

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	16 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f011apj020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

addresses outside the available memory addresses rate of the se unimplemented Program Memory addresses produces and the set of the compared program Memory Maps for the compared for the compared

Program Memory Address (Hex)	Function
Z8F082A and Z8F081A Products	
0000 0001	Flash Option Bits
0002 0003	Reset Vector
0004 0005	WDT Interrupt Vector
0006 0007	Illegal Instruction Trap
0008 0037	Interrupt Vectors*
0038 0039	Reserved
003A 003D	OscillatoFrail Trap Vectors
OO3E 1FFF	Program Memory
Z8F042A and Z8F041A Products	
0000 0001	Flash Option Bits
0002 0003	Reset Vector
0004 0005	WDT Interrupt Vector
0006 0007	Illegal Instruction Trap
0008 0037	Interrupt Vectors*
0038 0039	Reserved
003A 003D	OscillatoFrail Trap Vectors
OO3E OFFF	Program Memory

Table 5. Z8 Encore! XP F082 Series Program Memory Maps

Register Map

Table 7 provides the address map forgtstee R€ile of the Z8 Encor[£]! KOP82A Series devices. Not all devices and pagkasgiensthe Z8 Encore! XP FO82A Series support the ADC, or all of the GPIO (Pointsider registersuficing) lemented peripherals as Reserved.

Table 7. Register File Address Map

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
General-Purpos	se RAM			
Z8F082A/Z8F0	081A Devices			
000 3FF	General-Purpose Register File RAM		XX	
400 EFF	Reserved		XX	
Z8F042A/Z8F0	041A Devices			
000 3FF	General-Purpose Register File RAM		XX	
400 EFF	Reserved		ХХ	
Z8F022A/Z8F0	021A Devices			
000 1FF	General-Purpose Register File RAM		XX	
200 EFF	Reserved		XX	
Z8F012A/Z8F0	011A Devices			
OOO OFF	General-Purpose Register File RAM		XX	
100 EFF	Reserved	2	ХХ	
Timer 0				
FOO	Timer O High Byte	ТОН	00	87
FO1	Timer O Low Byte	TOL	01	87
FO2	Timer O Reload High Byte	TORH	FF	88
FO3	Timer O Reload Low Byte	TORL	FF	88
FO4	Timer O PWM High Byte	TOPWMH	00	88
F05	Timer O PWM Low Byte	TOPWML	00	89
F06	Timer O Control O	TOCTLO	00	83
FO7	Timer O Control 1	TOCTL1	00	84
Timer 1				
F08	Timer 1 High Byte	T1H	00	87
F09	Timer 1 Low Byte	T1L	01	87
FOA	Timer 1 Reload High Byte	T1RH	FF	88
XX=Undefined				

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B	PBO	Reserved		AFS1[0]: 0
		ANAO/AMPOUT	ADC Analog Input/LPO Output	AFS1[0]: 1
PB1	PB1	Reserved		AFS1[1]: O
		ANA1/AMPINN	ADC Analog Input/LPO Input (N)	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
	ANA2/AMPINP	ADC Analog Input/LPO Input (P)	AFS1[2]: 1	
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		VREF*	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: O
		Reserved		AFS1[7]: 1

Table 14. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Note: Because there are at most two choices of alternateofufor any pin of Port B, the Alternate Function Set register AFS2 is not used to select the function alternate function selection as described in A D Alternate Function Sub-Registeons page 47 must also be enabled.

* VREF is available on PB5 in 28-pin products only.

PAFS1[7:0] Port Alternate Function Set 1 0 = Port Alternate Function selected as **defined** 4 and Table 15 on page 44. 1 = Port Alternate Function selected as **defined** 4 and Table 15 on page 44.

Port A D Alternate Function Set 2 Sub-Registers

The Port A D Alternate F**tion** Set 2 sub-registed (2) is accessed through the Port A D Control register by w@Bingo the Port A D Address register. The Alternate Function Set 2 sub-registers selects theefanterinoant available at a port pin. Alternate Functions selected by setting or **diatarion**gthis register is defined in 5

Note: Alternate function selection on port pins must also be enabled an Alternate Function Sub-Registrepage 47

BITS	7	6	5	4	3	2	1	0
FIELD	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20
RESET		00H (al	I ports of 2	20/28 pin (devices); 04	4H (Port A	of 8-pin de	evice)
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 08H	in Port A D) Address R	egister, ac	ciessies throug	gh the PoAt	D Control	Register

 Table 26. Port A D Alternate Function Set 2 Sub-Registers (PxAFS2)

PAFS2[7:0] Port Alternate Function Set 2

0 = Port Alternate Function selected as defined5n

1 = Port Alternate Function selected as defined 5n

Port A C Input Data Registers

Reading from the Port Anout Data registered (2) returns the sampled values from the corresponding post topic Port A C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8-28-pin packages, as well as those omisting ADC-enabled 28-pin packages.

Table 2	7. Port	AC	Input	Data	Registers	(PxIN)
						· /

BITS	7	6	5	4	3	2	1	0		
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PINO		
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R	R	R	R	R	R	R	R		
ADDR	FD2H, FD6H, FDAH									
X = Unde	fined.									

Interrupt Controller

The interrupt controller on the Z8 Encodes 24 Series products prioritizes the interrupt requests from the hip peripherals and the GPIO port pins. The features of interrupt controller include:

20 possible interrupt soundes & wunique interrupt vectors:

Twelve GPIO port pin interrupt esso (travo interrupt vectors are shared).

Eight on-chip peripheral interrupt sources (two interrupt vectors are shared).

Flexible GPIO interrupts:

Eight selectable rising faithing edge GPIO interrupts.

Four dual-edge interrupts.

Three levels of individually programmable interrupt priority.

Watchdog Timer and LVD can beguneti to generate an interrupt.

Supports vectored as well as polled interrupts

Interrupt requests (IRQs) allow peripherest devisuspend CPU antipien in an orderly manner and force the CPU to start an sinterrup routine (ISR). Usually this interrupt service routine is involved that hexchange of data, situations or control information between the CPU and the interpeutipelinegal. When the service routine is completed, the CPU returns to ethe the important of the was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupt the interrupt controller has no effecttion.ofperanore information on interrupt servicing by the eZ8 CPU, referzeroCPU Core User Manual (UMO1228) able for download artww.zilog.com

Interrupt Vector Listing

Table 32on page 56 lists all of the interailable and order of priority. The interrupt vector is stored with the most-stgbifiea(MSB) at the Program Memory address and the least-significant SB) tet (the following odd Program Memory address.

Note: Some port interrupts are not available on the 8- and 20-pin packages. The ADC interru is unavailable on devices not containing an ADC.

Table 39. IRQ1 Enable and Priority Encoding

IRQ1ENL[x]	Priority	Description
0	Disabled	Disabled
1	Level 1	Low
0	Level 2	Medium
1	Level 3	High
	IRQ1ENL[x] O 1 O 1	IRQ1ENL[x]PriorityODisabled1Level 1OLevel 21Level 3

wherex indicates the register bits from 0 7.

Table 40. IRQ1 Enable High Bit Register (IRQ1ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VENH	PA6CENH	PA5ENH	PA4ENH	PA3ENH	PA2ENH I	PA1ENH P	AOENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	4H			

PA7VENH Port A Bit[7] or LVD Interrupt Request Enable High Bit PA6CENH Port A Bit[7] or Comparator Interrupt Request Enable High Bit PAxENH Port A Bit[x] Interrupt Request Enable High Bit

See Shared Interrupt Select (IRQSS) register for selection of either the LVD or the comparator as the interrupt source.

Table 41. IRQ1 Enable Low Bit Register (IRQ1ENL)

BITS	7	6	5	4	3	2	1	0		
FIELD	PA7VENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL I	PA1ENL F	AOENL		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FC5H								

PA7VENL Port A Bit[7] or LVD Interrupt Request Enable Low Bit PA6CENL Port A Bit[6] or Compara**tot**errupt Requ**essia**ble Low Bit PAxENL Port A Bit[x] Interrupt Requ**essiable** Low Bit

Watchdog Timer

The Watchdog Timer (WDT) protects ag**ainspt co** unreliable software, power faults, and other system-level problemings may place the Z8 Encorfé!FXCP82A Series devices into unsuitable operating states. The features of Watchdog Timer include:

On-chip RC oscillator.

A selectable time-out response: reset or interrupt.

24-bit programmable time-out value.

Operation

The Watchdog Timer is a one-timer that resets prupints the Z8 Encore! XP FO82A Series devices when the WDT reaches ital toerum in The Watchdog Timer uses a dedicated on-chip RC oscillations as lock source. The Watching operates in only two modes: ON and OFF. Once enabled, it always cand must breached to prevent a time-out. Perform an enable by executive of the WDT_AO Flash Option Bit. The WDT_AO bit forces which choog Timer to operate immediately upon reset, even if a WDT unsition has not been executed.

The Watchdog Timer is a 24 elogitadable downcounterustless three 8-bit registers in the eZ8 CPU register space to set the located enominal WDT time-out period is described by the lowing equation:

WDT Time-out Period (ms)= $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is threadwaiue of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and ethypical Watchdog Timer RC oscillator frequency is 10 kHz. The Watchdog Time to be refees before the reload Value must be set to values betwww04HTable 56 provides information about approxiemtime-out delays for the minimum and maximum WDT reload values.

WDT Reload Value	WDT Reload Value	Approximate Time-Out Delay (with 10 kHz typical WDT oscillator frequency)			
(Hex)	(Decimal)	Typical	Description		
000004	4	40,0\$	Minimum time-out delay		
FFFFF	16,777,215	28 minutes	Maximum time-out delay		

Table 56. Watchdog Timer Approximate Time-Out Delays

WDT Reset in Normal Operation

If configured to generate a Reset wheenut timcurs, the Watchdog Timer forces the device into the System Reset state. IT be a WUB bit in the Reset Status (RSTSTAT) register is set to 1. For more information on system sets and Low Voltage Detection page 23.

WDT Reset in STOP Mode

If configured to generate a Reset wheorula dirmers and the device is in STOP mode, the Watchdog Timer initia Sets pa Mode Recovery. Butter WDT status bit and the STOP bit in the Reset Status (RSTSTAT) erregins tset to 1 following WDT time-out in STOP mode.

Watchdog Timer Reload Unlock Sequence

Writing the unlock sequent deet Watchdog Timer (WDTCTL) ntrol register address unlocks the three Watog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period vite sequentions to the WDTCTL register address produce no effect on the Heit WDTCTL register. The locking mechanism prevents spurious write set Beload registers. Follow steps below to unlock the Watchdog Timer Reload Byte reg(WDTSU, WDTH, and WDTL) for write access.

- 1. Write 55 to the Watchdog Timer Control register (WDTCTL).
- 2. Write AAI to the Watchdog Timer Control register (WDTCTL).
- 3. Write the Watchdog Timer Reload Byptperegister (WDTU) with the desired time-out value.
- 4. Write the Watchdog Timer Reload Bylighregister (WDTH) with the desired time-out value.
- 5. Write the Watchdog Timer Reload LtoevreByister (WDTL) with the desired time-out value.

All three Watchdog Timer Reload registersensusitten in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resetsrahernorfites can occur unless the sequence is restarted. The value in the Watchdog ToraerRegisters is loaded into the counter when the Watchdog Timeirs enabled and every time a WDT instruction is executed.

Watchdog Timer Calibration

Due to its extremely lowabipgrcurrent, Whetchdog Timer oscillator is somewhat inaccurate. This variation can be corringtedleusalibration data stored in the Flash Information Page (Seble 97andTable 98on page 165). Loading these values into the

0 = No framing error occurred. 1 = A framing error occurred.

BRKD Break Detect

This bit indicates that a break occurred at a break occurred at a break occurred at a break occurred bit(s) are all Os this bit is set to g. Receive Data register clears this bit. O = No break occurred.

1 = A break occurred.

TDRE Transmitter Data Register Empty

This bit indicates that the UART Transmite **Diste**r is empty and ready for additional data. Writing to the UART Transmite register resets this bit.

O = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmited.

TXE Transmitter Empty

This bit indicates that the transmit shiftsregisty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

CTS CTS signal

When this bit is readturne the level of the Sognal. This signal is active Low.

UART Status 1 Register

This register contains muttipeor control and status bits.

BITS	7	6	5	4	3	2	1	0
FIELD			NEWFRM	MPRX				
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/W	R/W	R	R
ADDR				F4	4H			

Table 64. UART Status 1 Register (UOSTAT1)

Reserved Must be O.

NEWFRM Status bit denoting the startness frame. Reading the UART Receive Data register resets this bit to O.

0 = The current byte is not sthe at a byte of a new frame.

1 = The current byte is not tedfata byte of a new frame.

3. Write to the Control Registerto configure the ADC forntinuous conversion. The bit fields in the ADC Controlster may be written simultaneously:

Write to tANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device). SetCONT to 1 to select continuous conversion.

If the internal VREF must be output to a piresextTthet to 1. The internal voltage references the enabled in this case.

Write threeFSELL bit of the parker (SELH, REFSELL } to select the internal voltage reference levelows above the inted reference. The REFSELH bit is contained ADC Control/Status Register 1

SetCEN to 1 to start the conversions.

4. When the first conversion in continentation is complete (after 5129 system clock cycles, plus the 40 cycles forup over the ADC control logic performs the following operations:

CEN resets to 0 to indicafies the onversion is completive remains 0 for all subsequent conversions in continuous operation.

An interrupt request is sentlitiethept Controllerindicate the conversion is complete.

5. The ADC writes a new data result every 256 system clock cycles. For each complet conversion, the ADC control pegiforms the following operations:

Writes the 13-bit two s complement result to {ADCD_H[7:0], ADCD_L[7:3]}.

Sends an interrupt request the the plin Controller denoting conversion complete.

6. To disable continuous conversion, clearNthat in the ADC Control Register to O.

Interrupts

The ADC is able to interrupt the CPUavebenversion has been mpleted. When the ADC is disabled, no new interrupts are abservered, an interrupt pending when the ADC is disabled is not cleared.

Calibration and Compensation

The Z8 Encore! XPF082A Series ADC is factoryraaled for offset error and gain error, with the compensation data **\$ taskednike** mory. Alternætiv you can perform your own calibration, storing the valuess in the enselves. Thirdly, the user code can perform a manual offset calibration during DIFFERENTIAL mode operation.

Operation

The Flash Controller programs and erassies melmory. The Flash Controller provides the proper Flash controls and time yge Programming, Page Erase, and Mass Erase of Flash memory.

The Flash Controller contains several tiprotechanisms to prevent accidental programming or erasure. These mechanisme opertate page, seated full-memory levels.

The Flow Chart Fingure 22 displays basic Flash Contropheration. The following subsections provide details albeutarious operations (Llondock, Byte Programming, Page Protect, Page Unprotect, PagePagedTrase, and Mass Erase) displayed in Figure 22

Z8 Encore! XP^{fi} F082A Series Product Specification

144

Figure 22. Flash Controller Operation Flow Chart

Flash Option Bits

Programmable Flash option bits allowconfiguration of certain aspects of Z8 Encore! X^{fp} FO82A Series operation. The feature configuration data is stored in the Flash program memory and loaded into **helpistg** rs during Reset. The features available for control through the Flash Option Bits include:

Watchdog Timer time-out responsteoseleterrupt or system reset

Watchdog Timer always on (enabled at Reset)

The ability to prevent unwanted resadtacuser code in Program Memory

The ability to prevent accident programming and erasure of all or a portion of the user code in Program Memory

Voltage Brownout configuration-alwabysdepr disabled during STOP mode to reduce STOP mode power consumption

Oscillator mode selection-for high, madidulow power crystal oscillators, or external RC oscillator

Factory trimming information for the interision oscillator and low voltage detection

Factory calibration values ADC, temperature sensor, and Watchdog Timer compensation

Factory serialization and raized not identifier (optional)

Operation

Option Bit Configuration By Reset

Each time the Flash Option Bits are programmented, the device must be Reset for the change to take effect. During anyerasid (System Reset, Power-On Reset, or Stop Mode Recovery), the Flash Option B automatically read from the Flash Program Memory and written to **Contifuguration** registers. The Option Configuration registers control operable released by the Z8 Encore! XP FO82A Series. Option Bit control is established the followice exits Reset and the eZ8 CPU begins code execution. The Option Configurations are not part of the Register File and are not accessible for read or write access. resides in working register RO. The disitofiethis status byte are definited in O.3. The contents of the status byte arreduficate fivrite operation is legal addresses. Also, user code must pop these data bytes off the stack.

The write routine uses 13 dfystesck space in addition to the two bytes of address and data pushed by the usefic count memory must be available for this stack usage.

Because of the Flash memory architecture, NVDS writes exhibit a non-uniform executio time. In general, a write takes 2(assuming a 20 MHz system clock). Every 400 to 500 writes, however, a mainceeoperation is necessary. In this rare occurrence, the write takes up to 61 ms to completes strenge clock speeds result in proportionally higher execution times.

NVDS byte writes to invalid addressese (thressling the NVDS array size) have no effect. Illegal write operations have execution time.

Table 103. Write Status Byte

BITS	7	6	5	4	3	2	1	0
FIELD		Rese	erved		RCPY	PF	AWE	DWE
DEFAULT VALUE	0	0	0	0	0	0	0	0

Reserved Must be O.

RCPY Recopy Subroutine Executed

A recopy subroutine was executed. Thesicompetake significantly longer than a normal write operation.

PF Power Failure Indicator

A power failure or system reset occungetheumiost recent attempted write to the NVDS array.

AW Address Write Error

An address byte failure occurred duringsthreacent attempted write to the NVDS array.

DWE Data Write Error

A data byte failure occurred duringstheement attempted write to the NVDS array.

Byte Read

To read a byte from the NVDS array, **desenuess** first push the address onto the stack. User code issue SAAL instruction to the address by ftehread routine (0x1000). At the return from the sub-rotatione, ad byte resides in nogeneous gister RO, and the read status byte resides in working register contrainter of the status byte are undefined for

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
СС	Condition Code		Refer to Condition Codes section in 환원 CPU Core User Manual (UMO128)
DA	Direct Address	Addrs	Addrs. represents a number in the range of OOOOH to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of OOOH to FFFH
IM	Immediate Data	#Data	Data is a number between OOH to FFH
lr	Indirect Working Register	@Rn	n = 0 15
IR	Indirect Register	@Reg	Reg. represents a number in the range of OOH to FFH
Irr	Indirect Working Register Pa	ir @RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range OOH to FEH
р	Polarity	р	Polarity is a single bit binary value of either OB or 1B.
r	Working Register	Rn	n = 0 15
R	Register	Reg	Reg. represents a number in the range of OOH to FFH
RA	Relative Address	Х	X represents an index in the range of +127 to 128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of OOH to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of OOH to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 114. Notational Shorthand

 Table 115
 state
 state

γ	1	2
~	1	\mathbf{J}

Assembly	Symbolic	Address Mode Opcode(s		Oncode(s)	Flags				Fetch	Instr			
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	5	V	D	Н	Cycles	Cycles
RR dst		R		EO	*	*		*	*			2	2
	►D7D6D5D4D3D2D1D0 ► C dst	IR		E1								2	3
RRC dst		R		CO	*	*		*	*			2	2
	► <u>D7D6D5D4D3D2D1DC</u> ►C dst	IR		C1	-							2	3
SBC dst, src	dsŧ– dst src - C	r	r	32		*	*		*	*	1	*	2 3
		r	lr	33	•							2	4
		R	R	34	•							3	3
		R	IR	35	•							3	4
		R	IM	36								3	3
		IR	IM	37	•							3	4
SBCX dst, src	dst-dst src-C	ER	ER	38	*		*	*		*	1	* 4	3
		ER	IM	39	•							4	3
SCF	C ← 1			DF	1							1	2
SRA dst		R		DO	*	*		*	0)		2	2
	D7D6D5D4D3D2D1D0 → C dst	IR		D1								2	3
SRL dst	0- ▶ D7D6D5D4D3D2D1DC+ ▶ C	R		1F CO	*	*		0	*			3	2
	dst	IR		1F C1								3	3
SRP src	$RP \leftarrow src$		IM	01								2	2
STOP	STOP Mode			6F								1	2
SUB dst, src	dst⊢dst src	r	r	22		*	*	3	*	*	1	*	2 3
		r	lr	23								2	4
		R	R	24								3	3
		R	IR	25								3	4
		R	IM	26								3	3
		IR	IM	27	_							3	4
Flags Notation:	 * = Value is a functiof = Unaffected X = Undefined 	the resu	ilt of th	ne operation.	.0 = 1 =	= R(= S€	es et	et tc	to 0 1	0 0			

Table 124. eZ8 CPU Instruction Summary (Continued)

Figure 33. Typical Active Mode bD Versus System Clock Frequency

	V _{DD} T _A = · (unless	= 2.7 V -40 °C to otherwi	to 3.6 V > +105 °C se stated)		
Parameter	Minimum	Typical	Maximum	Units	Notes
Flash Byte Read Time	100			ns	
Flash Byte Program Time	20		40	aµ	
Flash Page Erase Time	10			ms	
Flash Mass Erase Time	200			ms	
Writes to Single Address Before Next Erase			2		
Flash Row Program Time			8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.
Data Retention	100			years	2 5 C
Endurance	10,000			cycles	Program/erase cycles

Table 132. Flash Memory Electrical Characteristics and Timing

Table 133. Watchdog Timer Electrical Characteristics and Timing

		V _{DD} T _A = - (unless	= 2.7 V t 40 °C to otherwis	:o 3.6 V +105 °C se stated)		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency		10		kHz	
F _{WDT}	WDT Oscillator Error			_5 0	%	
T _{WDTCAL}	WDT Calibrated Timeout	0.98	1	1.02	S	DV = 3.3 V; T _A = 30 °C
		0.70	1	1.30	S	$V_{D} = 2.7 \text{ V to } 3.6 \text{ V}$ T _A = 0 °C to 70 °C
		0.50	1	1.50	S	$b_D = 2.7 \text{ V to } 3.6 \text{ V}$ T _A = -40 °C to +105 °C

Figure 34. Port Input Sample Timing

Table	139.	GPIO	Port	Input	Timing
					J

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
T _{S_PORT}	Port Input Transitictro XIN Rise Setup Time (Not pictured)	5		
T _{H_PORT}	XIN Rise to Port Input Transition Hold Time (Not pictured)	0		
T _{SMR}	GPIO Port Pin Pulse With to ensure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1 µs		

PS022825-0908

Z8 Encore! XP^{fi} F082A Series Product Specification

250