E·XFL

Zilog - Z8F022AHH020EC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f022ahh020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Description

The Z8 Encore! XP[®] F082A Series products are available in a variety of packages styles and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information on physical package specifications, see Packaging on page 241.

Available Packages

The following package styles are available for each device in the Z8 Encore! XP F082A Series product line:

- SOIC
 - 8-, 20-, and 28-pin
- PDIP
 - 8-, 20-, and 28-pin
- SSOP
 - 20- and 28- pin
- QFN (this is an MLF-S, a QFN style package with an 8-pin SOIC footprint)
 - 8-pin

In addition, the Z8 Encore! XP F082A Series devices are available both with and without advanced analog capability (ADC, temperature sensor and op amp). Devices Z8F082A, Z8F042A, Z8F022A, and Z8F012A contain the advanced analog, while devices Z8F081A, Z8F041A, Z8F021A, and Z8F011A do not have the advanced analog capability.

Pin Configurations

Figure 2 through Figure 4 display the pin configurations for all the packages available in the Z8 Encore! XP F082A Series. See Table 2 on page 11 for a description of the signals. The analog input alternate functions (ANAx) are not available on the Z8F081A, Z8F041A, Z8F021A, and Z8F011A devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts, and are replaced by PB6 and PB7.

At reset, all Port A, B and C pins default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general purpose input ports until programmed otherwise. At powerup, the PD0 pin defaults to the RESET alternate function.

zilog[°]

Table 3. Pin Characteristics (20- and 28-pin Devices) (Continued)

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull- up or Pull-down	Schmitt- Trigger Input	Open Drain Output	5 V Tolerance
PC[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PC[7:3] unless pullups enabled
RESET/PD0	I/O	I/O <u>(defaults</u> to RESET)	Low (in Reset mode)	Yes (PD0 only)	Programmable for PD0 <u>; always</u> on for RESET	Yes	Programmable for PD0 <u>; always</u> on for RESET	Yes, unless pullups enabled
VDD	N/A	N/A	N/A	N/A			N/A	N/A
VSS	N/A	N/A	N/A	N/A			N/A	N/A

Note: *PB6 and PB7 are available only in those devices without ADC.*

Table 4. Pin Characteristics (8-Pin Devices)

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull- up or Pull-down	Schmitt- Trigger Input	Open Drain Output	5 V Tolerance
PA0/DBG	I/O	I (but can change during reset if key sequence detected)	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
PA1	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
RESET/PA2	I/O	I/O <u>(defaults</u> to RESET)	Low (in Reset mode)	Yes	Programmable for PA2; always on for RESET	Yes	Programmable for PA2; always on for RESET	Yes, unless pull-ups enabled
PA[5:3]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
V _{DD}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
V _{SS}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

14

zilog[°]

addresses outside the available Flash memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 5 describes the Program Memory Maps for the Z8 Encore! XP F082A Series products.

Program Memory Address (Hex)	Function			
Z8F082A and Z8F081A Products				
0000–0001	Flash Option Bits			
0002–0003	Reset Vector			
0004–0005	WDT Interrupt Vector			
0006–0007	Illegal Instruction Trap			
0008–0037	Interrupt Vectors*			
0038–0039	Reserved			
003A-003D	Oscillator Fail Trap Vectors			
003E-1FFF	Program Memory			
Z8F042A and Z8F041A Products				
0000–0001	Flash Option Bits			
0002–0003	Reset Vector			
0004–0005	WDT Interrupt Vector			
0006–0007	Illegal Instruction Trap			
0008–0037	Interrupt Vectors*			
0038–0039	Reserved			
003A-003D	Oscillator Fail Trap Vectors			
003E-0FFF	Program Memory			

Table 5. Z8 Encore! XP F082A Series Program Memory Maps

16

mation Area data rather than the Program Memory data. Access to the Flash Information Area is read-only.

Program Memory Address (Hex)	Function
FE00–FE3F	Zilog Option Bits/Calibration Data
FE40-FE53	Part Number 20-character ASCII alphanumeric code Left justified and filled with FFH
FE54–FE5F	Reserved
FE60–FE7F	Zilog Calibration Data
FE80–FFFF	Reserved

Table 6. Z8 Encore! XP F082A Series Flash Memory Information Area Map

PAFS1[7:0]—Port Alternate Function Set 1 0 = Port Alternate Function selected as defined in Table 14 and Table 15 on page 44. 1 = Port Alternate Function selected as defined in Table 14 and Table 15 on page 44.

Port A–D Alternate Function Set 2 Sub-Registers

The Port A–D Alternate Function Set 2 sub-register (Table 26) is accessed through the Port A–D Control register by writing 08H to the Port A–D Address register. The Alternate Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register is defined in Table 15.

• Note: Alternate function selection on port pins must also be enabled as described in Port A–D Alternate Function Sub-Registers on page 47.

BITS	7	6	5	4	3	2	1	0		
FIELD	PAFS27 PAFS26 PAFS25 PAFS24 PAFS23 PAFS22 PAFS21 PAFS20									
RESET	00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)									
R/W	R/W R/W R/W R/W R/W R/W R/W									
ADDR	lf 08H i	If 08H in Port A–D Address Register, accessible through the Port A–D Control Register								

Table 26. Port A–D Alternate Function Set 2 Sub-Registers (PxAFS2)

PAFS2[7:0]—Port Alternate Function Set 2

0 = Port Alternate Function selected as defined in Table 15.

1 = Port Alternate Function selected as defined in Table 15.

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 27) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

Table 27. Port A–C Input Data Registers (PxIN)	Table 27.	Port A–C	Input Data	Registers	(PxIN)
--	-----------	----------	------------	-----------	--------

BITS	7	6	5	4	3	2	1	0	
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
ADDR	FD2H, FD6H, FDAH								
X = Undef	ined.								

zilog',

0001H and counting resumes. The INPCAP bit in TxCTL0 register is cleared to indicate the timer interrupt is not caused by an input capture event.

Follow the steps below for configuring a timer for CAPTURE RESTART mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE RESTART mode by writing the TMODE bits in the TxCTL1 register and the TMODEHI bit in TxCTL0 register.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the software to determine if interrupts were generated by either a capture event or a reload. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field of the TxCTL0 register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) = $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) upon Compare.

If the Timer reaches FFFFH, the timer rolls over to 0000H and continue counting.

0 = No framing error occurred. 1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit. 0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

 $CTS - \overline{CTS}$ signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal. This signal is active Low.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Table 64. UART Status 1 Register (U0STAT1)

BITS	7	6	5	4	3	2	1	0
FIELD			NEWFRM	MPRX				
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R				
ADDR				F4	4H			

Reserved—Must be 0.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame.

1 = The current byte is the first data byte of a new frame.

Analog-to-Digital Converter

The analog-to-digital converter (ADC) converts an analog input signal to its digital representation. The features of this sigma-delta ADC include:

- 11-bit resolution in DIFFERENTIAL mode.
- 10-bit resolution in SINGLE-ENDED mode.
- Eight single-ended analog input sources are multiplexed with general-purpose I/O ports.
- 9th analog input obtained from temperature sensor peripheral.
- 11 pairs of differential inputs also multiplexed with general-purpose I/O ports.
- Low-power operational amplifier (LPO).
- Interrupt on conversion complete.
- Bandgap generated internal voltage reference with two selectable levels.
- Manual in-circuit calibration is possible employing user code (offset calibration).
- Factory calibrated for in-circuit error compensation.

Architecture

Figure 19 displays the major functional blocks of the ADC. An analog multiplexer network selects the ADC input from the available analog pins, ANA0 through ANA7.

The input stage of the ADC allows both differential gain and buffering. The following input options are available:

- Unbuffered input (SINGLE-ENDED and DIFFERENTIAL modes).
- Buffered input with unity gain (SINGLE-ENDED and DIFFERENTIAL modes).
- LPO output with full pin access to the feedback path.

zilog

126

Factory Calibration

Devices that have been factory calibrated contain 30 bytes of calibration data in the Flash option bit space. This data consists of 3 bytes for each input mode, one for offset and two for gain correction. For a list of input modes for which calibration data exists, see Zilog Calibration Data on page 161.

User Calibration

If you have precision references available, its own external calibration can be performed using any input modes. This calibration data takes into account buffer offset and non-linearity, so it is recommended that this calibration be performed separately for each of the ADC input modes planned for use.

Manual Offset Calibration

When uncalibrated, the ADC has significant offset (see Table 135 on page 231). Subsequently, manual offset calibration capability is built into the block. When the ADC Control Register 0 sets the input mode (ANAIN[2:0]) to MANUAL OFFSET CALIBRATION mode, the differential inputs to the ADC are shorted together by an internal switch. Reading the ADC value at this point produces 0 in an ideal system. The value actually read is the ADC offset. This value can be stored in non-volatile memory (see Non-Volatile Data Storage on page 169) and accessed by user code to compensate for the input offset error. There is no provision for manual gain calibration.

Software Compensation Procedure Using Factory Calibration Data

The value read from the ADC high and low byte registers is uncompensated. The user mode software must apply gain and offset correction to this uncompensated value for maximum accuracy. The following equation yields the compensated value:

 $ADC_{comp} = (ADC_{uncomp} - OFFCAL) + ((ADC_{uncomp} - OFFCAL) \times GAINCAL)/2^{16}$

where GAINCAL is the gain calibration value, OFFCAL is the offset calibration value and ADC_{uncomp} is the uncompensated value read from the ADC. All values are in two's complement format.

Note:

The offset compensation is performed first, followed by the gain compensation. One bit of resolution is lost because of rounding on both the offset and gain computations. As a result the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding and 10 data bits.

Also note that in the second term, the multiplication must be performed before the division by 2^{16} . Otherwise, the second term incorrectly evaluates to zero.

zilog

162

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
60	FE60	Offset	Single-Ended Unbuffered	Internal 2.0 V
08	FE08	Gain High Byte	Single-Ended Unbuffered	Internal 2.0 V
09	FE09	Gain Low Byte	Single-Ended Unbuffered	Internal 2.0 V
63	FE63	Offset	Single-Ended Unbuffered	Internal 1.0 V
0A	FE0A	Gain High Byte	Single-Ended Unbuffered	Internal 1.0 V
0B	FE0B	Gain Low Byte	Single-Ended Unbuffered	Internal 1.0 V
66	FE66	Offset	Single-Ended Unbuffered	External 2.0 V
0C	FE0C	Gain High Byte	Single-Ended Unbuffered	External 2.0 V
0D	FE0D	Gain Low Byte	Single-Ended Unbuffered	External 2.0 V
69	FE69	Offset	Single-Ended 1x Buffered	Internal 2.0 V
0E	FE0E	Gain High Byte	Single-Ended 1x Buffered	Internal 2.0 V
0F	FE0F	Gain Low Byte	Single-Ended 1x Buffered	Internal 2.0 V
6C	FE6C	Offset	Single-Ended 1x Buffered	External 2.0 V
10	FE10	Gain High Byte	Single-Ended 1x Buffered	External 2.0 V
11	FE11	Gain Low Byte	Single-Ended 1x Buffered	External 2.0 V
6F	FE6F	Offset	Differential Unbuffered	Internal 2.0 V
12	FE12	Positive Gain High Byte	Differential Unbuffered	Internal 2.0 V
13	FE13	Positive Gain Low Byte	Differential Unbuffered	Internal 2.0 V
30	FE30	Negative Gain High Byte	Differential Unbuffered	Internal 2.0 V
31	FE31	Negative Gain Low Byte	Differential Unbuffered	Internal 2.0 V
72	FE72	Offset	Differential Unbuffered	Internal 1.0 V
14	FE14	Positive Gain High Byte	Differential Unbuffered	Internal 1.0 V
15	FE15	Positive Gain Low Byte	Differential Unbuffered	Internal 1.0 V
32	FE32	Negative Gain High Byte	Differential Unbuffered	Internal 1.0 V
33	FE33	Negative Gain Low Byte	Differential Unbuffered	Internal 1.0 V
75	FE75	Offset	Differential Unbuffered	External 2.0 V
16	FE16	Positive Gain High Byte	Differential Unbuffered	External 2.0 V
17	FE17	Positive Gain Low Byte	Differential Unbuffered	External 2.0 V

Table 94. ADC Calibration Data Location

zilog

163

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
34	FE34	Negative Gain High Byte	Differential Unbuffered	External 2.0 V
35	FE35	Negative Gain Low Byte	Differential Unbuffered	External 2.0 V
78	FE78	Offset	Differential 1x Buffered	Internal 2.0 V
18	FE18	Positive Gain High Byte	Differential 1x Buffered	Internal 2.0 V
19	FE19	Positive Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
36	FE36	Negative Gain High Byte	Differential 1x Buffered	Internal 2.0 V
37	FE37	Negative Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
7B	FE7B	Offset	Differential 1x Buffered	External 2.0 V
1A	FE1A	Positive Gain High Byte	Differential 1x Buffered	External 2.0 V
1B	FE1B	Positive Gain Low Byte	Differential 1x Buffered	External 2.0 V
38	FE38	Negative Gain High Byte	Differential 1x Buffered	External 2.0 V
39	FE39	Negative Gain Low Byte	Differential 1x Buffered	External 2.0 V

Table 94. ADC Calibration Data Location (Continued)

zilog | 177

The Auto-Baud Detector/Generator is clocked by the system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation with asynchronous datastreams, the maximum recommended baud rate is the system clock frequency divided by 8. The maximum possible baud rate for asynchronous datastreams is the system clock frequency divided by 4, but this theoretical maximum is possible only for low noise designs with clean signals. Table 105 lists minimum and recommended maximum baud rates for sample crystal frequencies.

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (Kbps)	Recommended Standard PC Baud Rate (bps)	Minimum Baud Rate (Kbps)
20.0	2500.0	1,843,200	39
1.0	125.0	115,200	1.95
0.032768 (32 kHz)	4.096	2,400	0.064

Table 105. OCD Baud-Rate Limits

If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud Detector/Generator resets. Reconfigure the Auto-Baud Detector/Generator by sending 80H.

OCD Serial Errors

The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

- Serial Break (a minimum of nine continuous bits Low)
- Framing Error (received Stop bit is Low)
- Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long Serial Break back to the host, and resets the Auto-Baud Detector/Generator. A Framing Error or Transmit Collision may be caused by the host sending a Serial Break to the OCD. Because of the open-drain nature of the interface, returning a Serial Break break back to the host only extends the length of the Serial Break if the host releases the Serial Break early.

The host transmits a Serial Break on the DBG pin when first connecting to the Z8 Encore! XP F082A Series devices or when recovering from an error. A Serial Break from the host resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns

zilog

- **-** 18
- **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

```
DBG \leftarrow 0AH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

• **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

```
DBG \leftarrow 0CH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
```

<mark>z</mark>ilog[°]

211

Assembly	Symbolic	Addres	s Mode	Opcode(s)	Flags						Fetch	Instr.
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
LDC dst, src	$dst \gets src$	r	Irr	C2	-	_	-	-	-	-	2	5
		lr	Irr	C5	-						2	9
		Irr	r	D2	-						2	5
LDCI dst, src	$dst \gets src$	lr	Irr	C3	-	-	-	-	-	-	2	9
	r ← r + 1 rr ← rr + 1	Irr	Ir	D3	-						2	9
LDE dst, src	$dst \gets src$	r	Irr	82	-	_	-	-	-	-	2	5
		Irr	r	92	-						2	5
LDEI dst, src	$dst \gets src$	lr	Irr	83	_	_	-	-	-	_	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	93	-						2	9
LDWX dst, src	$dst \gets src$	ER	ER	1FE8	_	_	_	_	_	_	5	4
LDX dst, src	$dst \gets src$	r	ER	84	_	_	-	-	-	_	3	2
		lr	ER	85	-						3	3
		R	IRR	86	-						3	4
		IR	IRR	87	-						3	5
		r	X(rr)	88	-						3	4
		X(rr)	r	89	-						3	4
		ER	r	94	-						3	2
		ER	Ir	95	-						3	3
		IRR	R	96	-						3	4
		IRR	IR	97	-						3	5
		ER	ER	E8	-						4	2
		ER	IM	E9	-						4	2
LEA dst, X(src)	$dst \gets src + X$	r	X(r)	98	_	_	-	-	-	_	3	3
		rr	X(rr)	99	-						3	5
MULT dst	dst[15:0] ← dst[15:8] * dst[7:0]	RR		F4	-	_	-	-	-	-	2	8
NOP	No operation			0F	_	_	_	_	_	_	1	2
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	of the result	of the o	peration.		Re Se		to (1)			

Table 124. eZ8 CPU Instruction Summary (Continued)

zilog[°]

21	Λ
~	4

Assembly	Symbolic	Addre	ss Mode	Opcode(s)			FI	Fetch	Instr.			
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
SUBX dst, src	$dst \gets dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29	-						4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	_	-	2	2
		IR		F1	-						2	3
TCM dst, src	(NOT dst) AND src	r	r	62	_	*	*	0	_	_	2	3
		r	lr	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	_	*	*	0	_	-	4	3
		ER	IM	69	-						4	3
TM dst, src	dst AND src	r	r	72	-	*	*	0	-	-	2	3
		r	lr	73	-						2	4
		R	R	74	-						3	3
		R	IR	75	-						3	4
		R	IM	76	-						3	3
		IR	IM	77	-						3	4
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	-	-	4	3
		ER	IM	79	-						4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC $SP \leftarrow SP - 1$ @SP \leftarrow FLAGS PC \leftarrow @Vector		Vector	F2	_	_	_	_	_	_	2	6
WDT				5F	_	_	_	_	_	_	1	2
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	of the result of the operation.				Re Se		to (1)			

Table 124. eZ8 CPU Instruction Summary (Continued)

zilog ₂₁₇

Abbreviation	Description	Abbreviation	Description			
b	Bit position	IRR	Indirect Register Pair			
сс	Condition code	р	Polarity (0 or 1)			
X	8-bit signed index or displacement	r	4-bit Working Register			
DA	Destination address	R	8-bit register			
ER	Extended Addressing register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address			
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address			
Ir	Indirect Working Register	RA	Relative			
IR	Indirect register	rr	Working Register Pair			
Irr	Indirect Working Register Pair	RR	Register Pair			

Table 125. Opcode Map Abbreviations

220

zilog

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics may be found in the individual chapters.

Absolute Maximum Ratings

Stresses greater than those listed in Table 126 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		430	mW	
Maximum current into V _{DD} or out of V _{SS}		120	mA	

Table 126. Absolute Maximum Ratings

On-Chip Debugger Timing

Figure 36 and Table 141 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4 ns maximum rise and fall time.

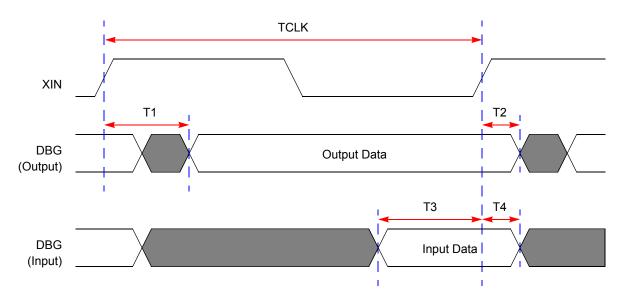


Figure 36. On-Chip Debugger Timing

		Dela	/ (ns)	
Parameter	Abbreviation	Minimum	Maximum	
DBG				
T ₁	XIN Rise to DBG Valid Delay	-	15	
T ₂	XIN Rise to DBG Output Hold Time	2	_	
T ₃	DBG to XIN Rise Input Setup Time	5	_	
T ₄	DBG to XIN Rise Input Hold Time	5	_	

Table 141. On-Chip Debugger Timing

zilog 257

Part Number	Flash	RAM	SUVN	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082A Series with 1 KB Flash, 10-Bit Analog-to-Digital Converter											
Standard Temperatu	re: 0 °C	to 70 °C	;								
Z8F012APB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F012AQB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F012ASB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F012ASH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F012AHH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F012APH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F012ASJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F012AHJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F012APJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperatu	re: -40 °	C to 10	5 °C								
Z8F012APB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F012AQB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F012ASB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F012ASH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F012AHH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F012APH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F012ASJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F012AHJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F012APJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package