E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	٥٦٤
	ezo
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	16 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f011ahh020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

viii

Hardware Overflow Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation ADC Compensation Details Input Buffer Stage ADC Control Register Definitions ADC Control Register 1 ADC Control/Status Register 1 ADC Data High Byte Register ADC Data Low Byte Register	123 123 124 125 125 127 129 130 130 132 132 133
Low Power Operational Amplifier	134
Overview	134 134
Comparator	135
Operation	135 136
Temperature Sensor	139
Temperature Sensor Operation	139
Flash Memory	141
Architecture	141 142
	143
Flash Operation Timing Using the Flash Frequency Registers	145
Flash Code Protection Against External Access	145
Flash Code Protection Against Accidental Program and Erasure	145
Byte Programming	147
	147
Mass Elase	147 178
Flash Controller Behavior in DFBUG Mode	148
Flash Control Register Definitions	149
Flash Control Register	149
Flash Status Register	150
Flash Page Select Register	150

Interrupts are globally enabled by any of the following actions:

- Execution of an EI (Enable Interrupt) instruction
- Execution of an IRET (Return from Interrupt) instruction
- Writing a 1 to the IRQE bit in the Interrupt Control register

Interrupts are globally disabled by any of the following actions:

- Execution of a DI (Disable Interrupt) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller
- Writing a 0 to the IRQE bit in the Interrupt Control register
- Reset
- Execution of a Trap instruction
- Illegal Instruction Trap
- Primary Oscillator Fail Trap
- Watchdog Oscillator Fail Trap

Interrupt Vectors and Priority

The interrupt controller supports three levels of interrupt priority. Level 3 is the highest priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all of the interrupts are enabled with identical interrupt priority (all as Level 2 interrupts, for example), the interrupt priority is assigned from highest to lowest as specified in Table 32 on page 56. Level 3 interrupts are always assigned higher priority than Level 2 interrupts which, in turn, always are assigned higher priority than Level 1 interrupts. Within each interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in Table 32, above. Reset, Watchdog Timer interrupt (if enabled), Primary Oscillator Fail Trap, Watchdog Oscillator Fail Trap, and Illegal Instruction Trap always have highest (level 3) priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the Interrupt Request register is cleared until the next interrupt occurs. Writing a 0 to the corresponding bit in the Interrupt Request register likewise clears the interrupt request.

zilog

60

To avoid re-triggerings of the Watchdog Timer interrupt after exiting the associated interrupt service routine, it is recommended that the service routine continues to read from the RSTSTAT register until the WDT bit is cleared as given in the following coding sample:

CLEARWDT: LDX r0, RSTSTAT ; read reset status register to clear wdt bit BTJNZ 5, r0, CLEARWDT ; loop until bit is cleared

Interrupt Control Register Definitions

For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail Trap, and the Watchdog Oscillator Fail Trap, the interrupt control registers enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) register (Table 33) stores the interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 0 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0			
FIELD	Reserved	T1I	ТОІ	U0RXI	U0TXI	Reserved	Reserved	ADCI			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W R/W		R/W	R/W			
ADDR		FC0H									

Table 33. Interrupt Request 0 Register (IRQ0)

Reserved—Must be 0.

T1I—Timer 1 Interrupt Request

- 0 = No interrupt request is pending for Timer 1.
- 1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request

- 0 = No interrupt request is pending for Timer 0.
- 1 = An interrupt request from Timer 0 is awaiting service.

61

U0RXI-UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI-UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the analog-to-digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 34) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0	
FIELD	PA7VI	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W R/W R/W R/W					
ADDR	FC3H								

Table 34. Interrupt Request 1 Register (IRQ1)

PA7VI—Port A Pin 7 or LVD Interrupt Request

0 = No interrupt request is pending for GPIO Port A or LVD.

1 = An interrupt request from GPIO Port A or LVD.

PA6CI—Port A Pin 6 or Comparator Interrupt Request

0 = No interrupt request is pending for GPIO Port A or Comparator.

1 = An interrupt request from GPIO Port A or Comparator.

PAxI—Port A Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port A pin x.

1 = An interrupt request from GPIO Port A pin x is awaiting service.

where x indicates the specific GPIO Port pin number (0–5).

zilog',

0001H and counting resumes. The INPCAP bit in TxCTL0 register is cleared to indicate the timer interrupt is not caused by an input capture event.

Follow the steps below for configuring a timer for CAPTURE RESTART mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE RESTART mode by writing the TMODE bits in the TxCTL1 register and the TMODEHI bit in TxCTL0 register.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL0 register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon Compare.

If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

Follow the steps below for configuring a timer for COMPARE mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COMPARE mode.
 - Set the prescale value.
 - Set the initial logic level (High or Low) for the Timer Output alternate function, if appropriate.
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer and initiate counting.

In COMPARE mode, the system clock always provides the timer input. The Compare time can be calculated by the following equation:

COMPARE Mode Time (s) = $\frac{(Compare Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

GATED Mode

In GATED mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal remains asserted). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

Follow the steps below for configuring a timer for GATED mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for GATED mode.
 - Set the prescale value.

zilog[°]

configuration bits. In general, the address compare feature reduces the load on the CPU, because it does not require access to the UART when it receives data directed to other devices on the multi-node network. The following three MULTIPROCESSOR modes are available in hardware:

- 1. Interrupt on all address bytes.
- 2. Interrupt on matched address bytes and correctly framed data bytes.
- 3. Interrupt only on correctly framed data bytes.

These modes are selected with MPMD [1:0] in the UART Control 1 Register. For all multiprocessor modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. Each new incoming byte interrupts the CPU. The software is responsible for determining the end of the frame. It checks for the end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, MPMD[0] must be set to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme requires the following: set MPMD[1:0] to 10B and write the UART's address into the UART Address Compare Register. This mode introduces additional hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. When the first data byte in the frame is read, the NEWFRM bit of the UART Status 1 Register is asserted. All successive data bytes have NEWFRM=0. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continues and the NEWFRM bit is set for the first byte of the new frame. If there is no match, the UART ignores all incoming bytes until the next address match.

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART's address into the UART Address Compare Register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame remains accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

Figure 15. UART Receiver Interrupt Service Routine Flow

Baud Rate Generator Interrupts

If the baud rate generator (BRG) interrupt enable is set, the UART Receiver interrupt asserts when the UART Baud Rate Generator reloads. This condition allows the Baud Rate Generator to function as an additional counter if the UART functionality is not employed.

UART Baud Rate Generator

The UART Baud Rate Generator creates a lower frequency baud rate clock for data transmission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value

107

MPMD[1:0]—MULTIPROCESSOR Mode

If MULTIPROCESSOR (9-bit) mode is enabled,

00 = The UART generates an interrupt request on all received bytes (data and address).

01 = The UART generates an interrupt request only on received address bytes.

10 = The UART generates an interrupt request when a received address byte matches the value stored in the Address Compare Register and on all successive data bytes until an address mismatch occurs.

11 = The UART generates an interrupt request on all received data bytes for which the most recent address byte matched the value in the Address Compare Register.

MPEN—MULTIPROCESSOR (9-bit) Enable

This bit is used to enable MULTIPROCESSOR (9-bit) mode.

0 = Disable MULTIPROCESSOR (9-bit) mode.

1 = Enable MULTIPROCESSOR (9-bit) mode.

MPBT—Multiprocessor Bit Transmit

This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled. The 9th bit is used by the receiving device to determine if the data byte contains address or data information.

0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).

1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).

DEPOL—Driver Enable Polarity

0 = DE signal is Active High.

1 = DE signal is Active Low.

BRGCTL—Baud Rate Control

This bit causes an alternate UART behavior depending on the value of the REN bit in the UART Control 0 Register.

When the UART receiver is **not** enabled (REN=0), this bit determines whether the Baud Rate Generator issues interrupts.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value 1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0. Reads from the Baud Rate High and Low Byte registers return the current BRG count value.

When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate Registers to return the BRG count value instead of the Reload Value.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value. 1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High Byte is read.

RDAIRQ—Receive Data Interrupt Enable

0 = Received data and receiver errors generates an interrupt request to the Interrupt Controller.

Figure 19. Analog-to-Digital Converter Block Diagram

Operation

Data Format

In both SINGLE-ENDED and DIFFERENTIAL modes, the effective output of the ADC is an 11-bit, signed, two's complement digital value. In DIFFERENTIAL mode, the ADC

zilog[°]

Option Bit Types

User Option Bits

The user option bits are contained in the first two bytes of program memory. User access to these bits has been provided because these locations contain application-specific device configurations. The information contained here is lost when page 0 of the program memory is erased.

Trim Option Bits

The trim option bits are contained in the information page of the Flash memory. These bits are factory programmed values required to optimize the operation of onboard analog circuitry and cannot be permanently altered. Program Memory may be erased without endangering these values. It is possible to alter working values of these bits by accessing the Trim Bit Address and Data Registers, but these working values are lost after a power loss or any other reset event.

There are 32 bytes of trim data. To modify one of these values the user code must first write a value between 00H and 1FH into the Trim Bit Address Register. The next write to the Trim Bit Data register changes the working value of the target trim data byte.

Reading the trim data requires the user code to write a value between 00H and 1FH into the Trim Bit Address Register. The next read from the Trim Bit Data register returns the working value of the target trim data byte.

The trim address range is from information address 20-3F only. The remainder of the information page is not accessible through the trim bit address and data registers.

Calibration Option Bits

The calibration option bits are also contained in the information page. These bits are factory programmed values intended for use in software correcting the device's analog performance. To read these values, the user code must employ the LDC instruction to access the information area of the address space as defined in See Flash Information Area on page 17.

Serialization Bits

As an optional feature, Zilog[®] is able to provide factory-programmed serialization. For serialized products, the individual devices are programmed with unique serial numbers. These serial numbers are binary values, four bytes in length. The numbers increase in size with each device, but gaps in the serial sequence may exist.

These serial numbers are stored in the Flash information page (see Reading the Flash Information Page on page 155 and Serialization Data on page 165 for more details) and are unaffected by mass erasure of the device's Flash memory.

Note:

Trim Bit Address 0004H

Table 92. Trim Option Bits at 0004H

BITS	7	6	5	4	3	2	1	0		
FIELD	Reserved									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	Information Page Memory 0024H									
Note: U = Unchanged by Reset. R/W = Read/Write.										

Reserved—Altering this register may result in incorrect device operation.

Zilog Calibration Data

ADC Calibration Data

Table 93. ADC Calibration Bits

BITS	7	6	5	4	3	2	1	0		
FIELD	ADC_CAL									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	2/W R/W R/W R/W R/W R/W R/W R/W								
ADDR	Information Page Memory 0060H–007DH									
Note: U =	Note: U = Unchanged by Reset, R/W = Read/Write.									

ADC_CAL—Analog-to-Digital Converter Calibration Values

Contains factory calibrated values for ADC gain and offset compensation. Each of the ten supported modes has one byte of offset calibration and two bytes of gain calibration. These values are read by the software to compensate ADC measurements as described in Software Compensation Procedure Using Factory Calibration Data on page 126. The location of each calibration byte is provided in Table 94 on page 162.

Temperature Sensor Calibration Data

Table 95. Temperature Sensor Calibration High Byte at 003A (TSCALH)

BITS	7	6	5	4	3	2	1	0		
FIELD	TSCALH									
RESET	U	U	U	U	U	U				
R/W	R/W R/W R/W R/W R/W R/W R/W									
ADDR	Information Page Memory 003A									
Note: U =	Note: II = Unchanged by Reset R/W = Read/Write									

TSCALH – Temperature Sensor Calibration High Byte

The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibration value. For more details, see Temperature Sensor Operation on page 139.

Table 96. Temperature Sensor Calibration Low Byte at 003B (TSCALL)

BITS	7	6	5	4	3	2	1	0		
FIELD	TSCALL									
RESET	U	U	U	U	UU		U	U		
R/W	R/W	R/W	/ R/W R/W R/W R/W R/W							
ADDR	Information Page Memory 003B									
Note: U = Unchanged by Reset. R/W = Read/Write.										

TSCALL – Temperature Sensor Calibration Low Byte

The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibration value. For usage details, see Temperature Sensor Operation on page 139.

Watchdog Timer Calibration Data

Table 97. Watchdog Calibration High Byte at 007EH (WDTCALH)

BITS	7	6	5	4	3	2	1	0		
FIELD	WDTCALH									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	Information Page Memory 007EH									
Note: U = Unchanged by Reset. R/W = Read/Write.										

186

zilog[®]

Mode	Crystal Frequency Range	Function	Transconductance (mA/V) Use this range for calculations			
Low Gain*	32 kHz–1 MHz	Low Power/Frequency Applications	0.02	0.04	0.09	
Medium Gain*	0.5 MHz–10 MHz	Medium Power/Frequency Applications	0.84	1.7	3.1	
High Gain*	8 MHz–20 MHz	High Power/Frequency Applications	1.1	2.3	4.2	

Table 111. Transconductance Values for Low, Medium, and High Gain Operating Modes

Note: *Printed circuit board layout must not add more than 4 pF of stray capacitance to either XIN or XOUT pins. if no Oscillation occurs, reduce the values of the capacitors C1 and C2 to decrease the loading.

Oscillator Operation with an External RC Network

Figure 28 displays a recommended configuration for connection with an external resistor-capacitor (RC) network.

Figure 28. Connecting the On-Chip Oscillator to an External RC Network

An external resistance value of 45 k Ω is recommended for oscillator operation with an external RC network. The minimum resistance value to ensure operation is 40 k Ω . The typical oscillator frequency can be estimated from the values of the resistor (*R* in k Ω) and capacitor (*C* in pF) elements using the following equation:

Oscillator Frequency (kHz) =
$$\frac{1 \times 10^{6}}{(0.4 \times R \times C) + (4 \times C)}$$

195

zilog ₂₁₇

Abbreviation	Description	Abbreviation	Description		
b	Bit position	IRR	Indirect Register Pair		
СС	Condition code	р	Polarity (0 or 1)		
X	8-bit signed index or displacement	r	4-bit Working Register		
DA	Destination address	R	8-bit register		
ER	Extended Addressing register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address		
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address		
Ir	Indirect Working Register	RA	Relative		
IR	Indirect register	rr	Working Register Pair		
Irr	Indirect Working Register Pair	RR	Register Pair		

Table 125. Opcode Map Abbreviations

Part Number	Flash	RAM	NDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082A Series with 8 KB Flash											
					4.0						
28F081APB020SC	8 KB	1 KB	0	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F081AQB020SC	8 KB	1 KB	0	6	13	2	0	1	1	0	QFN 8-pin package
Z8F081ASB020SC	8 KB	1 KB	0	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F081ASH020SC	8 KB	1 KB	0	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F081AHH020SC	8 KB	1 KB	0	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F081APH020SC	8 KB	1 KB	0	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F081ASJ020SC	8 KB	1 KB	0	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F081AHJ020SC	8 KB	1 KB	0	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F081APJ020SC	8 KB	1 KB	0	25	19	2	0	1	1	0	PDIP 28-pin package
Extended Temperatu	re: -40 °	C to 10	5 °C								
Z8F081APB020EC	8 KB	1 KB	0	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F081AQB020EC	8 KB	1 KB	0	6	13	2	0	1	1	0	QFN 8-pin package
Z8F081ASB020EC	8 KB	1 KB	0	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F081ASH020EC	8 KB	1 KB	0	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F081AHH020EC	8 KB	1 KB	0	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F081APH020EC	8 KB	1 KB	0	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F081ASJ020EC	8 KB	1 KB	0	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F081AHJ020EC	8 KB	1 KB	0	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F081APJ020EC	8 KB	1 KB	0	25	19	2	0	1	1	0	PDIP 28-pin package
Replace C with G for Lea	ad-Free P	ackaging									

263

page erase 147 page select register 150, 151 FPS register 150, 151 FSTAT register 150

G

GATED mode 85 general-purpose I/O 37 GPIO 7, 37 alternate functions 38 architecture 38 control register definitions 45 input data sample timing 234 interrupts 45 port A-C pull-up enable sub-registers 50, 51 port A-H address registers 46 port A-H alternate function sub-registers 47 port A-H control registers 46 port A-H data direction sub-registers 47 port A-H high drive enable sub-registers 49 port A-H input data registers 51 port A-H output control sub-registers 48 port A-H output data registers 52 port A-H stop mode recovery sub-registers 49 port availability by device 37 port input timing 235 port output timing 236

Η

H 202 HALT 204 halt mode 34, 204 hexadecimal number prefix/suffix 202

I

I2C 7 IM 201 immediate data 201 immediate operand prefix 202 **INC 203** increment 203 increment word 203 **INCW 203** indexed 201 indirect address prefix 202 indirect register 201 indirect register pair 201 indirect working register 201 indirect working register pair 201 infrared encoder/decoder (IrDA) 117 Instruction Set 199 instruction set. eZ8 CPU 199 instructions ADC 203 ADCX 203 ADD 203 **ADDX 203** AND 205 **ANDX 205** arithmetic 203 **BCLR 204** BIT 204 bit manipulation 204 block transfer 204 **BRK 206 BSET 204** BSWAP 204, 206 **BTJ 206 BTJNZ 206 BTJZ 206 CALL 206** CCF 204 CLR 205 COM 205 CP 203 CPC 203 **CPCX 203** CPU control 204 **CPX 203** DA 203 **DEC 203 DECW 203**

DI 204