

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	6
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f021asb020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore! XP[®] F082A Series **Product Specification**

zilog ₃

Part Number	Flash (KB)	RAM (B)	NVDS ¹ (B)	I/O	Comparator	Advanced Analog ²	ADC Inputs	Packages
Z8F082A	8	1024	0	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F081A	8	1024	0	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F042A	4	1024	128	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F041A	4	1024	128	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F022A	2	512	64	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F021A	2	512	64	6–25	Yes	No	0	8-, 20- and 28-pin
Z8F012A	1	256	16	6–23	Yes	Yes	4–8	8-, 20- and 28-pin
Z8F011A	1	256	16	6–25	Yes	No	0	8-, 20- and 28-pir

Table 1. Z8 Encore! XP[®] F082A Series Family Part Selection Guide

¹Non-volatile data storage.

²Advanced Analog includes ADC, temperature sensor, and low-power operational amplifier.

zilog[°]

addresses outside the available Flash memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 5 describes the Program Memory Maps for the Z8 Encore! XP F082A Series products.

Program Memory Address (Hex)	Function
Z8F082A and Z8F081A Products	
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-1FFF	Program Memory
Z8F042A and Z8F041A Products	
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-0FFF	Program Memory

Table 5. Z8 Encore! XP F082A Series Program Memory Maps

16

operational amplifier (LPO) is OFF. To use the LPO, clear the LPO bit, turning it ON. Clearing this bit might interfere with normal ADC measurements on ANA0 (the LPO output). This bit enables the amplifier even in STOP mode. If the amplifier is not required in STOP mode, disable it. Failure to perform this results in STOP mode currents greater than specified.

Note: This register is only reset during a POR sequence. Other system reset events do not affect *it.*

Table 12. Power Control Register 0 (PWRCTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	LPO	Reserved		VBO	TEMP	ADC	COMP	Reserved
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W R/W R/W R/W					R/W
ADDR				F8	0H			

LPO—Low-Power Operational Amplifier Disable

0 = LPO is enabled (this applies even in STOP mode).

1 = LPO is disabled.

Reserved—Must be 0.

VBO—Voltage Brownout Detector Disable

This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.

0 = VBO Enabled

1 = VBO Disabled

TEMP—Temperature Sensor Disable

0 = Temperature Sensor Enabled

1 = Temperature Sensor Disabled

ADC—Analog-to-Digital Converter Disable

- 0 = Analog-to-Digital Converter Enabled
- 1 = Analog-to-Digital Converter Disabled

COMP—Comparator Disable

- 0 =Comparator is Enabled
- 1 = Comparator is Disabled

Reserved—Must be 0.

Note: Asserting any power control bit disables the targeted block, regardless of any enable bits contained in the target block's control registers.

Zilog ₄₂

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B	PB0	Reserved		AFS1[0]: 0
		ANA0/AMPOUT	ADC Analog Input/LPO Output	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1/AMPINN	ADC Analog Input/LPO Input (N)	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
		ANA2/AMPINP	ADC Analog Input/LPO Input (P)	AFS1[2]: 1
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		VREF*	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Table 14. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Note: Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is not used to select the function. Also, alternate function selection as described in Port A-D Alternate Function Sub-Registers on page 47 must also be enabled.

* VREF is available on PB5 in 28-pin products only.

U0RXI—UART 0 Receiver Interrupt Request

0 = No interrupt request is pending for the UART 0 receiver.

1 = An interrupt request from the UART 0 receiver is awaiting service.

U0TXI-UART 0 Transmitter Interrupt Request

0 = No interrupt request is pending for the UART 0 transmitter.

1 = An interrupt request from the UART 0 transmitter is awaiting service.

ADCI—ADC Interrupt Request

0 = No interrupt request is pending for the analog-to-digital Converter.

1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 34) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VI	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
ADDR		FC3H						

Table 34. Interrupt Request 1 Register (IRQ1)

PA7*V*I—Port A Pin 7 or LVD Interrupt Request

0 = No interrupt request is pending for GPIO Port A or LVD.

1 = An interrupt request from GPIO Port A or LVD.

PA6CI—Port A Pin 6 or Comparator Interrupt Request

0 = No interrupt request is pending for GPIO Port A or Comparator.

1 = An interrupt request from GPIO Port A or Comparator.

PAxI—Port A Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port A pin *x*.

1 = An interrupt request from GPIO Port A pin x is awaiting service.

where x indicates the specific GPIO Port pin number (0–5).

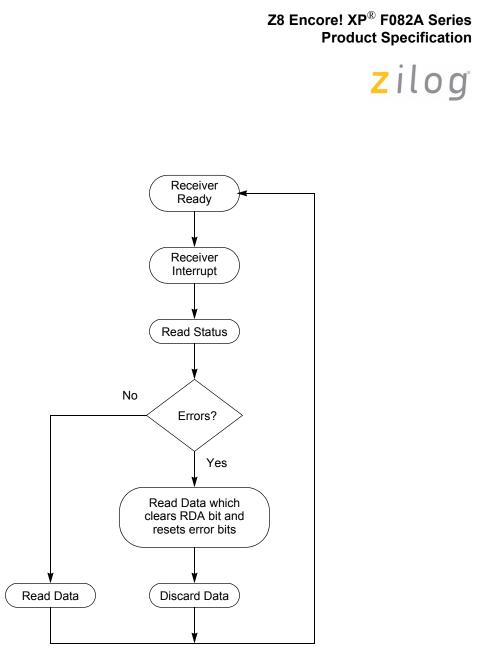


Figure 15. UART Receiver Interrupt Service Routine Flow

Baud Rate Generator Interrupts

If the baud rate generator (BRG) interrupt enable is set, the UART Receiver interrupt asserts when the UART Baud Rate Generator reloads. This condition allows the Baud Rate Generator to function as an additional counter if the UART functionality is not employed.

UART Baud Rate Generator

The UART Baud Rate Generator creates a lower frequency baud rate clock for data transmission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value

107

MPRX—Multiprocessor Receive

Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Transmit Data Register

Data bytes written to the UART Transmit Data (UxTXD) register (Table 65) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

BITS	7	6	5	4	3	2	1	0
FIELD		TXD						
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	w w w w w w w						
ADDR				F4	0H			

Table 65. UART Transmit Data Register (U0TXD)

TXD-Transmit Data

UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data (UxRXD) register (Table 66). The read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

Table 66. UART Receive Data Register (U0RXD)

BITS	7	6	5	4	3	2	1	0
FIELD		RXD						
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
ADDR	F40H							
X = Undef	< = Undefined.							

RXD—Receive Data

UART receiver data byte from the RXDx pin

Z8 Encore! XP[®] F082A Series Product Specification

zilog

126

Factory Calibration

Devices that have been factory calibrated contain 30 bytes of calibration data in the Flash option bit space. This data consists of 3 bytes for each input mode, one for offset and two for gain correction. For a list of input modes for which calibration data exists, see Zilog Calibration Data on page 161.

User Calibration

If you have precision references available, its own external calibration can be performed using any input modes. This calibration data takes into account buffer offset and non-linearity, so it is recommended that this calibration be performed separately for each of the ADC input modes planned for use.

Manual Offset Calibration

When uncalibrated, the ADC has significant offset (see Table 135 on page 231). Subsequently, manual offset calibration capability is built into the block. When the ADC Control Register 0 sets the input mode (ANAIN[2:0]) to MANUAL OFFSET CALIBRATION mode, the differential inputs to the ADC are shorted together by an internal switch. Reading the ADC value at this point produces 0 in an ideal system. The value actually read is the ADC offset. This value can be stored in non-volatile memory (see Non-Volatile Data Storage on page 169) and accessed by user code to compensate for the input offset error. There is no provision for manual gain calibration.

Software Compensation Procedure Using Factory Calibration Data

The value read from the ADC high and low byte registers is uncompensated. The user mode software must apply gain and offset correction to this uncompensated value for maximum accuracy. The following equation yields the compensated value:

 $ADC_{comp} = (ADC_{uncomp} - OFFCAL) + ((ADC_{uncomp} - OFFCAL) \times GAINCAL)/2^{16}$

where GAINCAL is the gain calibration value, OFFCAL is the offset calibration value and ADC_{uncomp} is the uncompensated value read from the ADC. All values are in two's complement format.

Note:

The offset compensation is performed first, followed by the gain compensation. One bit of resolution is lost because of rounding on both the offset and gain computations. As a result the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding and 10 data bits.

Also note that in the second term, the multiplication must be performed before the division by 2^{16} . Otherwise, the second term incorrectly evaluates to zero.

134

Low Power Operational Amplifier

Overview

The LPO is a general-purpose low power operational amplifier. Each of the three ports of the amplifier is accessible from the package pins. The LPO contains only one pin configuration: ANA0 is the output/feedback node, ANA1 is the inverting input and ANA2 is the non-inverting input.

Operation

To use the LPO, it must be enabled in the Power Control Register 0 (PWRCTL0). The default state of the LPO is OFF. To use the LPO, the LPO bit must be cleared, turning it ON (Power Control Register 0 (PWRCTL0) on page 35). When making normal ADC measurements on ANA0 (measurements not involving the LPO output), the LPO bit must be OFF. Turning the LPO bit ON interferes with normal ADC measurements.

Warning: The LPO bit enables the amplifier even in STOP mode. If the amplifier is not required in STOP mode, disable it. Failing to perform this results in STOP mode currents higher than necessary.

As with other ADC measurements, any pins used for analog purposes must be configured as such in the GPIO registers (see Port A–D Alternate Function Sub-Registers on page 47).

LPO output measurements are made on ANA0, as selected by the ANAIN[3:0] bits of ADC Control Register 0. It is also possible to make single-ended measurements on ANA1 and ANA2 while the amplifier is enabled, which is often useful for determining offset conditions. Differential measurements between ANA0 and ANA2 may be useful for noise cancellation purposes.

If the LPO output is routed to the ADC, then the BUFFMODE[2:0] bits of ADC Control/Status Register 1 must also be configured for unity-gain buffered operation. Sampling the LPO in an unbuffered mode is not recommended.

When either input is overdriven, the amplifier output saturates at the positive or negative supply voltage. No instability results.

Z8 Encore! XP[®] F082A Series Product Specification

zilog

183

```
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

• **Read Data Memory (0DH)**—The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

• **Read Program Memory CRC (0EH)**—The Read Program Memory CRC command computes and returns the Cyclic Redundancy Check (CRC) of Program Memory using the 16-bit CRC-CCITT polynomial. If the device is not in DEBUG mode, this command returns FFFFH for the CRC value. Unlike most other OCD Read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads the Program Memory, calculates the CRC value, and returns the result. The delay is a function of the Program Memory size and is approximately equal to the system clock period multiplied by the number of bytes in the Program Memory.

DBG \leftarrow 0EH DBG \rightarrow CRC[15:8] DBG \rightarrow CRC[7:0]

• Step Instruction (10H)—The Step Instruction command steps one assembly instruction at the current Program Counter (PC) location. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

DBG \leftarrow 10H

• Stuff Instruction (11H)—The Stuff Instruction command steps one assembly instruction and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the instruction are read from Program Memory. This command is useful for stepping over instructions where the first byte of the instruction has been overwritten by a Breakpoint. If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the OCD ignores this command.

```
DBG \leftarrow 11H
DBG \leftarrow opcode[7:0]
```

• **Execute Instruction (12H)**—The Execute Instruction command allows sending an entire instruction to be executed to the eZ8 CPU. This command can also step over Breakpoints. The number of bytes to send for the instruction depends on the opcode.

If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, this command reads and discards one byte.

DBG \leftarrow 12H DBG \leftarrow 1-5 byte opcode

On-Chip Debugger Control Register Definitions

OCD Control Register

The OCD Control register controls the state of the On-Chip Debugger. This register is used to enter or exit DEBUG mode and to enable the BRK instruction. It can also reset the Z8 Encore! XP[®] F082A Series device.

A reset and stop function can be achieved by writing \$1H to this register. A reset and go function can be achieved by writing \$1H to this register. If the device is in DEBUG mode, a run function can be implemented by writing \$0H to this register.

Table 106. OCD Control Register (OCDCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	DBGMODE	BRKEN	DBGACK		Rese	erved		RST
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R	R	R/W

DBGMODE—DEBUG Mode

The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and Breakpoints are enabled. If the Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0.

0 = The Z8 Encore! XP F082A Series device is operating in NORMAL mode.

1 = The Z8 Encore! XP F082A Series device is in DEBUG mode.

BRKEN—Breakpoint Enable

This bit controls the behavior of the BRK instruction (opcode 00H). By default, Breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1, when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1.

0 = Breakpoints are disabled.

1 = Breakpoints are enabled.

Table 108. Oscillator Configuration and Selection

Clock Source	Characteristics	Required Setup		
Internal Precision RC Oscillator	 32.8 kHz or 5.53 MHz High accuracy No external components required 	Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53 MHz or 32.8 kHz		
External Crystal/ Resonator	 32 kHz to 20 MHz Very high accuracy (dependent on crystal or resonator used) Requires external components 	 Configure Flash option bits for correct external oscillator mode Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de- asserted, no waiting is required) 		
External RC Oscillator	 32 kHz to 4 MHz Accuracy dependent on external components 	 Configure Flash option bits for correct external oscillator mode Unlock and write OSCCTL to enable crystal oscillator and select as system clock 		
External Clock Drive	 0 to 20 MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO 		
Internal Watchdog Timer Oscillator	 10 kHz nominal Low accuracy; no external components required Very low power consumption 	 Enable WDT if not enabled and wait until WDT Oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator 		

Caution: Unintentional accesses to the oscillator control register can actually stop the chip by switching to a non-functioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the oscillator control register, unlock it by making two writes to the OSCCTL register with the values E7H followed by 18H. A third write to the OSCCTL register changes the value of the actual register and returns the register to a locked state. Any other sequence of oscillator control register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

189

When selecting a new clock source, the system clock oscillator failure detection circuitry and the Watchdog Timer oscillator failure circuitry must be disabled. If SOFEN and WOFEN are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a failure of either oscillator. The Failure detection circuitry can be enabled anytime after a successful write of OSCSEL in the OSCCTL register.

The internal precision oscillator is enabled by default. If the user code changes to a different oscillator, it may be appropriate to disable the IPO for power savings. Disabling the IPO does not occur automatically.

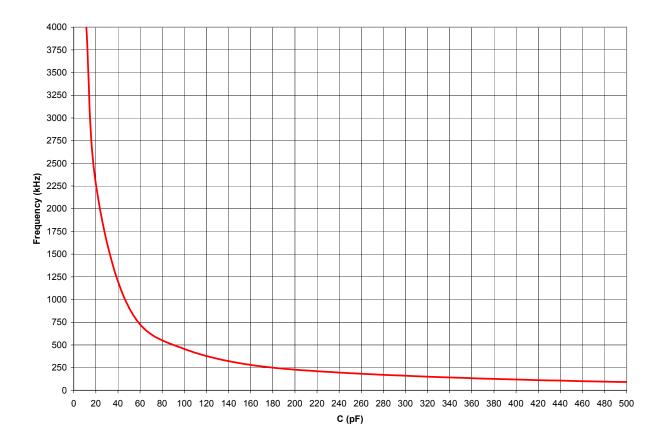
Clock Failure Detection and Recovery

System Clock Oscillator Failure

The Z8F04xA family devices can generate non-maskable interrupt-like events when the primary oscillator fails. To maintain system function in this situation, the clock failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the system clock. The Watchdog Timer oscillator must be enabled to allow the recovery. Although this oscillator runs at a much slower speed than the original system clock, the CPU continues to operate, allowing execution of a clock failure vector and software routines that either remedy the oscillator failure or issue a failure alert. This automatic switch-over is not available if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the Watchdog Timer reset function (see Watchdog Timer on page 91).

The primary oscillator failure detection circuitry asserts if the system clock frequency drops below 1 kHz \pm 50%. If an external signal is selected as the system oscillator, it is possible that a very slow but non-failing clock can generate a failure condition. Under these conditions, do not enable the clock failure circuitry (SOFEN must be deasserted in the OSCCTL register).

Watchdog Timer Failure


In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the system clock oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while looking for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

196

Figure 29 displays the typical (3.3 V and 25 °C) oscillator frequency as a function of the capacitor (C in pF) employed in the RC network assuming a 45 K Ω external resistor. For very small values of C, the parasitic capacitance of the oscillator XIN pin and the printed circuit board must be included in the estimation of the oscillator frequency.

It is possible to operate the RC oscillator using only the parasitic capacitance of the package and printed circuit board. To minimize sensitivity to external parasitics, external capacitance values in excess of 20 pF are recommended.

Figure 29. Typical RC Oscillator Frequency as a Function of the External Capacitance with a 45 k Ω Resistor

Caution:

When using the external RC oscillator mode, the oscillator can stop oscillating if the power supply drops below 2.7 V, but before the power supply drops to the Voltage Brownout threshold. The oscillator resumes oscillation when the supply voltage exceeds 2.7 V.

Z8 Encore! XP[®] F082A Series Product Specification

204

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 118. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses

Table 119. CPU Control Instructions

Mnemonic	Operands	Instruction
ATM	_	Atomic Execution
CCF	_	Complement Carry Flag
DI	_	Disable Interrupts
EI	_	Enable Interrupts
HALT	_	Halt Mode
NOP	_	No Operation
RCF	_	Reset Carry Flag

223

			40 °C to + therwise	105 °C specified)		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{OL2}	Low Level Output Voltage	-	-	0.6	V	I _{OL} = 20 mA; V _{DD} = 3.3 V High Output Drive enabled.
V _{OH2}	High Level Output Voltage	2.4	_	-	V	I _{OH} = -20 mA; V _{DD} = 3.3 V High Output Drive enabled.
I _{IH}	Input Leakage Current	-	<u>+</u> 0.002	<u>+</u> 5	μA	$V_{IN} = V_{DD}$ $V_{DD} = 3.3 V;$
IIL	Input Leakage Current	-	<u>+</u> 0.007	<u>+</u> 5	μA	$V_{IN} = V_{SS}$ $V_{DD} = 3.3 V;$
I _{TL}	Tristate Leakage Current	-	_	<u>+</u> 5	μA	
I _{LED}	Controlled Current Drive	1.8	3	4.5	mA	{AFS2,AFS1} = {0,0}
		2.8	7	10.5	mA	{AFS2,AFS1} = {0,1}
		7.8	13	19.5	mA	{AFS2,AFS1} = {1,0}
		12	20	30	mA	{AFS2,AFS1} = {1,1}
C _{PAD}	GPIO Port Pad Capacitance	-	8.0 ²	-	pF	
C _{XIN}	XIN Pad Capacitance	-	8.0 ²	_	pF	
C _{XOUT}	XOUT Pad Capacitance	-	9.5 ²	-	pF	
I _{PU}	Weak Pull-up Current	30	100	350	μA	V _{DD} = 3.0 V–3.6 V
V _{RAM}	RAM Data Retention Voltage	TBD			V	Voltage at which RAM retains static values; no reading or writing is allowed.
			-		-	

Table 127. DC Characteristics (Continued)

Notes

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

		V _{DI}	₀ = 2.7 V to 3			
			Maximum ²			
Symbol	Parameter	Typical 1	Std Temp	Ext Temp	Units	Conditions
I _{DD} Stop	Supply Current in STOP Mode	0.1			μA	No peripherals enabled. All pins driven to V_{DD} or $V_{SS}.$
I _{DD} Halt	Supply Current in HALT	35	55	65	μA	32 kHz
	Mode (with all peripherals disabled)	520			μA	5.5 MHz
	penpinenaie aleaalea)	2.1	2.85	2.85	mA	20 MHz
I _{DD}	Supply Current in	2.8			mA	32 kHz
	ACTIVE Mode (with all peripherals disabled)	4.5	5.2	5.2	mA	5.5 MHz
		5.5	6.5	6.5	mA	10 MHz
	-	7.9	11.5	11.5	mA	20 MHz
I _{DD} WDT	Watchdog Timer Supply Current	0.9	1.0	1.1	μA	
I _{DD}	Crystal Oscillator Supply Current	40			μA	32 kHz
XTAL		230			μA	4 MHz
	-	760			μA	20 MHz
I _{DD} IPO	Internal Precision Oscillator Supply Current	350	500	550	μA	
I _{DD} VBO	Voltage Brownout and Low-Voltage Detect Supply Current	50			μA	For 20-/28-pin devices (VBO only); See Notes 4
						For 8-pin devices; See Notes 4
I _{DD} ADC	Analog to Digital	2.8	3.1	3.2	mA	32 kHz
	Converter Supply Current (with External _ Reference)	3.1	3.6	3.7	mA	5.5 MHz
		3.3	3.7	3.8	mA	10 MHz
	-	3.7	4.2	4.3	mA	20 MHz
I _{DD} ADCRef	ADC Internal Reference Supply Current	0			μA	See Notes 4
I _{DD} CMP	Comparator supply Current	150	180	190	μA	See Notes 4

Table 128. Power Consumption

			= 2.7 V to -40 °C to -			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
Av	Open loop voltage gain		80		dB	
GBW	Gain/Bandwidth product		500		kHz	
РМ	Phase Margin		50		deg	Assuming 13 pF load capacitance
V _{osLPO}	Input Offset Voltage		<u>+</u> 1	<u>+</u> 4	mV	
V _{osLPO}	Input Offset Voltage (Temperature Drift)		1	10	μV/C	
V _{IN}	Input Voltage Range	0.3		Vdd - 1	V	
V _{OUT}	Output Voltage Range	0.3		Vdd - 1	V	I _{OUT} = 45 μA

Table 136. Low Power Operational Amplifier Electrical Characteristics

Table 137. Comparator Electrical Characteristics

			= 2.7 V to 40 °C to +				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions	
V _{OS}	Input DC Offset		5		mV		
	Programmable Internal Reference Voltage		<u>+</u> 5		%	20-/28-pin devices	
			<u>+</u> 3		%	8-pin devices	
T _{PROP}	Propagation Delay		200		ns		
V _{HYS}	Input Hysteresis		4		mV		
V _{IN}	Input Voltage Range	V _{SS}		V _{DD} -1	V		

Z8 Encore! XP[®] F082A Series | **Product Specification**

zilog 257

Part Number	Flash	RAM	SUVN	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082	A Serie	s with 1	KB Fla	ish, 1	0-Bit	Ana	log-t	o-Dig	jital C	Conv	verter
Standard Temperatu	re: 0 °C	to 70 °C	;								
Z8F012APB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F012AQB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F012ASB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F012ASH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F012AHH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F012APH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F012ASJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F012AHJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F012APJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperatu	re: -40 °	C to 10	5 °C								
Z8F012APB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F012AQB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F012ASB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F012ASH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F012AHH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F012APH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F012ASJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F012AHJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F012APJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package

264

DJNZ 206 EI 204 **HALT 204 INC 203 INCW 203 IRET 206** JP 206 LD 205 LDC 205 LDCI 204, 205 LDE 205 LDEI 204 LDX 205 LEA 205 logical 205 **MULT 203** NOP 204 OR 205 **ORX 206** POP 205 **POPX 205** program control 206 **PUSH 205** PUSHX 205 **RCF 204 RET 206** RL 206 **RLC 206** rotate and shift 206 RR 206 **RRC 206** SBC 203 SCF 204, 205 SRA 207 SRL 207 **SRP 205 STOP 205** SUB 203 SUBX 203 **SWAP 207** TCM 204 **TCMX 204** TM 204 TMX 204

TRAP 206 Watchdog Timer refresh 205 XOR 206 **XORX 206** instructions, eZ8 classes of 202 interrupt control register 67 interrupt controller 55 architecture 55 interrupt assertion types 58 interrupt vectors and priority 58 operation 57 register definitions 60 software interrupt assertion 59 interrupt edge select register 66 interrupt request 0 register 60 interrupt request 1 register 61 interrupt request 2 register 62 interrupt return 206 interrupt vector listing 55 interrupts **UART 105** IR 201 lr 201 IrDA architecture 117 block diagram 117 control register definitions 120 operation 117 receiving data 119 transmitting data 118 **IRET 206** IRQ0 enable high and low bit registers 62 IRQ1 enable high and low bit registers 63 IRQ2 enable high and low bit registers 65 **IRR 201** Irr 201

J

JP 206 jump, conditional, relative, and relative conditional 206