

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	16 × 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f012aph020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Sector Protect Register 1 Flash Frequency High and Low Byte Registers 1	51 52
Flash Option Bits	53
Operation11Option Bit Configuration By Reset14Option Bit Types14Reading the Flash Information Page14Flash Option Bit Control Register Definitions14Trim Bit Address Register14Trim Bit Data Register14Flash Option Bit Address Space14Flash Program Memory Address 0000H14Flash Program Memory Address 0001H14Trim Bit Address Space14Trim Bit Address 0000H14Trim Bit Address 0000H14Trim Bit Address 0000H14Trim Bit Address 0001H14Trim Bit Address 0002H14Trim Bit Address 0003H14Trim Bit Address 0003H <td< td=""><td>53 54 55 55 56 56 58 58 59 59 59 59</td></td<>	53 54 55 55 56 56 58 58 59 59 59 59
Zilog Calibration Data 16 ADC Calibration Data 16 Temperature Sensor Calibration Data 16 Watchdog Timer Calibration Data 16 Serialization Data 16 Randomized Lot Identifier 16	61 61 64 64 65 66
	69
Operation 16 NVDS Code Interface 16 Byte Write 16 Byte Read 17 Power Failure Protection 17 Optimizing NVDS Memory Usage for Execution Speed 17	69 69 69 70 71 71
On-Chip Debugger	73
Architecture 1 Operation 1 OCD Interface 1 DEBUG Mode 1	73 74 74 75

zilog

vector address. Following Stop Mode Recovery, the STOP bit in the Reset Status (RSTSTAT) Register is set to 1. Table 10 lists the Stop Mode Recovery sources and resulting actions. The text following provides more detailed information about each of the Stop Mode Recovery sources.

Operating Mode	Stop Mode Recovery Source	Action
STOP mode	Watchdog Timer time-out when configured for Reset	Stop Mode Recovery
	Watchdog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery
	Assertion of external RESET Pin	System Reset
	Debug Pin driven Low	System Reset

Table 10. Stop Mode Recovery Sources and Resulting Action

Stop Mode Recovery Using Watchdog Timer Time-Out

If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode Recovery sequence. In the Reset Status (RSTSTAT) register, the WDT and STOP bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and the Z8 Encore! XP F082A Series device is configured to respond to interrupts, the eZ8 CPU services the Watchdog Timer interrupt request following the normal Stop Mode Recovery sequence.

Stop Mode Recovery Using a GPIO Port Pin Transition

Each of the GPIO Port pins may be configured as a Stop Mode Recovery input source. On any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates Stop Mode Recovery.

Note: The SMR pulses shorter than specified does not trigger a recovery (see Table 131 on page 229). When this happens, the STOP bit in the Reset Status (RSTSTAT) register is set to 1.

Caution: In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input Data registers record the Port transition only if the signal stays on the Port pin through the end of the Stop Mode Recovery delay. As a result, short pulses on the Port pin can

Low-Power Modes

The Z8 Encore! XP F082A Series products contain power-saving features. The highest level of power reduction is provided by the STOP mode, in which nearly all device functions are powered down. The next lower level of power reduction is provided by the HALT mode, in which the CPU is powered down.

Further power savings can be implemented by disabling individual peripheral blocks while in Active mode (defined as being in neither STOP nor HALT mode).

STOP Mode

Executing the eZ8 CPU's STOP instruction places the device into STOP mode, powering down all peripherals except the Voltage Brownout detector, the Low-power Operational Amplifier and the Watchdog Timer. These three blocks may also be disabled for additional power savings. Specifically, the operating characteristics are:

- Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the GPIO registers.
- System clock is stopped.
- eZ8 CPU is stopped.
- Program counter (PC) stops incrementing.
- Watchdog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control register.
- If enabled, the Watchdog Timer logic continues to operate.
- If enabled for operation in STOP mode by the associated Flash Option Bit, the Voltage Brownout protection circuit continues to operate.
- Low-power operational amplifier continues to operate if enabled by the Power Control register to do so.
- All other on-chip peripherals are idle.

To minimize current in STOP mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). Additionally, any GPIOs configured as outputs must also be driven to one of the supply rails. The device can be brought out of STOP mode using Stop Mode Recovery. For more information on Stop Mode Recovery, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

zilog

operational amplifier (LPO) is OFF. To use the LPO, clear the LPO bit, turning it ON. Clearing this bit might interfere with normal ADC measurements on ANA0 (the LPO output). This bit enables the amplifier even in STOP mode. If the amplifier is not required in STOP mode, disable it. Failure to perform this results in STOP mode currents greater than specified.

Note: This register is only reset during a POR sequence. Other system reset events do not affect *it.*

Table 12. Power Control Register 0 (PWRCTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	LPO	Rese	erved	VBO	TEMP	ADC	COMP	Reserved
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F80H							

LPO—Low-Power Operational Amplifier Disable

0 = LPO is enabled (this applies even in STOP mode).

1 = LPO is disabled.

Reserved—Must be 0.

VBO—Voltage Brownout Detector Disable

This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.

0 = VBO Enabled

1 = VBO Disabled

TEMP—Temperature Sensor Disable

0 = Temperature Sensor Enabled

1 = Temperature Sensor Disabled

ADC—Analog-to-Digital Converter Disable

- 0 = Analog-to-Digital Converter Enabled
- 1 = Analog-to-Digital Converter Disabled

COMP—Comparator Disable

- 0 =Comparator is Enabled
- 1 = Comparator is Disabled

Reserved—Must be 0.

Note: Asserting any power control bit disables the targeted block, regardless of any enable bits contained in the target block's control registers.

zilog[®]

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT*	Timer 0 Input/Timer 0 Output Complement	N/A
		Reserved		-
	PA1	TOOUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
		Reserved		-
	PA3	CTS0	UART 0 Clear to Send	-
		Reserved		-
	PA4	RXD0/IRRX0	UART 0/IrDA 0 Receive Data	-
		Reserved		-
	PA5	TXD0/IRTX0	UART 0/IrDA 0 Transmit Data	-
		Reserved		-
	PA6	T1IN/T1OUT*	Timer 1 Input/Timer 1 Output Complement	-
		Reserved		-
	PA7	T1OUT	Timer 1 Output	-
		Reserved		-

Table 14. Port Alternate Function Mapping (Non 8-Pin Parts)

Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in Port A–D Alternate Function Sub-Registers on page 47 automatically enables the associated alternate function.

* Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in Timer Pin Signal Operation on page 82.

Zilog ₄₂

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B	PB0	Reserved		AFS1[0]: 0
		ANA0/AMPOUT	ADC Analog Input/LPO Output	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1/AMPINN	ADC Analog Input/LPO Input (N)	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
		ANA2/AMPINP	ADC Analog Input/LPO Input (P)	AFS1[2]: 1
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		VREF*	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Table 14. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Note: Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is not used to select the function. Also, alternate function selection as described in Port A-D Alternate Function Sub-Registers on page 47 must also be enabled.

* VREF is available on PB5 in 28-pin products only.

Follow the steps below for configuring a timer for COMPARE mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COMPARE mode.
 - Set the prescale value.
 - Set the initial logic level (High or Low) for the Timer Output alternate function, if appropriate.
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer and initiate counting.

In COMPARE mode, the system clock always provides the timer input. The Compare time can be calculated by the following equation:

COMPARE Mode Time (s) = $\frac{(Compare Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

GATED Mode

In GATED mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal remains asserted). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

Follow the steps below for configuring a timer for GATED mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for GATED mode.
 - Set the prescale value.

110 = 64 cycles delay 111 = 128 cycles delay

INPCAP—Input Capture Event

This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture Event.

0 = Previous timer interrupt is not a result of Timer Input Capture Event

1 = Previous timer interrupt is a result of Timer Input Capture Event

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode (Table 49).

Table 49. Timer 0–1 Control Register 1 (TxCTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	TPOL	PRES				TMODE	
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		F07H, F0FH						

TEN—Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL—Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

CONTINUOUS mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

COUNTER mode

If the timer is enabled the Timer Output signal is complemented after timer reload.

0 = Count occurs on the rising edge of the Timer Input signal.

1 = Count occurs on the falling edge of the Timer Input signal.

138

Assuming a compensated ADC measurement, the following equation defines the relationship between the ADC reading and the die temperature:

 $T = (25/128) \times (ADC - TSCAL[11:2]) + 30$

where, T is the temperature in C; ADC is the 10-bit compensated ADC value; and TSCAL is the temperature sensor calibration value, ignoring the two least significant bits of the 12-bit value.

See Temperature Sensor Calibration Data on page 164 for the location of TSCAL.

Calibration

The temperature sensor undergoes calibration during the manufacturing process and is maximally accurate at 30 °C. Accuracy decreases as measured temperatures move further from the calibration point.

Oscillator Control

The Z8 Encore! $XP^{\mathbb{R}}$ F082A Series devices uses five possible clocking schemes, each user-selectable:

- Internal precision trimmed RC oscillator (IPO).
- On-chip oscillator using off-chip crystal or resonator.
- On-chip oscillator using external RC network.
- External clock drive.
- On-chip low power Watchdog Timer oscillator.
- Clock failure detection circuitry.

In addition, Z8 Encore! XP F082A Series devices contain clock failure detection and recovery circuitry, allowing continued operation despite a failure of the system clock oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures.

System Clock Selection

The oscillator control block selects from the available clocks. Table 108 details each clock source and its usage.

zilog

194

Figure 27 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended 20 MHz crystal specifications are provided in Table 110. Printed circuit board layout must add no more than 4 pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C₁ and C₂ to decrease loading.

Figure 27. Recommended 20 MHz Crystal Oscillator Configuration

Table 110. Rec	ommended Ci	ystal Osc	illator S	pecifications
----------------	-------------	-----------	-----------	---------------

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	60	Ω	Maximum
Load Capacitance (C _L)	30	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

204

Table 1 ⁴	17. Bit	Manipulation	Instructions
----------------------	---------	--------------	--------------

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	—	Reset Carry Flag
SCF	_	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
TMX	dst, src	Test Under Mask using Extended Addressing

Table 118. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses

Table 119. CPU Control Instructions

Mnemonic	Operands	Instruction
ATM	_	Atomic Execution
CCF	_	Complement Carry Flag
DI	_	Disable Interrupts
EI	_	Enable Interrupts
HALT	_	Halt Mode
NOP	_	No Operation
RCF	_	Reset Carry Flag

zilog

9	213

Assembly	Symbolic	Address Mode Opcode(s			Flags						Fetch	Instr.
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	Cycles
RR dst		R		E0	*	*	*	*	-	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		E1							2	3
RRC dst		R		C0	*	*	*	*	-	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		C1							2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
		r	lr	33							2	4
		R	R	34							3	3
		R	IR	35							3	4
		R	IM	36							3	3
		IR	IM	37							3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
		ER	IM	39	_						4	3
SCF	$C \leftarrow 1$			DF	1	-	-	-	-	-	1	2
SRA dst	T V	R		D0	*	*	*	0	_	-	2	2
	D7 D6 D5 D4 D3 D2 D1 D0 C dst	IR		D1							2	3
SRL dst	0 - ▶ D7 D6 D5 D4 D3 D2 D1 D0 ▶ C	R		1F C0	*	*	0	*	-	-	3	2
	dst	IR		1F C1	•						3	3
SRP src	$RP \gets src$		IM	01	_	_	_	_	_	_	2	2
STOP	STOP Mode			6F	_	_	_	_	_	-	1	2
SUB dst, src	$dst \gets dst - src$	r	r	22	*	*	*	*	1	*	2	3
		r	lr	23	•						2	4
		R	R	24	•						3	3
		R	IR	25	•						3	4
		R	IM	26							3	3
		IR	IM	27	•						3	4
Flags Notation:	* = Value is a function of th – = Unaffected X = Undefined	ne result	of the o	peration.	0 = 1 =	Re Se	set t to	to (1)			

Table 124. eZ8 CPU Instruction Summary (Continued)

Table 128. Power Consumption (Continued)

	-		Maximum ²	Maximum ³	-	
Symbol	Parameter	Typical 1	Std Temp	Ext Temp	Units	Conditions
I _{DD} LPO	Low-Power Operational Amplifier Supply Current	3	5	5	μA	Driving a high- impedance load
I _{DD} TS	Temperature Sensor Supply Current	60			μA	See Notes 4
I _{DD} BG	Band Gap Supply	320	480	500	μA	For 20-/28-pin devices
	Current					For 8-pin devices

Notes

1. Typical conditions are defined as V_{DD} = 3.3 V and +30 °C.

2. Standard temperature is defined as $T_A = 0$ °C to +70 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

3. Extended temperature is defined as T_A = -40 °C to +105 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current. This bandgap current is only added once, regardless of how many peripherals are using it.

		V _{DD} T _A =	= 2.7 V to -40 °C to ·	o 3.6 V ⊦105 °C			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions	
Av	Open loop voltage gain		80		dB		
GBW	Gain/Bandwidth product		500		kHz		
PM	Phase Margin		50		deg	Assuming 13 pF load capacitance	
V _{osLPO}	Input Offset Voltage		<u>+</u> 1	<u>+</u> 4	mV		
V _{osLPO}	Input Offset Voltage (Temperature Drift)		1	10	μV/C		
V _{IN}	Input Voltage Range	0.3		Vdd - 1	V		
V _{OUT}	Output Voltage Range	0.3		Vdd - 1	V	I _{OUT} = 45 μA	

Table 136. Low Power Operational Amplifier Electrical Characteristics

Table 137. Comparator Electrical Characteristics

		V _{DD} T _A = -	= 2.7 V to 40 °C to +			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{OS}	Input DC Offset		5		mV	
V _{CREF}	Programmable Internal		<u>+</u> 5		%	20-/28-pin devices
	Reference Voltage		<u>+</u> 3		%	8-pin devices
T _{PROP}	Propagation Delay		200		ns	
V _{HYS}	Input Hysteresis		4		mV	
V _{IN}	Input Voltage Range	V _{SS}		V _{DD} -1	V	

Figure 34. Port Input Sample Timing

Table	139.	GPIO	Port	Input	Timing
-------	------	-------------	------	-------	--------

		Dela	y (ns)
Parameter	Abbreviation	Minimum	Maximum
T _{S_PORT}	Port Input Transition to XIN Rise Setup Time (Not pictured)	5	-
T _{H_PORT}	XIN Rise to Port Input Transition Hold Time (Not pictured)	0	-
T _{SMR}	GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1 μs	

zilog ₂₃₈

UART Timing

Figure 37 and Table 142 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit data register has been loaded with data prior to CTS assertion.

		Delay (ns)				
Parameter	Abbreviation	Minimum	Maximum			
UART						
T ₁	CTS Fall to DE output delay	2 * XIN period	2 * XIN period + 1 bit time			
T ₂	DE assertion to TXD falling edge (start bit) delay	′±5				
T ₃	End of Stop Bit(s) to DE deassertion delay	± 5				

Table 142. UART Timing With CTS

25

Part Number	Flash	RAM	NVDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082A	Serie	s with 1	KB Fla	sh							
Standard Temperature	: 0 °C	to 70 °C									
Z8F011APB020SC	1 KB	256 B	16 B	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F011AQB020SC	1 KB	256 B	16 B	6	13	2	0	1	1	0	QFN 8-pin package
Z8F011ASB020SC	1 KB	256 B	16 B	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F011ASH020SC	1 KB	256 B	16 B	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F011AHH020SC	1 KB	256 B	16 B	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F011APH020SC	1 KB	256 B	16 B	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F011ASJ020SC	1 KB	256 B	16 B	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F011AHJ020SC	1 KB	256 B	16 B	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F011APJ020SC	1 KB	256 B	16 B	25	19	2	0	1	1	0	PDIP 28-pin package
Extended Temperature	∋: -40 °	°C to 105	5 °C								
Z8F011APB020EC	1 KB	256 B	16 B	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F011AQB020EC	1 KB	256 B	16 B	6	13	2	0	1	1	0	QFN 8-pin package
Z8F011ASB020EC	1 KB	256 B	16 B	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F011ASH020EC	1 KB	256 B	16 B	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F011AHH020EC	1 KB	256 B	16 B	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F011APH020EC	1 KB	256 B	16 B	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F011ASJ020EC	1 KB	256 B	16 B	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F011AHJ020EC	1 KB	256 B	16 B	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F011APJ020EC	1 KB	256 B	16 B	25	19	2	0	1	1	0	PDIP 28-pin package
Replace C with G for Lead-Free Packaging											

269

electrical characteristics and timing 230, 233 interrupt in normal operation 92 interrupt in STOP mode 92 operation 135 refresh 92, 205 reload unlock sequence 93 reload upper, high and low registers 94 reset 27 reset in normal operation 93 reset in STOP mode 93 time-out response 92 WDTCTL register 31, 94, 136, 190 WDTH register 95 WDTL register 95 working register 201 working register pair 201 WTDU register 95

Х

X 201 XOR 206 XORX 206

Ζ

Z8 Encore! block diagram 4 features 1 part selection guide 2