E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	16 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f012asj020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog ₃

Part Number	Flash (KB)	RAM (B)	NVDS ¹ (B)	I/O	Comparator	Advanced Analog ²	ADC Inputs	Packages
Z8F082A	8	1024	0	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F081A	8	1024	0	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F042A	4	1024	128	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F041A	4	1024	128	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F022A	2	512	64	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F021A	2	512	64	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F012A	1	256	16	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F011A	1	256	16	6–25	Yes	No	0	8-, 20- and 28-pin
	a data ata							

Table 1. Z8 Encore! XP[®] F082A Series Family Part Selection Guide

¹Non-volatile data storage.

²Advanced Analog includes ADC, temperature sensor, and low-power operational amplifier.

zilog ₃₇

General-Purpose Input/Output

The Z8 Encore! XP[®] F082A Series products support a maximum of 25 port pins (Ports A– D) for general-purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality, and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability By Device

Table 13 lists the port pins available with each device and package type.

Devices	Package	ADC	Port A	Port B	Port C	Port D	Total I/O
Z8F082ASB, Z8F082APB, Z8F082AQB Z8F042ASB, Z8F042APB, Z8F042AQB Z8F022ASB, Z8F022APB, Z8F022AQB Z8F012ASB, Z8F012APB, Z8F012AQB	8-pin	Yes	[5:0]	No	No	No	6
Z8F081ASB, Z8F081APB, Z8F081AQB Z8F041ASB, Z8F041APB, Z8F041AQB Z8F021ASB, Z8F021APB, Z8F021AQB Z8F011ASB, Z8F011APB, Z8F011AQB	8-pin	No	[5:0]	No	No	No	6
Z8F082APH, Z8F082AHH, Z8F082ASH Z8F042APH, Z8F042AHH, Z8F042ASH Z8F022APH, Z8F022AHH, Z8F022ASH Z8F012APH, Z8F012AHH, Z8F012ASH	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17
Z8F081APH, Z8F081AHH, Z8F081ASH Z8F041APH, Z8F041AHH, Z8F041ASH Z8F021APH, Z8F021AHH, Z8F021ASH Z8F011APH, Z8F011AHH, Z8F011ASH	20-pin	No	[7:0]	[3:0]	[3:0]	[0]	17
Z8F082APJ, Z8F082ASJ, Z8F082AHJ Z8F042APJ, Z8F042ASJ, Z8F042AHJ Z8F022APJ, Z8F022ASJ, Z8F022AHJ Z8F012APJ, Z8F012ASJ, Z8F012AHJ	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23
Z8F081APJ, Z8F081ASJ, Z8F081AHJ Z8F041APJ, Z8F041ASJ, Z8F041AHJ Z8F021APJ, Z8F021ASJ, Z8F021AHJ Z8F011APJ, Z8F011ASJ, Z8F011AHJ	28-pin	No	[7:0]	[7:0]	[7:0]	[0]	25

Table 13. Port Availability by Device and Package Type

zilog[®]

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT*	Timer 0 Input/Timer 0 Output Complement	N/A
		Reserved		-
	PA1	TOOUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
		Reserved		-
-	PA3	CTS0	UART 0 Clear to Send	-
		Reserved		-
	PA4	RXD0/IRRX0	UART 0/IrDA 0 Receive Data	-
		Reserved		-
	PA5	TXD0/IRTX0	UART 0/IrDA 0 Transmit Data	-
		Reserved		-
	PA6	T1IN/T1OUT*	Timer 1 Input/Timer 1 Output Complement	-
		Reserved		-
	PA7	T1OUT	Timer 1 Output	-
		Reserved		-

Table 14. Port Alternate Function Mapping (Non 8-Pin Parts)

Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in Port A–D Alternate Function Sub-Registers on page 47 automatically enables the associated alternate function.

* Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in Timer Pin Signal Operation on page 82.

Table 31. LED Drive Level Low Register (LEDLVLL)

BITS	7	6	5	4	3	2	1	0				
FIELD		LEDLVLL[7:0]										
RESET	0	0	0	0	0	0	0 0					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W R/W					
ADDR				F8	4H							

LEDLVLL[7:0]—LED Level Low Bit

{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.

00 = 3 mA01 = 7 mA10 = 13 mA

11 = 20 mA

Timers

These Z8 Encore! XP[®] F082A Series products contain two 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse-width modulated (PWM) signals. The timers' feature include:

- 16-bit reload counter.
- Programmable prescaler with prescale values from 1 to 128.
- PWM output generation.
- Capture and compare capability.
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin.
- Timer interrupt.

In addition to the timers described in this chapter, the Baud Rate Generator of the UART (if unused) may also provide basic timing functionality. For information on using the Baud Rate Generator as an additional timer, see Universal Asynchronous Receiver/Transmitter on page 97.

Architecture

Figure 9 on page 70 displays the architecture of the timers.

zilog[®]

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts when a byte is written to the UART Transmit Data register. The Driver Enable signal asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the final Stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

$$\left(\frac{1}{\text{Baud Rate (Hz)}}\right) \le \text{DE to Start Bit Setup Time (s)} \le \left(\frac{2}{\text{Baud Rate (Hz)}}\right)$$

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit of data out. The Transmit Data register can now be written with the next character to

105

0 = No framing error occurred. 1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit. 0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

 $CTS - \overline{CTS}$ signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal. This signal is active Low.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Table 64. UART Status 1 Register (U0STAT1)

BITS	7	6	5	4	3	2	1	0
FIELD				NEWFRM	MPRX			
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/W	R/W	R	R
ADDR				F4	4H			

Reserved—Must be 0.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame.

1 = The current byte is the first data byte of a new frame.

zilog | 1

Comparator

The Z8 Encore! XP[®] F082A Series devices feature a general purpose comparator that compares two analog input signals. These analog signals may be external stimulus from a pin (CINP and/or CINN) or internally generated signals. Both a programmable voltage reference and the temperature sensor output voltage are available internally. The output is available as an interrupt source or can be routed to an external pin.

Figure 20. Comparator Block Diagram

Operation

When the positive comparator input exceeds the negative input by more than the specified hysteresis, the output is a logic HIGH. When the negative input exceeds the positive by more than the hysteresis, the output is a logic LOW. Otherwise, the comparator output retains its present value. See Table 137 on page 233 for details.

The comparator may be powered down to reduce supply current. See Power Control Register 0 on page 34 for details.

Caution: Because of the propagation delay of the comparator, it is not recommended to enable or reconfigure the comparator without first disabling interrupts and waiting for the comparator output to settle. Doing so can result in spurious interrupts. The following example describes how to safely enable the comparator:

```
di
ld cmp0, r0 ; load some new configuration
nop
```

zilog

Flash Control Register Definitions

Flash Control Register

The Flash Controller must be unlocked using the Flash Control (FCTL) register before programming or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control register unlocks the Flash Controller. When the Flash Controller is unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the appropriate enable command to the FCTL. Page Erase applies only to the active page selected in Flash Page Select register. Mass Erase is enabled only through the On-Chip Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the read-only Flash Status Register.

Table	78. I	Flash	Control	Register	(FCTL)
-------	-------	-------	---------	----------	--------

BITS	7	6	5	4	3	2	1	0		
FIELD	FCMD									
RESET	0	0	0	0	0	0	0 0			
R/W	W	W	W	W	W	W	W	W		
ADDR	FF8H									

FCMD—Flash Command

73H = First unlock command.

8CH = Second unlock command.

95H = Page Erase command (must be third command in sequence to initiate Page Erase).

63H = Mass Erase command (must be third command in sequence to initiate Mass Erase).

5EH = Enable Flash Sector Protect Register Access

155

Randomized Lot Identification Bits

As an optional feature, Zilog is able to provide a factory-programmed random lot identifier. With this feature, all devices in a given production lot are programmed with the same random number. This random number is uniquely regenerated for each successive production lot and is not likely to be repeated.

The randomized lot identifier is a 32 byte binary value, stored in the Flash information page (see Reading the Flash Information Page on page 155 and Randomized Lot Identifier on page 166 for more details) and is unaffected by mass erasure of the device's Flash memory.

Reading the Flash Information Page

The following code example shows how to read data from the Flash information area.

; get value at info address 60 (FE60h)
ldx FPS, #%80 ; enable access to flash info page
ld R0, #%FE
ld R1, #%60
ldc R2, @RR0 ; R2 now contains the calibration value

Flash Option Bit Control Register Definitions

Trim Bit Address Register

The Trim Bit Address (TRMADR) register contains the target address for an access to the trim option bits (Table 84).

BITS	7	6	5	4	3	2	1	0			
FIELD	TRMADR - Trim Bit Address (00H to 1FH)										
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR	FF6H										

Table 84. Trim Bit Address Register (TRMADR)

zilog

Table 108. Oscillator Configuration and Selection

Clock Source	Characteristics	Required Setup					
Internal Precision RC Oscillator	 32.8 kHz or 5.53 MHz High accuracy No external components required 	Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53 MHz or 32.8 kHz					
External Crystal/ Resonator	 32 kHz to 20 MHz Very high accuracy (dependent on crystal or resonator used) Requires external components 	 Configure Flash option bits for correct external oscillator mode Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de- asserted, no waiting is required) 					
External RC Oscillator • 32 kHz to 4 MHz • Accuracy dependent on external components		 Configure Flash option bits for correct external oscillator mode Unlock and write OSCCTL to enable crystal oscillator and select as system clock 					
External Clock Drive	 0 to 20 MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO 					
Internal Watchdog Timer Oscillator	 10 kHz nominal Low accuracy; no external components required Very low power consumption 	 Enable WDT if not enabled and wait until WDT Oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator 					

Caution: Unintentional accesses to the oscillator control register can actually stop the chip by switching to a non-functioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the oscillator control register, unlock it by making two writes to the OSCCTL register with the values E7H followed by 18H. A third write to the OSCCTL register changes the value of the actual register and returns the register to a locked state. Any other sequence of oscillator control register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

zilog

199

eZ8 CPU Instruction Set

Assembly Language Programming Introduction

The eZ8 CPU assembly language provides a means for writing an application program without concern for actual memory addresses or machine instruction formats. A program written in assembly language is called a source program. Assembly language allows the use of symbolic addresses to identify memory locations. It also allows mnemonic codes (opcodes and operands) to represent the instructions themselves. The opcodes identify the instruction while the operands represent memory locations, registers, or immediate data values.

Each assembly language program consists of a series of symbolic commands called statements. Each statement can contain labels, operations, operands and comments.

Labels can be assigned to a particular instruction step in a source program. The label identifies that step in the program as an entry point for use by other instructions.

The assembly language also includes assembler directives that supplement the machine instruction. The assembler directives, or pseudo-ops, are not translated into a machine instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the assembly process.

The source program is processed (assembled) by the assembler to obtain a machine language program called the object code. The object code is executed by the eZ8 CPU. An example segment of an assembly language program is detailed in the following example.

Assembly Language Source Program Example

JP START	; Everything after the semicolon is a comment.
START:	; A label called 'START'. The first instruction (JP START) in this ; example causes program execution to jump to the point within the ; program where the START label occurs.
LD R4, R7	; A Load (LD) instruction with two operands. The first operand, ; Working Register R4, is the destination. The second operand, ; Working Register R7, is the source. The contents of R7 is ; written into R4.
LD 234H, #%01	; Another Load (LD) instruction with two operands. ; The first operand, Extended Mode Register Address 234H, ; identifies the destination. The second operand, Immediate Data
	; value 01H, is the source. The value 01H is written into the ; Register at address 234H.

zilog[°]

208

Assembly	Symbolic	Addres	s Mode	_ Opcode(s)			Fla	ags			Fetch	Instr.
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	н	Cycles	Cycles
AND dst, src	$dst \gets dst \ AND \ src$	r	r	52	_	*	*	0	_	-	2	3
		r	lr	53	-						2	4
		R	R	54	-						3	3
		R	IR	55	-						3	4
		R	IM	56	-						3	3
		IR	IM	57	-						3	4
ANDX dst, src	$dst \gets dst \ AND \ src$	ER	ER	58	-	*	*	0	_	-	4	3
		ER	IM	59	-						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	_	_	_	_	_	_	1	2
BCLR bit, dst	$dst[bit] \leftarrow 0$	r		E2	-	-	-	-	-	-	2	2
BIT p, bit, dst	$dst[bit] \leftarrow p$	r		E2	_	-	-	-	-	-	2	2
BRK	Debugger Break			00	-	-	-	-	-	-	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	_	_	_	_	_	-	2	2
BSWAP dst	$dst[7:0] \leftarrow dst[0:7]$	R		D5	Х	*	*	0	_	_	2	2
BTJ p, bit, src, dst	$\begin{array}{l} \text{if src[bit]} = p \\ \text{PC} \leftarrow \text{PC} + X \end{array}$		r	F6	_	_	_	_	_	-	3	3
			lr	F7	-						3	4
BTJNZ bit, src, dst	if src[bit] = 1		r	F6	_	_	_	-	_	-	3	3
	$PC \leftarrow PC + X$		lr	F7	-						3	4
BTJZ bit, src, dst	if src[bit] = 0		r	F6	-	-	-	-	-	-	3	3
	$PC \leftarrow PC + X$		lr	F7	-						3	4
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	_	_	_	_	_	-	2	6
	$ @SP \leftarrow PC \\ PC \leftarrow dst $	DA		D6	-						3	3
CCF	$C \leftarrow \simC$			EF	*	_	_	_	_		1	2
CLR dst	$dst \gets 00H$	R		B0	_	_	_	_	_	-	2	2
		IR		B1	-						2	3
Flags Notation:	* = Value is a function of – = Unaffected X = Undefined	the result	of the o	peration.	0 = 1 =	Re Se	eset et to	to (1)			

Table 124. eZ8 CPU Instruction Summary (Continued)

		V _{DI}	_D = 2.7 V to 3	8.6 V		
			Maximum ²			
Symbol	Parameter	Typical 1	Std Temp	Ext Temp	Units	Conditions
I _{DD} Stop	Supply Current in STOP Mode	0.1			μA	No peripherals enabled. All pins driven to V_{DD} or $V_{SS}.$
I _{DD} Halt	Supply Current in HALT	35	55	65	μA	32 kHz
	Mode (with all peripherals disabled)	520			μA	5.5 MHz
		2.1	2.85	2.85	mA	20 MHz
I _{DD}	Supply Current in ACTIVE Mode (with all peripherals disabled)	2.8			mA	32 kHz
		4.5	5.2	5.2	mA	5.5 MHz
		5.5	6.5	6.5	mA	10 MHz
	-	7.9	11.5	11.5	mA	20 MHz
I _{DD} WDT	Watchdog Timer Supply Current	0.9	1.0	1.1	μA	
I _{DD} XTAL	Crystal Oscillator	40			μA	32 kHz
	Supply Current	230			μA	4 MHz
	-	760			μA	20 MHz
I _{DD} IPO	Internal Precision Oscillator Supply Current	350	500	550	μA	
I _{DD} VBO	Voltage Brownout and Low-Voltage Detect Supply Current	50			μA	For 20-/28-pin devices (VBO only); See Notes 4
						For 8-pin devices; See Notes 4
I _{DD} ADC	Analog to Digital Converter Supply Current (with External Reference)	2.8	3.1	3.2	mA	32 kHz
		3.1	3.6	3.7	mA	5.5 MHz
		3.3	3.7	3.8	mA	10 MHz
	-	3.7	4.2	4.3	mA	20 MHz
I _{DD} ADCRef	ADC Internal Reference Supply Current	0			μA	See Notes 4
I _{DD} CMP	Comparator supply Current	150	180	190	μA	See Notes 4

Table 128. Power Consumption

On-Chip Debugger Timing

Figure 36 and Table 141 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4 ns maximum rise and fall time.

Figure 36. On-Chip Debugger Timing

		Delay (ns)				
Parameter	Abbreviation	Minimum	Maximum			
DBG						
T ₁	XIN Rise to DBG Valid Delay	-	15			
T ₂	XIN Rise to DBG Output Hold Time	2	-			
T ₃	DBG to XIN Rise Input Setup Time	5	-			
T ₄	DBG to XIN Rise Input Hold Time	5	-			

Table 141. On-Chip Debugger Timing

Zilog ₂₄₃

Figure 41 displays the 8-pin Quad Flat No-Lead package (QFN)/MLF-S available for the Z8 Encore! XP F082A Series devices. This package has a footprint identical to that of the 8-pin SOIC, but with a lower profile.

Figure 41. 8-Pin Quad Flat No-Lead Package (QFN)/MLF-S

Zilog 244

Figure 42 displays the 20-pin Plastic Dual Inline Package (PDIP) available for the Z8 Encore! XP F082A Series devices.

Figure 42. 20-Pin Plastic Dual Inline Package (PDIP)

zilog | 249

Figure 47 displays the 28-pin Small Shrink Outline Package (SSOP) available for the Z8 Encore! XP F082A Series devices.

Figure 47. 28-Pin Small Shrink Outline Package (SSOP)

U.	
	- 21

Part Number	Flash	RAM	NVDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082A	Serie	s with 2	KB Fla	sh							
Standard Temperature: 0 °C to 70 °C											
Z8F021APB020SC	2 KB	512 B	64 B	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F021AQB020SC	2 KB	512 B	64 B	6	13	2	0	1	1	0	QFN 8-pin package
Z8F021ASB020SC	2 KB	512 B	64 B	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F021ASH020SC	2 KB	512 B	64 B	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F021AHH020SC	2 KB	512 B	64 B	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F021APH020SC	2 KB	512 B	64 B	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F021ASJ020SC	2 KB	512 B	64 B	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F021AHJ020SC	2 KB	512 B	64 B	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F021APJ020SC	2 KB	512 B	64 B	25	19	2	0	1	1	0	PDIP 28-pin package
Extended Temperature: -40 °C to 105 °C											
Z8F021APB020EC	2 KB	512 B	64 B	6	13	2	0	1	1	0	PDIP 8-pin package
Z8F021AQB020EC	2 KB	512 B	64 B	6	13	2	0	1	1	0	QFN 8-pin package
Z8F021ASB020EC	2 KB	512 B	64 B	6	13	2	0	1	1	0	SOIC 8-pin package
Z8F021ASH020EC	2 KB	512 B	64 B	17	19	2	0	1	1	0	SOIC 20-pin package
Z8F021AHH020EC	2 KB	512 B	64 B	17	19	2	0	1	1	0	SSOP 20-pin package
Z8F021APH020EC	2 KB	512 B	64 B	17	19	2	0	1	1	0	PDIP 20-pin package
Z8F021ASJ020EC	2 KB	512 B	64 B	25	19	2	0	1	1	0	SOIC 28-pin package
Z8F021AHJ020EC	2 KB	512 B	64 B	25	19	2	0	1	1	0	SSOP 28-pin package
Z8F021APJ020EC	2 KB	512 B	64 B	25	19	2	0	1	1	0	PDIP 28-pin package
Replace C with G for Lead-Free Packaging											

RL 206

Z8 Encore! XP[®] F082A Series Product Specification

zilog | 267

register 201 ADC control (ADCCTL) 130, 132 ADC data high byte (ADCDH) 132 ADC data low bits (ADCDL) 133 flash control (FCTL) 149, 155, 156 flash high and low byte (FFREQH and FREEQL) 152 flash page select (FPS) 150, 151 flash status (FSTAT) 150 GPIO port A-H address (PxADDR) 46 GPIO port A-H alternate function sub-registers 48 GPIO port A-H control address (PxCTL) 47 GPIO port A-H data direction sub-registers 47 OCD control 184 OCD status 185 UARTx baud rate high byte (UxBRH) 114 UARTx baud rate low byte (UxBRL) 114 UARTx Control 0 (UxCTL0) 108, 114 UARTx control 1 (UxCTL1) 109 UARTx receive data (UxRXD) 113 UARTx status 0 (UxSTAT0) 111 UARTx status 1 (UxSTAT1) 112 UARTx transmit data (UxTXD) 113 Watchdog Timer control (WDTCTL) 31, 94, 136, 190 Watchdog Timer reload high byte (WDTH) 95 Watchdog Timer reload low byte (WDTL) 95 Watchdog Timer reload upper byte (WD-TU) 95 register file 15 register pair 201 register pointer 202 reset and stop mode characteristics 24 and Stop Mode Recovery 23 carry flag 204 sources 25 **RET 206** return 206

RLC 206 rotate and shift instuctions 206 rotate left 206 rotate left through carry 206 rotate right 206 rotate right through carry 206 RP 202 RR 201, 206 rr 201 RRC 206

S

SBC 203 SCF 204, 205 second opcode map after 1FH 219 set carry flag 204, 205 set register pointer 205 shift right arithmatic 207 shift right logical 207 signal descriptions 11 single-shot conversion (ADC) 123 software trap 206 source operand 202 SP 202 SRA 207 src 202 SRL 207 **SRP 205** stack pointer 202 **STOP 205** STOP mode 33 stop mode 205 Stop Mode Recovery sources 28 using a GPIO port pin transition 29 using Watchdog Timer time-out 29 stop mode recovery sources 30 using a GPIO port pin transition 30 SUB 203 subtract 203 subtract - extended addressing 203 subtract with carry 203