Rx FIFO. FE is cleared when software writes a 1 to the EFR bit in the CNTLA register. FE is also cleared by RESET in IOSTOP mode, or on ASCIO, if the DCDO pin is auto-enabled and is negated (High).

REI: Receive Interrupt Enable (Bit 3). RIE should be set to 1 to enable ASCI receive interrupt requests. When RIE is 1, the Receiver requests an interrupt when a character is received and RDRF is set, but only if neither DMA channel requires its request-routing field to be set to receive data from this ASCI. That is, if SM1–0 are 11 and SAR17–16 are 10, or DIM1 is 1 and IAR17–16 are 10, then ASCI1 does not request an interrupt for RDRF. If RIE is 1, either ASCI requests an interrupt when OVRN, PE or FE is set, and

ASCI RECEIVE REGISTER

Register addresses 08H and 09H hold the ASCI receive data for channel 0 and channel 1, respectively.

ASCI Receive Register Channel 0

Mnemonic RDR0 Address 08H

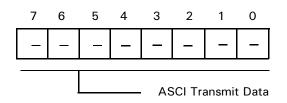


Figure 38. ASCI Receive Register Channel 0

ASCI Receive Register Channel 1

Mnemonic RDR1 Address 09H

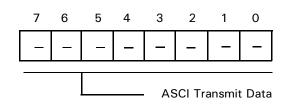


Figure 39. ASCI Receive Register Channel 1

CSI/O CONTROL/STATUS REGISTER

The CSI/O Control/Status Register (CNTR) is used to monitor CSI/O status, enable and disable the CSI/O, enable and disable interrupt generation, and select the data clock speed and source.

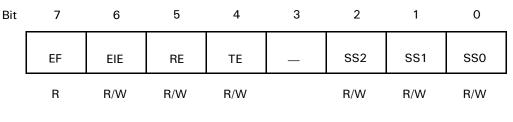


Figure 40. CSI/O Control Register (CNTR: I/O Address = 000AH)

EF: End Flag (Bit 7). EF is set to 1 by the CSI/O to indicate completion of an 8-bit data transmit or receive operation. If End Interrupt Enable (EIE) bit = 1 when EF is set to 1, a CPU interrupt request is generated. Program access of TRDR only occurs if EF = 1. The CSI/O clears EF to 0 when TRDR is read or written. EF is cleared to 0 during RESET and IOSTOP mode.

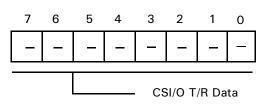
EIE: End Interrupt Enable (Bit 6). EIE is set to 1 to generate a CPU interrupt request. The interrupt request is inhibited if EIE is reset to 0. EIE is cleared to 0 during RESET.

RE: Receive Enable (Bit 5). A CSI/O receive operation is started by setting RE to 1. When RE is set to 1, the data clock is enabled. In internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted in on the RXS

pin in synchronization with the (internal or external) data clock. After receiving 8 bits of data, the CSI/O automatically clears RE to 0, EF is set to 1, and an interrupt (if enabled by EIE = 1) is generated. RE and TE are never both set to 1 at the same time. RE is cleared to 0 during RESET and IOSTOP mode.

TE: Transmit Enable (Bit 4). A CSI/O transmit operation is started by setting TE to 1. When TE is set to 1, the data clock is enabled. When in internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted out on the TXS pin synchronous with the (internal or external) data clock. After transmitting 8 bits of data, the CSI/O automatically clears TE to 0, sets EF to 1, and requests an interrupt if enabled by EIE = 1. TE and RE are never both set to 1 at the same time. TE is cleared to 0 during RESET and IOSTOP mode.

SS2, **1**, **0**: **Speed Select 2**, **1**, **0** (**Bits 2–0**). SS2, SS1 and SS0 select the CSI/O transmit/receive clock source and speed. SS2, SS1 and SS0 are all set to 1 during RESET. Table 11 indicates CSI/O Baud Rate Selection.


Table 11. CSI/O Baud Rate Selection	Table	11.	CSI/O	Baud	Rate	Selection
-------------------------------------	-------	-----	-------	------	------	-----------

SS2	SS1	SS0	Divide Ratio
0	0	0	÷20
0	0	1	÷40
0	1	0	÷80
0	1	1	÷160
1	0	0	÷320
1	0	1	÷640
1	1	0	÷1280
1	1	1	External Clock Input (Less Than ÷20)

After $\overline{\text{RESET}}$, the CKS pin is configured as an external clock input (SS2, SS1, SS0 = 1). Changing these values causes CKS to become an output pin and the selected clock is output when transmit or receive operations are enabled.

CSI/O Transmit/Receive Data Register

Mnemonic TRDR Address 0BH

Timer Data Register Channel 0 Low

Mnemonic TMDR0L Address 0CH

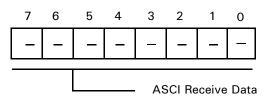


Figure 42. Timer Register Channel 0 Low

Timer Data Register Channel OH

Mnemonic TMDR0H Address 0DH

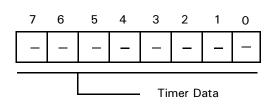


Figure 43. Timer Data Register Channel 0 High

Timer Reload Register Channel 0 Low

Mnemonic RLDROL Address 0EH

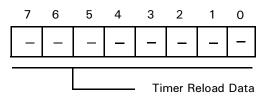


Figure 44. Timer Reload Register Low

Timer Reload Register Channel 0 High

Mnemonic RLDROH Address OFH

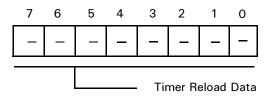
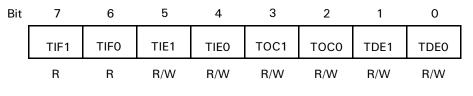



Figure 45. Timer Reload Register Channel 0 High

TIMER CONTROL REGISTER

The Timer Control Register (TCR) monitors both channels (PRT0, PRT1) TMDR status. It also controls the enabling

and disabling of down-counting and interrupts, and controls the output pin A18/ T_{OUT} for PRT1.

TIF1: Timer Interrupt Flag 1 (Bit 7). When TMDR1 decrements to 0, TIF1 is set to 1. This condition generates an interrupt request if enabled by TIE1 = 1. TIF1 is reset to 0 when TCR is read and the higher or lower byte of TMDR1 is read. During RESET, TIF1 is cleared to 0.

TIFO: Timer Interrupt Flag 0 (Bit 6). When TMDR0 decrements to 0, TIFO is set to 1. This condition generates an interrupt request if enabled by TIEO = 1. TIFO is reset to 0 when TCR is read and the higher or lower byte of TMDR0 is read. During RESET, TIFO is cleared to 0.

TIE1: Timer Interrupt Enable 1 (Bit 5). When TIEO is set to 1, TIF1 = 1 generates a CPU interrupt request. When TIEO is reset to 0, the interrupt request is inhibited. During RESET, TIEO is cleared to 0.

TOC1, 0: Timer Output Control (Bits 3, 2). TOC1 and TOC0 control the output of PRT1 using the multiplexed A18/ T_{OUT} pin as indicated in Table 12. During RESET, TOC1 and TOC0 are cleared to 0. If bit 3 of the IAR1B register is 1, the T_{OUT} function is selected. By programming

TOC1 and TOC0, the A18/ T_{OUT} pin can be forced High, Low, or toggled when TMDR1 decrements to 0.

Table 12. Timer Output Control

TOC1	TOC0		Output
0	0	Inhibited	The A18/T _{OUT} pin is not
			affected by the PRT
0	1	Toggled	If bit 3 of IAR1B is 1, the
1	0	0	A18/T _{OUT} pin is toggled or
1	1	1	set Low or High as
			indicated

TDE1, 0: Timer Down Count Enable (Bits 1, 0). TDE1 and TDE0 enable and disable down-counting for TMDR1 and TMDR0, respectively. When TDEn (n = 0,1) is set to 1, down-counting is stopped and TMDRn is freely read or written. TDE1 and TDE0 are cleared to 0 during RESET and TMDRn does not decrement until TDEn is set to 1.

DMA DESTINATION ADDRESS REGISTER CHANNEL 0

The DMA Destination Address Register Channel 0 specifies the physical destination address for channel 0 transfers. The register contains 20 bits and can specify up to 1024-KB memory addresses or up to 64-KB I/O addresses. Channel 0 destination can be memory, I/O, or memory mapped I/O. For I/O, the MS bits of this register identify the Request Handshake signal for channel 0.

DMA Destination Address Register Channel 0 Low

Mnemonic DAR0L Address 23H

Figure 58. DMA Destination Address Register Channel 0 Low

DMA Destination Address Register Channel 0 High

Mnemonic DAR0H Address 24H

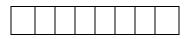


Figure 59. DMA Destination Address Register Channel 0 High

DMA Destination Address Register Channel 0B

Mnemonic DAR0B Address 25H

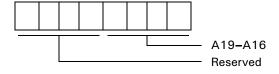


Figure 60. DMA Destination Address Register Channel 0B

If the DMA destination is in I/O space, bits 1–0 of this register select the DMA request signal for DMA0, as follows:

Bit 1 (A17)	Bit 0 (A16)	DMA Transfer Request
0	0	DREQ0 (external)
0	1	TDR0 (ASCI0)
1	0	TDR1 (ASCI1)
1	1	Not Used

DMA I/O ADDRESS REGISTER

The DMA I/O Address Register specifies the I/O device for channel 1 transfers. This address may be a destination or source I/O device. IAR1L and IAR1H each contain 8 address bits. The most significant byte identifies the Request Handshake signal and controls the Alternating Channel feature.

DMA I/O Address Register Channel 1 Low

Mnemonic IAR1L Address 2BH

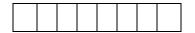


Figure 68. DMA I/O Address Register Channel 1 Low

DMA I/O Address Register Channel 1 High

Mnemonic IAR1H Address 2CH

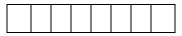
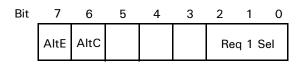
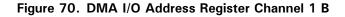




Figure 69. DMA I/O Address Register Channel 1 High

DMA I/O Address Register Channel 1 B

Mnemonic IAR1B Address 2DH

AltE. The AltE bit should be set only when both DMA channels are programmed for the same I/O source or I/O destination. In this case, a *channel end* condition (byte count = 0) on channel 0 sets bit 6 (AltC), which subsequently enables the channel 1 request and blocks the channel 0 request. Similarly, a channel end condition on channel 1 clears bit 6 (AltC), which then enables the channel 0 request and blocks the channel 1 request. For external requests, the request from the device must be routed or connected to both the DREQO and DREQ1 pins.

AltC. If bit (AltE) is 0, the AltC bit has no effect. When bit 7 (AltE) is 1 and the AltC bit is 0, the request signal selected by bits 2–0 is not presented to channel 1; however, the channel 0 request operates normally. When AltE is 1 and AltC is 1, the request selected by SAR18–16 or DAR18–16 is not presented to channel 0; however, the channel 1 request operates normally. The AltC bit can be written by software to select which channel should operate first; however, this operation should be executed only when both channels are stopped (both DE1 and DE0 are 0).

Req1Sel. If bit DIM1 in the DCNTL register is 1, indicating an I/O source, the following bits select which source hand-shake signal should control the transfer:

gram
gra

If DIM1 is 0, indicating an I/O destination, the following bits select which destination handshake signal should control the transfer:

000	DREQ1 pin
001	ASCI0 TDRE
010	ASCI1 TDRE
Other	Reserved, do not program

DMA STATUS REGISTER

The DMA Status Register (DSTAT) is used to enable and disable DMA transfer and DMA termination interrupts.

DMA Status Register

Mnemonic DSTAT Address 30H

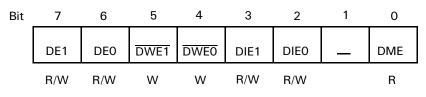


Figure 71. DMA Status Register (DSTAT: I/O Address = 30H)

DE1: DMA Enable Channel 1 (Bit 7). When DE1 = 1 and DME = 1, channel 1 DMA is enabled. When a DMA transfer terminates (BCR1 = 0), DE1 is reset to 0 by the DMAC. When DE1 = 0 and the DMA interrupt is enabled (DIE1 = 1), a DMA interrupt request is made to the CPU.

To perform a software WRITE to DE1, DWE1 should be written with a 0 during the same register WRITE access. Writing DE1 to 0 disables channel 1 DMA, but DMA is restartable. Writing DE1 to 1 enables channel 1 DMA and automatically sets DMA Main Enable (DME) to 1. DE1 is cleared to 0 during RESET.

DEO: DMA Enable Channel 0 (Bit 6). When DEO = 1 and DME = 1, channel 0 DMA is enabled. When a DMA transfer terminates (BCRO = 0), DEO is reset to 0 by the DMAC. When DEO = 0 and the DMA interrupt is enabled (DIEO = 1), a DMA interrupt request is made to the CPU.

To perform a software WRITE to DEO, $\overline{\text{DWEO}}$ should be written with 0 during the same register WRITE access. Writing DEO to 0 disables channel 0 DMA. Writing DEO to 1 enables channel 0 DMA and automatically sets DMA Main Enable (DME) to 1. DEO is cleared to 0 during RESET.

DWE1: DE1 Bit Write Enable (Bit 5). When performing any software WRITE to DE1, this bit should be written with 0 during the same access. DWE1 always reads as 1.

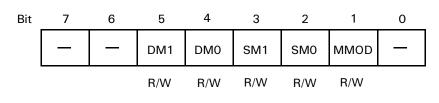
DWEO: DEO Bit Write Enable (Bit 4). When performing any software WRITE to DEO, this bit should be written with 0 during the same access. DWEO always reads as 1.

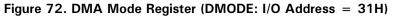
DIE1: DMA Interrupt Enable Channel 1 (Bit 3). When DIE0 is set to 1, the termination channel 1 DMA transfer (indicated when DE1 = 0) causes a CPU interrupt request to be generated. When DIEO = 0, the channel 0 DMA termination interrupt is disabled. DIEO is cleared to 0 during RESET.

DIEO: DMA Interrupt Enable Channel 0 (Bit 2). When DIEO is set to 1, the termination channel 0 of DMA transfer (indicated when DEO = 0) causes a CPU interrupt request to be generated. When DIEO = 0, the channel 0 DMA termination interrupt is disabled. DIEO is cleared to 0 during RESET.

DME: DMA Main Enable (Bit 0). A DMA operation is only enabled when its DE bit (DE0 for channel 0, DE1 for channel 1) and the DME bit is set to 1.

When $\overline{\text{NMI}}$ occurs, DME is reset to 0, thus disabling DMA activity during the $\overline{\text{NMI}}$ interrupt service routine. To restart DMA, DE- and/or DE1 should be written with a 1 (even if the contents are already 1). This condition automatically sets DME to 1, allowing DMA operations to continue.


Note: DME cannot be directly written. The bit is cleared to 0 by $\overline{\text{NMI}}$ or indirectly set to 1 by setting DEO and/or DE1 to 1. DME is cleared to 0 during RESET.


DMA MODE REGISTER

The DMA Mode Register (DMODE) is used to set the addressing and transfer mode for channel 0.

DMA Mode Register

Mnemonic DMODE Address 31H

DM1, DM0: Destination Mode Channel 0 (Bits 5,4). This mode specifies whether the destination for channel 0 transfers is memory or I/O, and whether the address should be incremented or decremented for each byte transferred. DM1 and DM0 are cleared to 0 during RESET.

SM1, SM0: Source Mode Channel 0 (Bits 3, 2). This mode specifies whether the source for channel 0 transfers is memory or I/O, and whether the address should be incremented or decremented for each byte transferred.

Table	15.	Channel	0	Source

Table 14. Channel 0 Destination					
DM1	DM0	Memory I/O	Memory Increment/Decrement		
0	0	Memory	+ 1		
0	1	Memory	-1		
1	0	Memory	fixed		
1	1	I/O	fixed		

SM1	SM0	Memory I/O	Memory Increment/Decrement
0	0	Memory	+ 1
0	1	Memory	-1
1	0	Memory	fixed
1	1	I/O	fixed