

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	16 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f012asj020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Overview
Features
Part Selection Guide
Block Diagram
CPU and Peripheral Overview
eZ8 CPU Features 5
10-Bit Analog-to-Digital Converter 5
Low-Power Operational Amplifier
Internal Precision Oscillator
Temperature Sensor 6 Analog Comparator 6
External Crystal Oscillator
Low Voltage Detector
On-Chip Debugger
Universal Asynchronous Receiver/Transmitter
Timers
General-Purpose Input/Output
Direct LED Drive
Non-Volatile Data Storage
Interrupt Controller
Reset Controller
Pin Description
Available Packages
Pin Configurations
Signal Descriptions
Pin Characteristics
Address Space
Register File
Program Memory
Data Memory
Flash Information Area 17
Register Map

Overview

Zilog's Z8 Encore![®] MCU family of products are the first in a line of Zilog[®] microcontroller products based upon the 8-bit eZ8 CPU. Zilog's Z8 Encore! XP[®] F082A Series products expand upon Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward compatible with existing Z8[®] instructions. The rich peripheral set of the Z8 Encore! XP F082A Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

The key features of Z8 Encore! XP F082A Series products include:

- 20 MHz eZ8 CPU
- 1 KB, 2 KB, 4 KB, or 8 KB Flash memory with in-circuit programming capability
- 256 B, 512 B, or 1 KB register RAM
- Up to 128 B non-volatile data storage (NVDS)
- Internal precision oscillator trimmed to $\pm 1\%$ accuracy
- External crystal oscillator, operating up to 20 MHz
- Optional 8-channel, 10-bit analog-to-digital converter (ADC)
- Optional on-chip temperature sensor
- On-chip analog comparator
- Optional on-chip low-power operational amplifier (LPO)
- Full-duplex UART
- The UART baud rate generator (BRG) can be configured and used as a basic 16-bit timer
- Infrared Data Association (IrDA)-compliant infrared encoder/decoders, integrated with UART
- Two enhanced 16-bit timers with capture, compare, and PWM capability
- Watchdog Timer (WDT) with dedicated internal RC oscillator
- Up to 20 vectored interrupts
- 6 to 25 I/O pins depending upon package

Zilog ₁₇

Program Memory Address (Hex)	Function
Z8F022A and Z8F021A Products	
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-07FF	Program Memory
Z8F012A and Z8F011A Products	
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-03FF	Program Memory
* See Table 32 on page 56 for a list of the	interrupt vectors.

Table 5. Z8 Encore! XP F082A Series Program Memory Maps (Continued)

Data Memory

The Z8 Encore! XP F082A Series does not use the eZ8 CPU's 64 KB Data Memory address space.

Flash Information Area

Table 6 on page 18 describes the Z8 Encore! XP F082A Series Flash Information Area. This 128 B Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Infor-

Zilog ₁₉

Register Map

Table 7 provides the address map for the Register File of the Z8 Encore! XP[®] F082A Series devices. Not all devices and package styles in the Z8 Encore! XP F082A Series support the ADC, or all of the GPIO Ports. Consider registers for unimplemented peripherals as Reserved.

Table 7. Register File Address Map

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
General-Purpo	se RAM			
Z8F082A/Z8F0	81A Devices			
000–3FF	General-Purpose Register File RAM	_	XX	
400–EFF	Reserved	—	XX	
Z8F042A/Z8F0	41A Devices			
000–3FF	General-Purpose Register File RAM	_	XX	
400–EFF	Reserved	_	XX	
Z8F022A/Z8F0	21A Devices			
000–1FF	General-Purpose Register File RAM	_	XX	
200–EFF	Reserved	—	XX	
Z8F012A/Z8F0	11A Devices			
000–0FF	General-Purpose Register File RAM	_	XX	
100–EFF	Reserved	—	XX	
Timer 0				
F00	Timer 0 High Byte	T0H	00	87
F01	Timer 0 Low Byte	TOL	01	87
F02	Timer 0 Reload High Byte	T0RH	FF	88
F03	Timer 0 Reload Low Byte	T0RL	FF	88
F04	Timer 0 PWM High Byte	T0PWMH	00	88
F05	Timer 0 PWM Low Byte	T0PWML	00	89
F06	Timer 0 Control 0	TOCTLO	00	83
F07	Timer 0 Control 1	T0CTL1	00	84
Timer 1				
F08	Timer 1 High Byte	T1H	00	87
F09	Timer 1 Low Byte	T1L	01	87
F0A	Timer 1 Reload High Byte	T1RH	FF	88

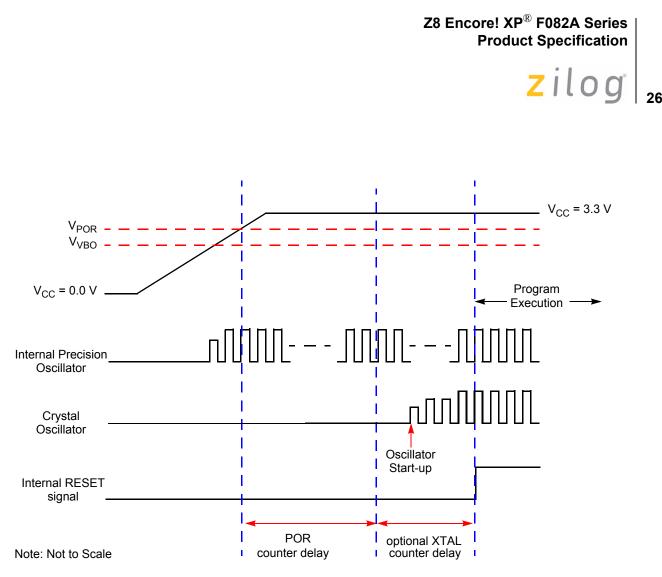


Figure 5. Power-On Reset Operation

Voltage Brownout Reset

The devices in the Z8 Encore! XP F082A Series provide low Voltage Brownout (VBO) protection. The VBO circuit senses when the supply voltage drops to an unsafe level (below the VBO threshold voltage) and forces the device into the Reset state. While the supply voltage remains below the Power-On Reset voltage threshold (V_{POR}), the VBO block holds the device in the Reset.

After the supply voltage again exceeds the Power-On Reset voltage threshold, the device progresses through a full System Reset sequence, as described in the Power-On Reset section. Following Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) register is set to 1. Figure 6 displays Voltage Brownout operation. See Electrical Characteristics on page 221 for the VBO and POR threshold voltages (V_{VBO} and V_{POR}).

The Voltage Brownout circuit can be either enabled or disabled during STOP mode. Operation during STOP mode is set by the VBO_AO Flash Option Bit. See Flash Option Bits for information about configuring VBO_AO.

zilog

vector address. Following Stop Mode Recovery, the STOP bit in the Reset Status (RSTSTAT) Register is set to 1. Table 10 lists the Stop Mode Recovery sources and resulting actions. The text following provides more detailed information about each of the Stop Mode Recovery sources.

Operating Mode	Stop Mode Recovery Source	Action
STOP mode	Watchdog Timer time-out when configured for Reset	Stop Mode Recovery
	Watchdog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO Port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery
	Assertion of external RESET Pin	System Reset
	Debug Pin driven Low	System Reset

Table 10. Stop Mode Recovery Sources and Resulting Action

Stop Mode Recovery Using Watchdog Timer Time-Out

If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode Recovery sequence. In the Reset Status (RSTSTAT) register, the WDT and STOP bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and the Z8 Encore! XP F082A Series device is configured to respond to interrupts, the eZ8 CPU services the Watchdog Timer interrupt request following the normal Stop Mode Recovery sequence.

Stop Mode Recovery Using a GPIO Port Pin Transition

Each of the GPIO Port pins may be configured as a Stop Mode Recovery input source. On any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates Stop Mode Recovery.

Note: The SMR pulses shorter than specified does not trigger a recovery (see Table 131 on page 229). When this happens, the STOP bit in the Reset Status (RSTSTAT) register is set to 1.

Caution: In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input Data registers record the Port transition only if the signal stays on the Port pin through the end of the Stop Mode Recovery delay. As a result, short pulses on the Port pin can

Low-Power Modes

The Z8 Encore! XP F082A Series products contain power-saving features. The highest level of power reduction is provided by the STOP mode, in which nearly all device functions are powered down. The next lower level of power reduction is provided by the HALT mode, in which the CPU is powered down.

Further power savings can be implemented by disabling individual peripheral blocks while in Active mode (defined as being in neither STOP nor HALT mode).

STOP Mode

Executing the eZ8 CPU's STOP instruction places the device into STOP mode, powering down all peripherals except the Voltage Brownout detector, the Low-power Operational Amplifier and the Watchdog Timer. These three blocks may also be disabled for additional power savings. Specifically, the operating characteristics are:

- Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the GPIO registers.
- System clock is stopped.
- eZ8 CPU is stopped.
- Program counter (PC) stops incrementing.
- Watchdog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control register.
- If enabled, the Watchdog Timer logic continues to operate.
- If enabled for operation in STOP mode by the associated Flash Option Bit, the Voltage Brownout protection circuit continues to operate.
- Low-power operational amplifier continues to operate if enabled by the Power Control register to do so.
- All other on-chip peripherals are idle.

To minimize current in STOP mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). Additionally, any GPIOs configured as outputs must also be driven to one of the supply rails. The device can be brought out of STOP mode using Stop Mode Recovery. For more information on Stop Mode Recovery, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

Follow the steps below for configuring a timer for CAPTURE mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these registers allows the software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL0 register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

CAPTURE RESTART Mode

In CAPTURE RESTART mode, the current timer count value is recorded when the acceptable external Timer Input transition occurs. The Capture count value is written to the Timer PWM High and Low Byte Registers. The timer input is the system clock. The TPOL bit in the Timer Control register determines if the Capture occurs on a rising edge or a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL0 register is set to indicate the timer interrupt is because of an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to

85

PWM SINGLE OUTPUT mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

CAPTURE mode

0 = Count is captured on the rising edge of the Timer Input signal.

1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

GATED mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.

1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE mode

0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.

1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PWM DUAL OUTPUT mode

0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload. When enabled, the Timer Output Complement is forced Low (0) upon PWM count match and forced High (1) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to High (1).

1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload. When enabled, the Timer Output Complement is forced High (1) upon PWM count match and forced Low (0) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to Low (0).

Watchdog Timer

The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults, and other system-level problems which may place the Z8 Encore! XP[®] F082A Series devices into unsuitable operating states. The features of Watchdog Timer include:

- On-chip RC oscillator.
- A selectable time-out response: reset or interrupt.
- 24-bit programmable time-out value.

Operation

The Watchdog Timer is a one-shot timer that resets or interrupts the Z8 Encore! XP F082A Series devices when the WDT reaches its terminal count. The Watchdog Timer uses a dedicated on-chip RC oscillator as its clock source. The Watchdog Timer operates in only two modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO Flash Option Bit. The WDT_AO bit forces the Watchdog Timer to operate immediately upon reset, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is described by the following equation:

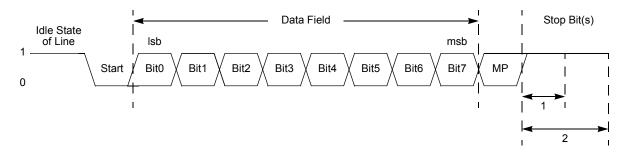
WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10 kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H. The WDT Reload Value must not be set to values below 000004H. Table 56 provides information about approximate time-out delays for the minimum and maximum WDT reload values.

Table 56. Watchdog Timer Approximate Time-Out Delays

WDT Reload Value	WDT Reload Value –	Approximate Time-Out Delay (with 10 kHz typical WDT oscillator frequency			
(Hex)	(Decimal)	Typical	Description		
000004	4	400 μs	Minimum time-out delay		
FFFFF	16,777,215	28 minutes	Maximum time-out delay		

zilog[°]


- 3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.
- 4. Executes the IRET instruction to return from the interrupt-service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this action is typically performed during Stop Bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTI-PROCESSOR mode (also referred to as 9-bit mode), the multiprocessor bit (MP) is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as displayed in Figure 13. The character format is:

Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format

In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the Multiprocessor control bit. The UART Control 1 and Status 1 registers provide MULTI-PROCESSOR (9-bit) mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare register holds the network address of the device.

MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor

zilog |

Comparator

The Z8 Encore! XP[®] F082A Series devices feature a general purpose comparator that compares two analog input signals. These analog signals may be external stimulus from a pin (CINP and/or CINN) or internally generated signals. Both a programmable voltage reference and the temperature sensor output voltage are available internally. The output is available as an interrupt source or can be routed to an external pin.

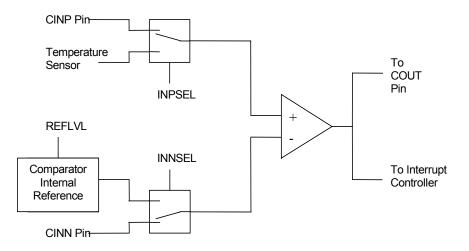


Figure 20. Comparator Block Diagram

Operation

When the positive comparator input exceeds the negative input by more than the specified hysteresis, the output is a logic HIGH. When the negative input exceeds the positive by more than the hysteresis, the output is a logic LOW. Otherwise, the comparator output retains its present value. See Table 137 on page 233 for details.

The comparator may be powered down to reduce supply current. See Power Control Register 0 on page 34 for details.

Caution: Because of the propagation delay of the comparator, it is not recommended to enable or reconfigure the comparator without first disabling interrupts and waiting for the comparator output to settle. Doing so can result in spurious interrupts. The following example describes how to safely enable the comparator:

```
di
ld cmp0, r0 ; load some new configuration
nop
```


159

Trim Bit Address 0001H

Table 89. Trim Option Bits at 0001H

BITS	7	6	5	4	3	2	1	0						
FIELD	Reserved													
RESET	U	U	U	U	U	U	U	U						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
ADDR	Information Page Memory 0021H													
Note: U =	Unchanged b	y Reset. R/W	= Read/Write) .			Note: U = Unchanged by Reset. R/W = Read/Write.							

Reserved—Altering this register may result in incorrect device operation.

Trim Bit Address 0002H

Table 90. Trim Option Bits at 0002H (TIPO)

BITS	7	6	5	4	3	2	1	0	
FIELD	IPO_TRIM								
RESET		U							
R/W	R/W								
ADDR		Information Page Memory 0022H							
Note: U =	J = Unchanged by Reset. R/W = Read/Write.								

iole. U – Unchangeu by Reset. R/W = Read/Write.

IPO_TRIM—Internal Precision Oscillator Trim Byte Contains trimming bits for Internal Precision Oscillator.

Trim Bit Address 0003H

Note: *The LVD is available on 8-pin devices only.*

Table 91. Trim Option Bits at Address 0003H (TLVD)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved LVD_TRIM							
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 0023H							
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.							

PS022825-0908

zilog | 17

read operations to illegal addresses. Also, the user code must pop the address byte off the stack.

The read routine uses 9 bytes of stack space in addition to the one byte of address pushed by the user. Sufficient memory must be available for this stack usage.

Because of the Flash memory architecture, NVDS reads exhibit a non-uniform execution time. A read operation takes between 44 μ s and 489 μ s (assuming a 20 MHz system clock). Slower system clock speeds result in proportionally higher execution times.

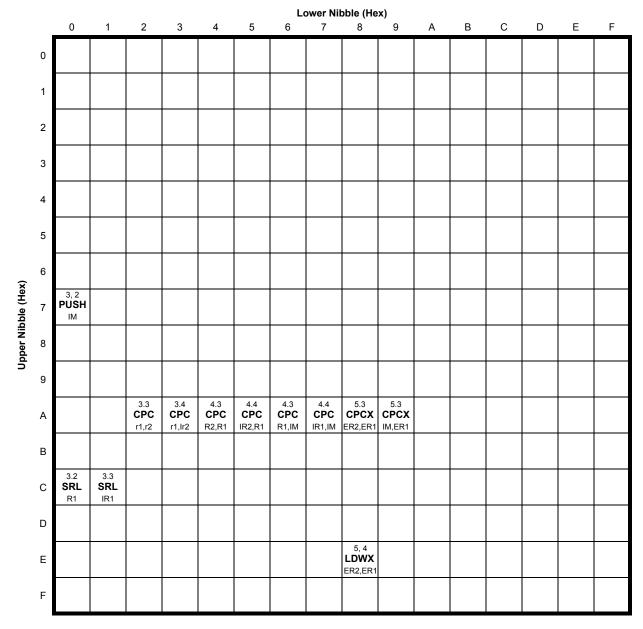
NVDS byte reads from invalid addresses (those exceeding the NVDS array size) return 0xff. Illegal read operations have a 2 μ s execution time.

The status byte returned by the NVDS read routine is zero for successful read, as determined by a CRC check. If the status byte is non-zero, there was a corrupted value in the NVDS array at the location being read. In this case, the value returned in R0 is the byte most recently written to the array that does not have a CRC error.

Power Failure Protection

The NVDS routines employ error checking mechanisms to ensure a power failure endangers only the most recently written byte. Bytes previously written to the array are not perturbed.

A system reset (such as a pin reset or Watchdog Timer reset) that occurs during a write operation also perturbs the byte currently being written. All other bytes in the array are unperturbed.


Optimizing NVDS Memory Usage for Execution Speed

The NVDS read time varies drastically, this discrepancy being a trade-off for minimizing the frequency of writes that require post-write page erases (see Table 104). The NVDS read time of address N is a function of the number of writes to addresses other than N since the most recent write to address N, as well as the number of writes since the most recent page erase. Neglecting effects caused by page erases and results caused by the initial condition in which the NVDS is blank, a rule of thumb is that every write since the most recent page erase causes read times of unwritten addresses to increase by 1 μ s, up to a maximum of (511-NVDS SIZE) μ s.

Operation	Minimum Latency	Maximum Latency
Read (16 byte array)	875	9961
Read (64 byte array)	876	8952

Table 104. NVDS Read Time

zilog

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics may be found in the individual chapters.

Absolute Maximum Ratings

Stresses greater than those listed in Table 126 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		430	mW	
Maximum current into V _{DD} or out of V _{SS}		120	mA	

Table 126. Absolute Maximum Ratings

<mark>z</mark>ilog[°]

AC Characteristics

The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50 pF on all outputs.

Table 129. AC Characteristics

		T _A = -40 °C (unless o	V to 3.6 V to +105 °C otherwise ted)			
Symbol	Parameter	Minimum	Maximum	Units	Conditions	
F _{SYSCLK}	System Clock Frequency	_	20.0	MHz	Read-only from Flash memory	
		0.032768	20.0	MHz	Program or erasure of the Flash memory	
F _{XTAL}	Crystal Oscillator Frequency	-	20.0	MHz	System clock frequencies below the crystal oscillator minimum require an external clock driver	
T _{XIN}	System Clock Period	50	_	ns	T _{CLK} = 1/F _{syscik}	
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50 ns	
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50 ns	
T _{XINR}	System Clock Rise Time	-	3	ns	T _{CLK} = 50 ns	
T _{XINF}	System Clock Fall Time	-	3	ns	T _{CLK} = 50 ns	

zilog[°]

229

On-Chip Peripheral AC and DC Electrical Characteristics

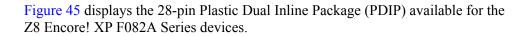
Table 131. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing

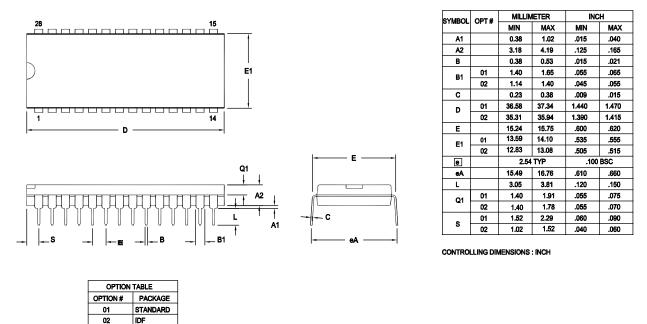
	Parameter	T _A = -	40 °C to +	105 °C		
Symbol		Minimum	Typical ¹	Maximum	Units	Conditions
V _{POR}	Power-On Reset Voltage Threshold	2.20	2.45	2.70	V	V _{DD} = V _{POR}
V _{VBO}	Voltage Brownout Reset Voltage Threshold	2.15	2.40	2.65	V	$V_{DD} = V_{VBO}$
	V_{POR} to V_{VBO} hysteresis		50	75	mV	
	Starting V _{DD} voltage to ensure valid Power-On Reset.	-	V_{SS}	-	V	
T _{ANA}	Power-On Reset Analog Delay	-	70	-	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}
T _{POR}	Power-On Reset Digital Delay		16		μs	66 Internal Precision Oscillator cycles + IPO startup time (T _{IPOST})
T _{POR}	Power-On Reset Digital Delay		1		ms	5000 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled		16		μs	66 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled		1		ms	5000 Internal Precision Oscillator cycles
T _{VBO}	Voltage Brownout Pulse Rejection Period	_	10	-	μs	Period of time in which V _{DD} < V _{VBO} without generating a Reset.
T _{RAMP}	Time for V _{DD} to transition from V _{SS} to V _{POR} to ensure valid Reset	0.10	-	100	ms	
T _{SMP}	Stop Mode Recovery pin pulse rejection period		20		ns	For any SMR pin or for the Reset pin when it is asserted in STOP mode.

only and are not tested in production.

zilog

		V _{DD}	= 2.7 V to			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
T _{AERR}	Temperature Error		<u>+</u> 0.5	<u>+</u> 2	°C	Over the range +20 °C to +30 °C (as measured by ADC) ¹
			<u>+</u> 1	<u>+</u> 5	°C	Over the range +0 °C to +70 °C (as measured by ADC)
			<u>+</u> 2	<u>+</u> 7	°C	Over the range +0 °C to +105 °C (as measured by ADC)
			<u>+</u> 7		°C	Over the range -40 °C to +105 °C (as measured by ADC)
T _{AERR}	Temperature Error		TBD		°C	Over the range -40 °C to +105 °C (as measured by comparator)
t _{WAKE}	Wakeup Time		80	100	μs	Time required for Temperature Sensor to stabilize after enabling


Table 138. Temperature Sensor Electrical Characteristics


¹Devices are factory calibrated at for maximal accuracy between +20 °C and +30 °C, so the sensor is maximally accurate in that range. User re-calibration for a different temperature range is possible and increases accuracy near the new calibration point.

General Purpose I/O Port Input Data Sample Timing

Figure 34 displays timing of the GPIO Port input sampling. The input value on a GPIO Port pin is sampled on the rising edge of the system clock. The Port value is available to the eZ8 CPU on the second rising clock edge following the change of the Port value.

zilog ₂₄₇

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 45. 28-Pin Plastic Dual Inline Package (PDIP)