



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Obsolete                                                     |
|--------------------------------------------------------------|
| eZ8                                                          |
| 8-Bit                                                        |
| 20MHz                                                        |
| IrDA, UART/USART                                             |
| Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT |
| 23                                                           |
| 1KB (1K x 8)                                                 |
| FLASH                                                        |
| 16 × 8                                                       |
| 256 x 8                                                      |
| 2.7V ~ 3.6V                                                  |
| A/D 8x10b                                                    |
| Internal                                                     |
| -40°C ~ 105°C (TA)                                           |
| Through Hole                                                 |
| 28-DIP (0.600", 15.24mm)                                     |
| · .                                                          |
| https://www.e-xfl.com/product-detail/zilog/z8f012apj020ec    |
|                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## **Table of Contents**

| Overview                                    |
|---------------------------------------------|
| Features                                    |
| Part Selection Guide                        |
| Block Diagram                               |
| CPU and Peripheral Overview                 |
| eZ8 CPU Features 5                          |
| 10-Bit Analog-to-Digital Converter 5        |
| Low-Power Operational Amplifier             |
| Internal Precision Oscillator               |
| Apalog Comparator                           |
| External Crystal Oscillator                 |
| Low Voltage Detector                        |
| On-Chip Debugger                            |
| Universal Asynchronous Receiver/Transmitter |
| Timers                                      |
| General-Purpose Input/Output                |
| Elash Controller                            |
| Non-Volatile Data Storage 7                 |
| Interrupt Controller                        |
| Reset Controller                            |
| Pin Description                             |
| Available Packages 9                        |
| Pin Configurations 9                        |
| Signal Descriptions                         |
| Pin Characteristics                         |
| Addross Space                               |
|                                             |
| Register File                               |
| Program Memory                              |
| Data Memory                                 |
| Flash Information Area 17                   |
| Register Map 19                             |



## **CPU and Peripheral Overview**

### eZ8 CPU Features

The eZ8 CPU, Zilog's latest 8-bit Central Processing Unit (CPU), meets the continuing demand for faster and more code-efficient microcontrollers. The eZ8 CPU executes a superset of the original  $Z8^{\text{(P)}}$  instruction set. The features of eZ8 CPU include:

- Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory.
- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks.
- Compatible with existing Z8 code.
- Expanded internal Register File allows access of up to 4 KB.
- New instructions improve execution efficiency for code developed using higherlevel programming languages, including C.
- Pipelined instruction fetch and execution.
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT, and SRL.
- New instructions support 12-bit linear addressing of the Register File.
- Up to 10 MIPS operation.
- C-Compiler friendly.
- 2 to 9 clock cycles per instruction.

For more information on eZ8 CPU, refer to eZ8 CPU Core User Manual (UM0128) available for download at <u>www.zilog.com</u>.

## 10-Bit Analog-to-Digital Converter

The optional analog-to-digital converter (ADC) converts an analog input signal to a 10-bit binary number. The ADC accepts inputs from eight different analog input pins in both single-ended and differential modes. The ADC also features a unity gain buffer when high input impedance is required.



The pin configurations listed are preliminary and subject to change based on manufacturing limitations.



Figure 2. Z8F08xA, Z8F04xA, Z8F02xA, and Z8F01xA in 8-Pin SOIC, QFN/MLF-S, or PDIP Package



Figure 3. Z8F08xA, Z8F04xA, Z8F02xA, and Z8F01xA in 20-Pin SOIC, SSOP or PDIP Package



Figure 4. Z8F08xA, Z8F04xA, Z8F02xA, and Z8F01xA in 28-Pin SOIC, SSOP or PDIP Package



Figure 6. Voltage Brownout Reset Operation

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a Power-On Reset after recovering from a VBO condition.

## Watchdog Timer Reset

If the device is in NORMAL or HALT mode, the Watchdog Timer can initiate a System Reset at time-out if the WDT\_RES Flash Option Bit is programmed to 1. This is the unprogrammed state of the WDT\_RES Flash Option Bit. If the bit is programmed to 0, it configures the Watchdog Timer to cause an interrupt, not a System Reset, at time-out.

The WDT bit in the Reset Status (RSTSTAT) register is set to signify that the reset was initiated by the Watchdog Timer.

## **External Reset Input**

The  $\overline{\text{RESET}}$  pin has a Schmitt-Triggered input and an internal pull-up resistor. Once the  $\overline{\text{RESET}}$  pin is asserted for a minimum of four system clock cycles, the device progresses through the System Reset sequence. Because of the possible asynchronicity of the system clock and reset signals, the required reset duration may be as short as three clock periods

zilog 3

initiate Stop Mode Recovery without being written to the Port Input Data register or without initiating an interrupt (if enabled for that pin).

## Stop Mode Recovery Using the External RESET Pin

When the Z8 Encore! XP F082A Series device is in STOP mode and the external  $\overline{\text{RESET}}$  pin is driven Low, a system reset occurs. Because of a glitch filter operating on the  $\overline{\text{RESET}}$  pin, the Low pulse must be greater than the minimum width specified, or it is ignored. See Electrical Characteristics on page 221 for details.

## Low Voltage Detection

In addition to the Voltage Brownout (VBO) Reset described above, it is also possible to generate an interrupt when the supply voltage drops below a user-selected value. For details about configuring the Low Voltage Detection (LVD) and the threshold levels available, see Trim Bit Address 0003H on page 159. The LVD function is available on the 8-pin product versions only.

When the supply voltage drops below the LVD threshold, the LVD bit of the Reset Status (RSTSTAT) register is set to one. This bit remains one until the low-voltage condition goes away. Reading or writing this bit does not clear it. The LVD circuit can also generate an interrupt when so enabled, see Interrupt Vectors and Priority on page 58. The LVD bit is NOT latched, so enabling the interrupt is the only way to guarantee detection of a transient low voltage event.

The LVD functionality depends on circuitry shared with the VBO block; therefore, disabling the VBO also disables the LVD.

## **Reset Register Definitions**

The following sections define the Reset registers.

## **Reset Status Register**

The Reset Status (RSTSTAT) register is a read-only register that indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event, and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0.

This register shares its address with the Watchdog Timer control register, which is write-only (see Table 11 on page 31).



## **Low-Power Modes**

The Z8 Encore! XP F082A Series products contain power-saving features. The highest level of power reduction is provided by the STOP mode, in which nearly all device functions are powered down. The next lower level of power reduction is provided by the HALT mode, in which the CPU is powered down.

Further power savings can be implemented by disabling individual peripheral blocks while in Active mode (defined as being in neither STOP nor HALT mode).

## **STOP Mode**

Executing the eZ8 CPU's STOP instruction places the device into STOP mode, powering down all peripherals except the Voltage Brownout detector, the Low-power Operational Amplifier and the Watchdog Timer. These three blocks may also be disabled for additional power savings. Specifically, the operating characteristics are:

- Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the GPIO registers.
- System clock is stopped.
- eZ8 CPU is stopped.
- Program counter (PC) stops incrementing.
- Watchdog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control register.
- If enabled, the Watchdog Timer logic continues to operate.
- If enabled for operation in STOP mode by the associated Flash Option Bit, the Voltage Brownout protection circuit continues to operate.
- Low-power operational amplifier continues to operate if enabled by the Power Control register to do so.
- All other on-chip peripherals are idle.

To minimize current in STOP mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails ( $V_{CC}$  or GND). Additionally, any GPIOs configured as outputs must also be driven to one of the supply rails. The device can be brought out of STOP mode using Stop Mode Recovery. For more information on Stop Mode Recovery, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.



## 56

# Table 32. Trap and Interrupt Vectors in Order of Priority Program

| Priority | Program<br>Memory<br>Vector Address | Interrupt or Trap Source                                                                                                              |
|----------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Highest  | 0002H                               | Reset (not an interrupt)                                                                                                              |
|          | 0004H                               | Watchdog Timer (see Watchdog Timer on page 91)                                                                                        |
|          | 003AH                               | Primary Oscillator Fail Trap (not an interrupt)                                                                                       |
|          | 003CH                               | Watchdog Oscillator Fail Trap (not an interrupt)                                                                                      |
|          | 0006H                               | Illegal Instruction Trap (not an interrupt)                                                                                           |
|          | 0008H                               | Reserved                                                                                                                              |
|          | 000AH                               | Timer 1                                                                                                                               |
|          | 000CH                               | Timer 0                                                                                                                               |
|          | 000EH                               | UART 0 receiver                                                                                                                       |
|          | 0010H                               | UART 0 transmitter                                                                                                                    |
|          | 0012H                               | Reserved                                                                                                                              |
|          | 0014H                               | Reserved                                                                                                                              |
|          | 0016H                               | ADC                                                                                                                                   |
|          | 0018H                               | Port A Pin 7, selectable rising or falling input edge or LVD (see Reset, Stop<br>Mode Recovery, and Low Voltage Detection on page 23) |
|          | 001AH                               | Port A Pin 6, selectable rising or falling input edge or Comparator Output                                                            |
|          | 001CH                               | Port A Pin 5, selectable rising or falling input edge                                                                                 |
|          | 001EH                               | Port A Pin 4, selectable rising or falling input edge                                                                                 |
|          | 0020H                               | Port A Pin 3, selectable rising or falling input edge                                                                                 |
|          | 0022H                               | Port A Pin 2, selectable rising or falling input edge                                                                                 |
|          | 0024H                               | Port A Pin 1, selectable rising or falling input edge                                                                                 |
|          | 0026H                               | Port A Pin 0, selectable rising or falling input edge                                                                                 |
|          | 0028H                               | Reserved                                                                                                                              |
|          | 002AH                               | Reserved                                                                                                                              |
|          | 002CH                               | Reserved                                                                                                                              |
|          | 002EH                               | Reserved                                                                                                                              |
|          | 0030H                               | Port C Pin 3, both input edges                                                                                                        |
|          | 0032H                               | Port C Pin 2, both input edges                                                                                                        |

zilog

send. This action provides 7 bit periods of latency to load the Transmit Data register before the Transmit shift register completes shifting the current character. Writing to the UART Transmit Data register clears the TDRE bit to 0.

#### **Receiver Interrupts**

The receiver generates an interrupt when any of the following occurs:

- A data byte is received and is available in the UART Receive Data register. This interrupt can be disabled independently of the other receiver interrupt sources. The received data interrupt occurs after the receive character has been received and placed in the Receive Data register. To avoid an overrun error, software must respond to this received data available condition before the next character is completely received.
- · |

**Note:** In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on the multiprocessor configuration and the most recent address byte.

- A break is received.
- An overrun is detected.
- A data framing error is detected.

#### **UART Overrun Errors**

When an overrun error condition occurs the UART prevents overwriting of the valid data currently in the Receive Data register. The Break Detect and Overrun status bits are not displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 register is updated to indicate the overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that the Receive Data register contains a data byte. However, because the overrun error occurred, this byte may not contain valid data and must be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status byte indicating an overrun error, the Receive Data register must be read again to clear the error bits is the UART Status 0 register. Updates to the Receive Data register occur only when the next data word is received.

#### **UART Data and Error Handling Procedure**

Figure 15 displays the recommended procedure for use in UART receiver interrupt service routines.

# zilog | 11

## **UART Address Compare Register**

The UART Address Compare (UxADDR) register stores the multi-node network address of the UART (see Table 67). When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare register. Receive interrupts and RDA assertions only occur in the event of a match.

#### Table 67. UART Address Compare Register (U0ADDR)

| BITS  | 7         | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-------|-----------|-----|-----|-----|-----|-----|-----|-----|
| FIELD | COMP_ADDR |     |     |     |     |     |     |     |
| RESET | 0         | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W   | R/W       | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| ADDR  | F45H      |     |     |     |     |     |     |     |

COMP\_ADDR—Compare Address

This 8-bit value is compared to incoming address bytes.

## UART Baud Rate High and Low Byte Registers

The UART Baud Rate High (UxBRH) and Low Byte (UxBRL) registers (Table 68 and Table 69) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART.

#### Table 68. UART Baud Rate High Byte Register (U0BRH)

| BITS  | 7    | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-------|------|-----|-----|-----|-----|-----|-----|-----|
| FIELD |      |     |     | BF  | RH  |     |     |     |
| RESET | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W   | R/W  | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| ADDR  | F46H |     |     |     |     |     |     |     |

#### Table 69. UART Baud Rate Low Byte Register (U0BRL)

| BITS  | 7    | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-------|------|-----|-----|-----|-----|-----|-----|-----|
| FIELD |      |     |     | BI  | ٦L  |     |     |     |
| RESET | 1    | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W   | R/W  | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| ADDR  | F47H |     |     |     |     |     |     |     |

zilog | 17

read operations to illegal addresses. Also, the user code must pop the address byte off the stack.

The read routine uses 9 bytes of stack space in addition to the one byte of address pushed by the user. Sufficient memory must be available for this stack usage.

Because of the Flash memory architecture, NVDS reads exhibit a non-uniform execution time. A read operation takes between 44  $\mu$ s and 489  $\mu$ s (assuming a 20 MHz system clock). Slower system clock speeds result in proportionally higher execution times.

NVDS byte reads from invalid addresses (those exceeding the NVDS array size) return 0xff. Illegal read operations have a 2  $\mu$ s execution time.

The status byte returned by the NVDS read routine is zero for successful read, as determined by a CRC check. If the status byte is non-zero, there was a corrupted value in the NVDS array at the location being read. In this case, the value returned in R0 is the byte most recently written to the array that does not have a CRC error.

#### **Power Failure Protection**

The NVDS routines employ error checking mechanisms to ensure a power failure endangers only the most recently written byte. Bytes previously written to the array are not perturbed.

A system reset (such as a pin reset or Watchdog Timer reset) that occurs during a write operation also perturbs the byte currently being written. All other bytes in the array are unperturbed.

#### **Optimizing NVDS Memory Usage for Execution Speed**

The NVDS read time varies drastically, this discrepancy being a trade-off for minimizing the frequency of writes that require post-write page erases (see Table 104). The NVDS read time of address N is a function of the number of writes to addresses other than N since the most recent write to address N, as well as the number of writes since the most recent page erase. Neglecting effects caused by page erases and results caused by the initial condition in which the NVDS is blank, a rule of thumb is that every write since the most recent page erase causes read times of unwritten addresses to increase by 1  $\mu$ s, up to a maximum of (511-NVDS SIZE)  $\mu$ s.

| Operation            | Minimum<br>Latency | Maximum<br>Latency |
|----------------------|--------------------|--------------------|
| Read (16 byte array) | 875                | 9961               |
| Read (64 byte array) | 876                | 8952               |

#### Table 104. NVDS Read Time



185

DBGACK—Debug Acknowledge

This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.

0 = Debug Acknowledge is disabled.

1 = Debug Acknowledge is enabled.

Reserved—Must be 0.

RST—Reset

Setting this bit to 1 resets the Z8F04xA family device. The device goes through a normal Power-On Reset sequence with the exception that the On-Chip Debugger is not reset. This bit is automatically cleared to 0 at the end of reset.

0 = No effect.

1 = Reset the Flash Read Protect Option Bit device.

## **OCD Status Register**

The OCD Status register reports status information about the current state of the debugger and the system.

#### Table 107. OCD Status Register (OCDSTAT)

| BITS  | 7   | 6    | 5      | 4        | 3 | 2 | 1 | 0 |
|-------|-----|------|--------|----------|---|---|---|---|
| FIELD | DBG | HALT | FRPENB | Reserved |   |   |   |   |
| RESET | 0   | 0    | 0      | 0        | 0 | 0 | 0 | 0 |
| R/W   | R   | R    | R      | R        | R | R | R | R |

DBG—Debug Status

0 = NORMAL mode

1 = DEBUG mode

HALT—HALT Mode

0 =Not in HALT mode

1 =In HALT mode

FRPENB—Flash Read Protect Option Bit Enable

0 = FRP bit enabled, that allows disabling of many OCD commands

1 = FRP bit has no effect

Reserved-Must be 0

# zilog

#### 199

## eZ8 CPU Instruction Set

## **Assembly Language Programming Introduction**

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (opcodes and operands) to represent the instructions themselves. The opcodes identify the instruction while the operands represent memory locations, registers, or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is detailed in the following example.

#### Assembly Language Source Program Example

| JP START      | ; Everything after the semicolon is a comment.                                                                                                                                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| START:        | ; A label called 'START'. The first instruction (JP START) in this ; example causes program execution to jump to the point within the ; program where the START label occurs.                                          |
| LD R4, R7     | ; A Load (LD) instruction with two operands. The first operand,<br>; Working Register R4, is the destination. The second operand,<br>; Working Register R7, is the source. The contents of R7 is<br>; written into R4. |
| LD 234H, #%01 | ; Another Load (LD) instruction with two operands.<br>; The first operand, Extended Mode Register Address 234H,<br>; identifies the destination. The second operand, Immediate Data                                    |
|               | ; value 01H, is the source. The value 01H is written into the ; Register at address 234H.                                                                                                                              |



#### 200

## Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed if manual program coding is preferred or if you intend to implement your own assembler.

**Example 1**: If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

#### Table 112. Assembly Language Syntax Example 1

| Assembly Language<br>Code | ADD | 43H, | 08H | (ADD dst, src) |
|---------------------------|-----|------|-----|----------------|
| Object Code               | 04  | 08   | 43  | (OPC src, dst) |

**Example 2**: In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0–255 or, using Escaped Mode Addressing, a Working Register R0–R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

#### Table 113. Assembly Language Syntax Example 2

| Assembly Language<br>Code | ADD | 43H, | R8 | (ADD dst, src) |
|---------------------------|-----|------|----|----------------|
| Object Code               | 04  | E8   | 43 | (OPC src, dst) |

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

## eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in Table 114.

<mark>z</mark>ilog<sup>°</sup>

| 21 | 1 |
|----|---|

| Assembly        | Symbolic                                                      | Addres    | s Mode     | Opcode(s) | Flags       |           |   |   |   |   | Fetch  | Instr. |
|-----------------|---------------------------------------------------------------|-----------|------------|-----------|-------------|-----------|---|---|---|---|--------|--------|
| Mnemonic        | Operation                                                     | dst       | src        | (Hex)     | С           | Ζ         | S | ۷ | D | н | Cycles | Cycles |
| LDC dst, src    | $dst \gets src$                                               | r         | Irr        | C2        | -           | -         | - | - | - | - | 2      | 5      |
|                 |                                                               | Ir        | Irr        | C5        | -           |           |   |   |   |   | 2      | 9      |
|                 |                                                               | Irr       | r          | D2        | -           |           |   |   |   |   | 2      | 5      |
| LDCI dst, src   | $dst \gets src$                                               | lr        | Irr        | C3        | _           | _         | _ | _ | - | _ | 2      | 9      |
|                 | $r \leftarrow r + 1$<br>$rr \leftarrow rr + 1$                | Irr       | lr         | D3        | _           |           |   |   |   |   | 2      | 9      |
| LDE dst, src    | $dst \gets src$                                               | r         | Irr        | 82        | -           | -         | - | - | - | - | 2      | 5      |
|                 |                                                               | Irr       | r          | 92        | -           |           |   |   |   |   | 2      | 5      |
| LDEI dst, src   | dst ← src                                                     | lr        | Irr        | 83        | _           | _         | _ | _ | - | _ | 2      | 9      |
|                 | r ← r + 1<br>rr ← rr + 1                                      | Irr       | lr         | 93        | _           |           |   |   |   |   | 2      | 9      |
| LDWX dst, src   | $dst \gets src$                                               | ER        | ER         | 1FE8      | _           | -         | - | - | - | - | 5      | 4      |
| LDX dst, src    | $dst \gets src$                                               | r         | ER         | 84        | -           | -         | _ | - | - | - | 3      | 2      |
|                 |                                                               | lr        | ER         | 85        | -           |           |   |   |   |   | 3      | 3      |
|                 |                                                               | R         | IRR        | 86        | -           |           |   |   |   |   | 3      | 4      |
|                 |                                                               | IR        | IRR        | 87        | -           |           |   |   |   |   | 3      | 5      |
|                 |                                                               | r         | X(rr)      | 88        | -           |           |   |   |   |   | 3      | 4      |
|                 |                                                               | X(rr)     | r          | 89        | -           |           |   |   |   |   | 3      | 4      |
|                 |                                                               | ER        | r          | 94        | -           |           |   |   |   |   | 3      | 2      |
|                 |                                                               | ER        | lr         | 95        | -           |           |   |   |   |   | 3      | 3      |
|                 |                                                               | IRR       | R          | 96        | -           |           |   |   |   |   | 3      | 4      |
|                 |                                                               | IRR       | IR         | 97        | -           |           |   |   |   |   | 3      | 5      |
|                 |                                                               | ER        | ER         | E8        | -           |           |   |   |   |   | 4      | 2      |
|                 |                                                               | ER        | IM         | E9        | -           |           |   |   |   |   | 4      | 2      |
| LEA dst, X(src) | $dst \gets src + X$                                           | r         | X(r)       | 98        | _           | _         | _ | _ | - | _ | 3      | 3      |
|                 |                                                               | rr        | X(rr)      | 99        | -           |           |   |   |   |   | 3      | 5      |
| MULT dst        | dst[15:0] ←<br>dst[15:8] * dst[7:0]                           | RR        |            | F4        | -           | -         | - | - | - | - | 2      | 8      |
| NOP             | No operation                                                  |           |            | 0F        | _           | -         | _ | - | - | - | 1      | 2      |
| Flags Notation: | * = Value is a function of<br>– = Unaffected<br>X = Undefined | peration. | 0 =<br>1 = | Re<br>Se  | set<br>t to | to (<br>1 | ) |   |   |   |        |        |

### Table 124. eZ8 CPU Instruction Summary (Continued)

**z**ilog<sup>°</sup>

|   |            |             |            |           |            |           | Lo         | ower Nil   | bble (He      | x)         |          |          |       |       |     |                   |
|---|------------|-------------|------------|-----------|------------|-----------|------------|------------|---------------|------------|----------|----------|-------|-------|-----|-------------------|
| i | 0          | 1           | 2          | 3         | 4          | 5         | 6          | 7          | 8             | 9          | А        | В        | С     | D     | Е   | F                 |
|   | 1.1        | 2.2         | 2.3        | 2.4       | 3.3        | 3.4       | 3.3        | 3.4        | 4.3           | 4.3        | 2.3      | 2.2      | 2.2   | 3.2   | 1.2 | 1.2               |
| 0 | BRK        | SRP         | ADD        | ADD       | ADD        | ADD       | ADD        | ADD        | ADDX          | ADDX       | DJNZ     | JR       | LD    | JP    | INC | NOP               |
|   | 0.0        | IM          | r1,r2      | r1,Ir2    | R2,R1      | IR2,R1    | R1,IM      |            | ER2,ER1       | IM,ER1     | r1,X     | CC,X     | r1,IM | CC,DA | r1  | 0                 |
| 1 | RI C       | Z.3<br>RIC  |            |           |            |           |            |            |               |            |          |          |       |       |     | See 2nd<br>Oncode |
| • | R1         | IR1         | r1,r2      | r1,lr2    | R2,R1      | IR2,R1    | R1,IM      | IR1,IM     | ER2,ER1       | IM,ER1     |          |          |       |       |     | Мар               |
|   | 2.2        | 2.3         | 2.3        | 2.4       | 3.3        | 3.4       | 3.3        | 3.4        | 4.3           | 4.3        |          |          |       |       |     | 1.2               |
| 2 | INC        | INC         | SUB        | SUB       | SUB        | SUB       | SUB        | SUB        | SUBX          | SUBX       |          |          |       |       |     | ATM               |
|   | R1         | IR1         | r1,r2      | r1,lr2    | R2,R1      | IR2,R1    | R1,IM      | IR1,IM     | ER2,ER1       | IM,ER1     |          |          |       |       |     |                   |
| 2 | 2.2        | 2.3         | 2.3<br>SBC | 2.4       | 3.3<br>SBC | 3.4       | 3.3<br>SBC | 3.4<br>SBC | 4.3           | 4.3        |          |          |       |       |     |                   |
| 3 | R1         | IR1         | r1 r2      | r1 lr2    | 82 R1      | IR2 R1    | B1 IM      | IR1 IM     | FR2 FR1       | IM FR1     |          |          |       |       |     |                   |
|   | 2.2        | 2.3         | 2.3        | 2.4       | 3.3        | 3.4       | 3.3        | 3.4        | 4.3           | 4.3        |          |          |       |       |     |                   |
| 4 | DA         | DA          | OR         | OR        | OR         | OR        | OR         | OR         | ORX           | ORX        |          |          |       |       |     |                   |
|   | R1         | IR1         | r1,r2      | r1,lr2    | R2,R1      | IR2,R1    | R1,IM      | IR1,IM     | ER2,ER1       | IM,ER1     |          |          |       |       |     |                   |
| _ | 2.2        | 2.3         | 2.3        | 2.4       | 3.3        | 3.4       | 3.3        | 3.4        | 4.3           | 4.3        |          |          |       |       |     | 1.2               |
| 5 | POP        |             |            | AND       |            |           |            |            |               |            |          |          |       |       |     | WDT               |
|   | 2.2        | 23          | 23         | 24        | 3.3        | 3.4       | 3.3        | 3.4        | 4.3           | 4.3        |          |          |       |       |     | 12                |
| 6 | COM        | COM         | ТСМ        | TCM       | тсм        | тсм       | тсм        | тсм        | тсмх          | тсмх       |          |          |       |       |     | STOP              |
|   | R1         | IR1         | r1,r2      | r1,lr2    | R2,R1      | IR2,R1    | R1,IM      | IR1,IM     | ER2,ER1       | IM,ER1     |          |          |       |       |     |                   |
|   | 2.2        | 2.3         | 2.3        | 2.4       | 3.3        | 3.4       | 3.3        | 3.4        | 4.3           | 4.3        |          |          |       |       |     | 1.2               |
| 7 | PUSH       | PUSH        | TM         | TM        | TM         | TM        | TM         | TM         |               | TMX        |          |          |       |       |     | HALT              |
|   | R2         | 1R2         | r1,r2      | r1,Ir2    | RZ,R1      | 1RZ,R1    | R1,IM      |            | ERZ,ERT       | IM,ER1     |          |          |       |       |     | 10                |
| 8 | DECW       | DECW        | LDE        | LDEI      | LDX        | LDX       |            | LDX        | LDX           | LDX        |          |          |       |       |     | DI                |
| Ũ | RR1        | IRR1        | r1,Irr2    | lr1,lrr2  | r1,ER2     | lr1,ER2   | IRR2,R1    | IRR2,IR1   | r1,rr2,X      | rr1,r2,X   |          |          |       |       |     |                   |
|   | 2.2        | 2.3         | 2.5        | 2.9       | 3.2        | 3.3       | 3.4        | 3.5        | 3.3           | 3.5        |          |          |       |       |     | 1.2               |
| 9 | RL         | RL          | LDE        | LDEI      | LDX        | LDX       | LDX        | LDX        | LEA           | LEA        |          |          |       |       |     | EI                |
|   | R1         | IR1         | r2,Irr1    | lr2,lrr1  | r2,ER1     | Ir2,ER1   | R2,IRR1    | IR2,IRR1   | r1,r2,X       | rr1,rr2,X  |          |          |       |       |     |                   |
| Δ | 2.5        | 2.6<br>INCW | 2.3<br>CP  | 2.4<br>CP | 3.3<br>CP  | 3.4<br>CP | 3.3<br>CP  | 3.4<br>CP  | 4.3<br>CPX    | 4.3<br>CPX |          |          |       |       |     | 1.4<br>RFT        |
| ~ | RR1        | IRR1        | r1,r2      | r1,lr2    | R2,R1      | IR2,R1    | R1,IM      | IR1,IM     | ER2,ER1       | IM,ER1     |          |          |       |       |     |                   |
|   | 2.2        | 2.3         | 2.3        | 2.4       | 3.3        | 3.4       | 3.3        | 3.4        | 4.3           | 4.3        |          |          |       |       |     | 1.5               |
| В | CLR        | CLR         | XOR        | XOR       | XOR        | XOR       | XOR        | XOR        | XORX          | XORX       |          |          |       |       |     | IRET              |
|   | R1         | IR1         | r1,r2      | r1,lr2    | R2,R1      | IR2,R1    | R1,IM      | IR1,IM     | ER2,ER1       | IM,ER1     |          |          |       |       |     |                   |
| C | 2.2<br>RRC | 2.3<br>RRC  | 2.5        | 2.9       | 2.3<br>IP  | 2.9       |            | 3.4<br>ID  | 3.2<br>DIISHY |            |          |          |       |       |     | 1.2<br>RCF        |
| C | R1         | IR1         | r1.lrr2    | Ir1.Irr2  | IRR1       | Ir1.Irr2  |            | r1.r2.X    | ER2           |            |          |          |       |       |     | i.oi              |
|   | 2.2        | 2.3         | 2.5        | 2.9       | 2.6        | 2.2       | 3.3        | 3.4        | 3.2           |            |          |          |       |       |     | 1.2               |
| D | SRA        | SRA         | LDC        | LDCI      | CALL       | BSWAP     | CALL       | LD         | POPX          |            |          |          |       |       |     | SCF               |
|   | R1         | IR1         | r2,Irr1    | lr2,Irr1  | IRR1       | R1        | DA         | r2,r1,X    | ER1           |            |          |          |       |       |     |                   |
| F | 2.2        | 2.3         | 2.2<br>DIT | 2.3       | 3.2        | 3.3       | 3.2        | 3.3        | 4.2           | 4.2        |          |          |       |       |     | 1.2               |
| E | R1         | IR1         | n b r1     | r1 lr2    | R2 R1      | IR2 R1    | R1 IM      | IR1 IM     | ER2 FR1       | IM FR1     |          |          |       |       |     | CCF               |
|   | 2.2        | 2.3         | 2.6        | 2.3       | 2.8        | 3.3       | 3.3        | 3.4        |               | , בו גו    |          |          |       |       |     |                   |
| F | SWAP       | SWAP        | TRAP       | LD        | MULT       | LD        | BTJ        | BTJ        |               |            | <b>V</b> | <b>V</b> |       |       |     |                   |
|   | R1         | IR1         | Vector     | lr1,r2    | RR1        | R2,IR1    | p,b,r1,X   | p,b,lr1,X  |               |            | ۷        | <u> </u> | V     | V     | V   |                   |
|   |            |             |            |           |            |           |            |            |               |            |          |          |       |       |     |                   |

Figure 31. First Opcode Map

Upper Nibble (Hex)

218





| Figure 32. Se | econd Opcode | Map after 1FH |
|---------------|--------------|---------------|
|---------------|--------------|---------------|



230

|                                               | V <sub>DD</sub><br>- T <sub>A</sub> = -<br>(unless | = 2.7 V to<br>40 °C to +<br>otherwis | ● 3.6 V<br>•105 °C<br>e stated) |        |                                                                                                                                                                   |  |  |
|-----------------------------------------------|----------------------------------------------------|--------------------------------------|---------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter                                     | Minimum                                            | Typical                              | Maximum                         | Units  | Notes                                                                                                                                                             |  |  |
| Flash Byte Read Time                          | 100                                                | _                                    | _                               | ns     |                                                                                                                                                                   |  |  |
| Flash Byte Program Time                       | 20                                                 | _                                    | 40                              | μs     |                                                                                                                                                                   |  |  |
| Flash Page Erase Time                         | 10                                                 | -                                    | -                               | ms     |                                                                                                                                                                   |  |  |
| Flash Mass Erase Time                         | 200                                                | -                                    | -                               | ms     |                                                                                                                                                                   |  |  |
| Writes to Single Address<br>Before Next Erase | -                                                  | -                                    | 2                               |        |                                                                                                                                                                   |  |  |
| Flash Row Program Time                        | -                                                  | -                                    | 8                               | ms     | Cumulative program time for<br>single row cannot exceed limit<br>before next erase. This<br>parameter is only an issue<br>when bypassing the Flash<br>Controller. |  |  |
| Data Retention                                | 100                                                | _                                    | _                               | years  | 25 °C                                                                                                                                                             |  |  |
| Endurance                                     | 10,000                                             | _                                    | _                               | cycles | Program/erase cycles                                                                                                                                              |  |  |
|                                               |                                                    |                                      |                                 |        |                                                                                                                                                                   |  |  |

#### Table 132. Flash Memory Electrical Characteristics and Timing

#### Table 133. Watchdog Timer Electrical Characteristics and Timing

| V <sub>DD</sub> = 2.7 V to 3.6 V   |
|------------------------------------|
| T <sub>A</sub> = -40 °C to +105 °C |
| (unless otherwise stated)          |
|                                    |

| Symbol              | Parameter                | Minimum | Typical | Maximum     | Units | Conditions                                                                       |
|---------------------|--------------------------|---------|---------|-------------|-------|----------------------------------------------------------------------------------|
| F <sub>WDT</sub>    | WDT Oscillator Frequency |         | 10      |             | kHz   |                                                                                  |
| F <sub>WDT</sub>    | WDT Oscillator Error     |         |         | <u>+</u> 50 | %     |                                                                                  |
| T <sub>WDTCAL</sub> | WDT Calibrated Timeout   | 0.98    | 1       | 1.02        | S     | V <sub>DD</sub> = 3.3 V;<br>T <sub>A</sub> = 30 °C                               |
|                     |                          | 0.70    | 1       | 1.30        | S     | V <sub>DD</sub> = 2.7 V to 3.6 V<br>T <sub>A</sub> = 0 °C to 70 °C               |
|                     |                          | 0.50    | 1       | 1.50        | S     | $V_{DD} = 2.7 V \text{ to } 3.6 V$<br>$T_A = -40 \text{ °C to } +105 \text{ °C}$ |





| Part Number                                             | Flash     | RAM      | SQVN | I/O Lines | Interrupts | 16-Bit Timers w/PWM | 10-Bit A/D Channels | UART with IrDA | Comparator | Temperature Sensor | Description         |  |
|---------------------------------------------------------|-----------|----------|------|-----------|------------|---------------------|---------------------|----------------|------------|--------------------|---------------------|--|
| Z8 Encore! XP <sup>®</sup> F082A Series with 8 KB Flash |           |          |      |           |            |                     |                     |                |            |                    |                     |  |
| Standard Temperatur                                     |           |          |      |           |            |                     |                     |                |            |                    |                     |  |
| Z8F081APB020SC                                          | 8 KB      | 1 KB     | 0    | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 8-pin package  |  |
| Z8F081AQB020SC                                          | 8 KB      | 1 KB     | 0    | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | QFN 8-pin package   |  |
| Z8F081ASB020SC                                          | 8 KB      | 1 KB     | 0    | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 8-pin package  |  |
| Z8F081ASH020SC                                          | 8 KB      | 1 KB     | 0    | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 20-pin package |  |
| Z8F081AHH020SC                                          | 8 KB      | 1 KB     | 0    | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 20-pin package |  |
| Z8F081APH020SC                                          | 8 KB      | 1 KB     | 0    | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 20-pin package |  |
| Z8F081ASJ020SC                                          | 8 KB      | 1 KB     | 0    | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 28-pin package |  |
| Z8F081AHJ020SC                                          | 8 KB      | 1 KB     | 0    | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 28-pin package |  |
| Z8F081APJ020SC                                          | 8 KB      | 1 KB     | 0    | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 28-pin package |  |
| Extended Temperatu                                      | re: -40 ° | C to 10  | 5 °C |           |            |                     |                     |                |            |                    |                     |  |
| Z8F081APB020EC                                          | 8 KB      | 1 KB     | 0    | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 8-pin package  |  |
| Z8F081AQB020EC                                          | 8 KB      | 1 KB     | 0    | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | QFN 8-pin package   |  |
| Z8F081ASB020EC                                          | 8 KB      | 1 KB     | 0    | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 8-pin package  |  |
| Z8F081ASH020EC                                          | 8 KB      | 1 KB     | 0    | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 20-pin package |  |
| Z8F081AHH020EC                                          | 8 KB      | 1 KB     | 0    | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 20-pin package |  |
| Z8F081APH020EC                                          | 8 KB      | 1 KB     | 0    | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 20-pin package |  |
| Z8F081ASJ020EC                                          | 8 KB      | 1 KB     | 0    | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 28-pin package |  |
| Z8F081AHJ020EC                                          | 8 KB      | 1 KB     | 0    | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 28-pin package |  |
| Z8F081APJ020EC                                          | 8 KB      | 1 KB     | 0    | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 28-pin package |  |
| Replace C with G for Lea                                | ad-Free P | ackaging |      |           |            |                     |                     |                |            |                    |                     |  |



| U. |      |
|----|------|
|    | - 21 |

| Part Number                         | Flash                                    | RAM       | NVDS   | I/O Lines | Interrupts | 16-Bit Timers w/PWM | 10-Bit A/D Channels | UART with IrDA | Comparator | Temperature Sensor | Description         |  |
|-------------------------------------|------------------------------------------|-----------|--------|-----------|------------|---------------------|---------------------|----------------|------------|--------------------|---------------------|--|
| Z8 Encore! XP <sup>®</sup> F082A    | Serie                                    | s with 2  | KB Fla | sh        |            |                     |                     |                |            |                    |                     |  |
| Standard Temperature: 0 °C to 70 °C |                                          |           |        |           |            |                     |                     |                |            |                    |                     |  |
| Z8F021APB020SC                      | 2 KB                                     | 512 B     | 64 B   | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 8-pin package  |  |
| Z8F021AQB020SC                      | 2 KB                                     | 512 B     | 64 B   | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | QFN 8-pin package   |  |
| Z8F021ASB020SC                      | 2 KB                                     | 512 B     | 64 B   | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 8-pin package  |  |
| Z8F021ASH020SC                      | 2 KB                                     | 512 B     | 64 B   | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 20-pin package |  |
| Z8F021AHH020SC                      | 2 KB                                     | 512 B     | 64 B   | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 20-pin package |  |
| Z8F021APH020SC                      | 2 KB                                     | 512 B     | 64 B   | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 20-pin package |  |
| Z8F021ASJ020SC                      | 2 KB                                     | 512 B     | 64 B   | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 28-pin package |  |
| Z8F021AHJ020SC                      | 2 KB                                     | 512 B     | 64 B   | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 28-pin package |  |
| Z8F021APJ020SC                      | 2 KB                                     | 512 B     | 64 B   | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 28-pin package |  |
| Extended Temperature                | e: -40 °                                 | °C to 105 | 5°C    |           |            |                     |                     |                |            |                    |                     |  |
| Z8F021APB020EC                      | 2 KB                                     | 512 B     | 64 B   | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 8-pin package  |  |
| Z8F021AQB020EC                      | 2 KB                                     | 512 B     | 64 B   | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | QFN 8-pin package   |  |
| Z8F021ASB020EC                      | 2 KB                                     | 512 B     | 64 B   | 6         | 13         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 8-pin package  |  |
| Z8F021ASH020EC                      | 2 KB                                     | 512 B     | 64 B   | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 20-pin package |  |
| Z8F021AHH020EC                      | 2 KB                                     | 512 B     | 64 B   | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 20-pin package |  |
| Z8F021APH020EC                      | 2 KB                                     | 512 B     | 64 B   | 17        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 20-pin package |  |
| Z8F021ASJ020EC                      | 2 KB                                     | 512 B     | 64 B   | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SOIC 28-pin package |  |
| Z8F021AHJ020EC                      | 2 KB                                     | 512 B     | 64 B   | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | SSOP 28-pin package |  |
| Z8F021APJ020EC                      | 2 KB                                     | 512 B     | 64 B   | 25        | 19         | 2                   | 0                   | 1              | 1          | 0                  | PDIP 28-pin package |  |
| Replace C with G for Lead           | Replace C with G for Lead-Free Packaging |           |        |           |            |                     |                     |                |            |                    |                     |  |