E·XFL

Zilog - Z8F022AHH020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f022ahh020sc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Port A–C Input Data Registers51Port A–D Output Data Register52LED Drive Enable Register52LED Drive Level High Register53LED Drive Level Low Register53
Interrupt Controller 55
Interrupt Vector Listing55Architecture57Operation57Master Interrupt Enable57Interrupt Vectors and Priority58Interrupt Assertion59Watchdog Timer Interrupt Assertion59Watchdog Timer Interrupt Assertion59Interrupt Request 0 Register Definitions60Interrupt Request 1 Register61Interrupt Request 2 Register62IRQ0 Enable High and Low Bit Registers63IRQ2 Enable High and Low Bit Registers65Interrupt Edge Select Register66Shared Interrupt Select Register66Interrupt Control Register66
Timers
Architecture69Operation70Timer Operating Modes70Reading the Timer Count Values82Timer Pin Signal Operation82Timer Control Register Definitions83Timer 0–1 Control Registers83Timer 0–1 High and Low Byte Registers87Timer 0-1 PWM High and Low Byte Registers88
Watchdog Timer
Operation 91 Watchdog Timer Refresh 92

General Purpose I/O Port Output Timing	236
On-Chip Debugger Timing	237
UART Timing	238
Packaging	241
Ordering Information	251
Index	261
Customer Support	271

Overview

Zilog's Z8 Encore![®] MCU family of products are the first in a line of Zilog[®] microcontroller products based upon the 8-bit eZ8 CPU. Zilog's Z8 Encore! XP[®] F082A Series products expand upon Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward compatible with existing Z8[®] instructions. The rich peripheral set of the Z8 Encore! XP F082A Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

The key features of Z8 Encore! XP F082A Series products include:

- 20 MHz eZ8 CPU
- 1 KB, 2 KB, 4 KB, or 8 KB Flash memory with in-circuit programming capability
- 256 B, 512 B, or 1 KB register RAM
- Up to 128 B non-volatile data storage (NVDS)
- Internal precision oscillator trimmed to $\pm 1\%$ accuracy
- External crystal oscillator, operating up to 20 MHz
- Optional 8-channel, 10-bit analog-to-digital converter (ADC)
- Optional on-chip temperature sensor
- On-chip analog comparator
- Optional on-chip low-power operational amplifier (LPO)
- Full-duplex UART
- The UART baud rate generator (BRG) can be configured and used as a basic 16-bit timer
- Infrared Data Association (IrDA)-compliant infrared encoder/decoders, integrated with UART
- Two enhanced 16-bit timers with capture, compare, and PWM capability
- Watchdog Timer (WDT) with dedicated internal RC oscillator
- Up to 20 vectored interrupts
- 6 to 25 I/O pins depending upon package

zilog[°]

Table 7. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
FDF	Port D Output Data	PDOUT	00	47
FE0–FEF	Reserved	_	XX	
Watchdog Time	er (WDT)			
FF0	Reset Status (Read-only)	RSTSTAT	X0	30
	Watchdog Timer Control (Write-only)	WDTCTL	N/A	94
FF1	Watchdog Timer Reload Upper Byte	WDTU	00	95
FF2	Watchdog Timer Reload High Byte	WDTH	04	95
FF3	Watchdog Timer Reload Low Byte	WDTL	00	95
FF4–FF5	Reserved	—	XX	
Trim Bit Contro	bl			
FF6	Trim Bit Address	TRMADR	00	155
FF7	Trim Bit Data	TRMDR	00	156
Flash Memory	Controller			
FF8	Flash Control	FCTL	00	149
FF8	Flash Status	FSTAT	00	150
FF9	Flash Page Select	FPS	00	151
FE FDF FE0-FEF Watchdog Tim FF0 FF1 FF2 FF3 FF4-FF5 Trim Bit Control FF6 F7 Flash Memory FF8 FF9 FF0 FFE FF8 FF8 FF9 FF8 FF9 FF0 FF8 FF8 FF9 FF8 FF9 FF	Flash Sector Protect	FPROT	00	151
FFA	Flash Programming Frequency High Byte	FFREQH	00	152
FFB	Flash Programming Frequency Low Byte	FFREQL	00	152
eZ8 CPU				
FFC	Flags		XX	Refer to eZ8
FFD	Register Pointer	RP	XX	CPU Core
FFE	Stack Pointer High Byte	SPH	XX	—User Manual (UM0128)
FFF	Stack Pointer Low Byte	SPL	XX	_(010120)
XX=Undefined				

22

zilog[°]

PA0 and PA6 contain two different timer functions, a timer input and a complementary timer output. Both of these functions require the same GPIO configuration, the selection between the two is based on the timer mode. See Timers on page 69 for more details.

Caution: For pin with multiple alternate functions, it is recommended to write to the AFS1 and AFS2 sub-registers before enabling the alternate function via the AF sub-register. This prevents spurious transitions through unwanted alternate function modes.

Direct LED Drive

The Port C pins provide a current sinked output capable of driving an LED without requiring an external resistor. The output sinks current at programmable levels of 3 mA, 7 mA, 13 mA and 20 mA. This mode is enabled through the Alternate Function sub-register AFS1 and is programmable through the LED control registers. The LED Drive Enable (LEDEN) register turns on the drivers. The LED Drive Level (LEDLVLH and LEDLVLL) registers select the sink current.

For correct function, the LED anode must be connected to V_{DD} and the cathode to the GPIO pin. Using all Port C pins in LED drive mode with maximum current may result in excessive total current. See Electrical Characteristics on page 221 for the maximum total current for the applicable package.

Shared Reset Pin

On the 20- and 28-pin devices, the PD0 pin shares function with a bi-directional reset pin. Unlike all other I/O pins, this pin does not default to GPIO function on power-up. This pin acts as a bi-directional reset until the software re-configures it. The PD0 pin is output-only when in GPIO mode.

On the 8-pin product versions, the reset pin is shared with PA2, but the pin is not limited to output-only when in GPIO mode.

PS022825-0908

Caution: If PA2 on the 8-pin product is reconfigured as an input, ensure that no external stimulus drives the pin low during any reset sequence. Since PA2 returns to its RESET alternate function during system resets, driving it Low holds the chip in a reset state until the pin is released.

Shared Debug Pin

On the 8-pin version of this device only, the Debug pin shares function with the PA0 GPIO pin. This pin performs as a general purpose input pin on power-up, but the debug logic monitors this pin during the reset sequence to determine if the unlock sequence occurs. If the unlock sequence is present, the debug function is unlocked and the pin no longer func-

Caution: The following coding style that clears bits in the Interrupt Request registers is not recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

Poor coding style that can result in lost interrupt requests:

LDX r0, IRQ0 AND r0, MASK LDX IRQ0, r0

Caution: To avoid missing interrupts, use the following coding style to clear bits in the Interrupt Request 0 register:

Good coding style that avoids lost interrupt requests:

ANDX IRQ0, MASK

Software Interrupt Assertion

Program code can generate interrupts directly. Writing a 1 to the correct bit in the Interrupt Request register triggers an interrupt (assuming that interrupt is enabled). When the interrupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is automatically cleared to 0.

Caution: The following coding style used to generate software interrupts by setting bits in the Interrupt Request registers is not recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

Poor coding style that can result in lost interrupt requests:

LDX r0, IRQ0 OR r0, MASK LDX IRQ0, r0

Caution: To avoid missing interrupts, use the following coding style to set bits in the Interrupt Request registers:

> Good coding style that avoids lost interrupt requests: ORX IRQO, MASK

Watchdog Timer Interrupt Assertion

The Watchdog Timer interrupt behavior is different from interrupts generated by other sources. The Watchdog Timer continues to assert an interrupt as long as the timeout condition continues. As it operates on a different (and usually slower) clock domain than the rest of the device, the Watchdog Timer continues to assert this interrupt for many system clocks until the counter rolls over.

Watchdog Timer

The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults, and other system-level problems which may place the Z8 Encore! XP[®] F082A Series devices into unsuitable operating states. The features of Watchdog Timer include:

- On-chip RC oscillator.
- A selectable time-out response: reset or interrupt.
- 24-bit programmable time-out value.

Operation

The Watchdog Timer is a one-shot timer that resets or interrupts the Z8 Encore! XP F082A Series devices when the WDT reaches its terminal count. The Watchdog Timer uses a dedicated on-chip RC oscillator as its clock source. The Watchdog Timer operates in only two modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO Flash Option Bit. The WDT_AO bit forces the Watchdog Timer to operate immediately upon reset, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is described by the following equation:

WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10 kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H. The WDT Reload Value must not be set to values below 000004H. Table 56 provides information about approximate time-out delays for the minimum and maximum WDT reload values.

Table 56. Watchdog Timer Approximate Time-Out Delays

WDT Reload Value	WDT Reload Value –	Approximate Time-Out Delay (with 10 kHz typical WDT oscillator frequency)		
(Hex)	(Decimal)	Typical	Description	
000004	4	400 μs	Minimum time-out delay	
FFFFF	16,777,215	28 minutes	Maximum time-out delay	

Watchdog Timer Refresh

When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the Watchdog Timer Reload registers. Counting resumes following the reload operation.

When the Z8 Encore! XP[®] F082A Series devices are operating in DEBUG mode (using the on-chip debugger), the Watchdog Timer is continuously refreshed to prevent any Watchdog Timer time-outs.

Watchdog Timer Time-Out Response

The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash Option Bit determines the time-out response of the Watchdog Timer. For information on programming the WDT_RES Flash Option Bit, see Flash Option Bits on page 153.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Reset Status (RSTSTAT) register (see Reset Status Register on page 30). If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter is not automatically returned to its Reload Value.

The Reset Status (RSTSTAT) register must be read before clearing the WDT interrupt. This read clears the WDT timeout Flag and prevents further WDT interrupts from immediately occurring.

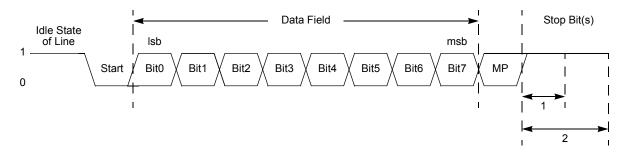
WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP F082A Series devices are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Reset Status (RSTSTAT) register are set to 1 following a WDT time-out in STOP mode. For more information on Stop Mode Recovery, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address.

92

zilog[°]


- 3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.
- 4. Executes the IRET instruction to return from the interrupt-service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this action is typically performed during Stop Bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTI-PROCESSOR mode (also referred to as 9-bit mode), the multiprocessor bit (MP) is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as displayed in Figure 13. The character format is:

Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format

In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the Multiprocessor control bit. The UART Control 1 and Status 1 registers provide MULTI-PROCESSOR (9-bit) mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare register holds the network address of the device.

MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor

129

#5 MSB #5 LSB

6. Add the gain correction factor to the original offset corrected value.

	#5 MSB	#5 LSB
+		
	#1 MSB	#1 LSB
=		

#6 MSB #6 LSB

7. Shift the result to the right, using the sign bit determined in Step 1. This allows for the detection of computational overflow.

S-> #0 MSB #0 LSB

Output Data

The following is the output format of the corrected ADC value.

MSB	LSB		
svba9876	543210		

The overflow bit in the corrected output indicates that the computed value was greater than the maximum logical value (+1023) or less than the minimum logical value (-1024). Unlike the hardware overflow bit, this is not a simple binary Flag. For a normal sample (non-overflow), the sign and the overflow bit matches. If the sign bit and overflow bit do not match, a computational overflow has occurred.

Input Buffer Stage

Many applications require the measurement of an input voltage source with a high output impedance. This ADC provides a buffered input for such situations. The drawback of the buffered input is a limitation of the input range. When using unity gain buffered mode, the input signal must be prevented from coming too close to either V_{SS} or V_{DD} . See Table 135 on page 231 for details.

This condition applies only to the input voltage level (with respect to ground) of each differential input signal. The actual differential input voltage magnitude may be less than 300 mV.

The input range of the unbuffered ADC swings from V_{SS} to V_{DD} . Input signals smaller than 300 mV must use the unbuffered input mode. If these signals do not contain low output impedances, they might require off-chip buffering.

Signals outside the allowable input range can be used without instability or device damage. Any ADC readings made outside the input range are subject to greater inaccuracy than specified.

BITS	7	6	5	4	3	2	1	0
FIELD	INFO_EN				PAGE			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FF	9H			

Table 80. Flash Page Select Register (FPS)

INFO_EN—Information Area Enable

0 = Information Area us not selected.

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase and page unlocking. Program Memory Address[15:9] = PAGE[6:0]. For the Z8F08xx devices, the upper 3 bits must be zero. For the Z8F04xx devices, the upper 4 bits must be zero. For Z8F02xx devices, the upper 5 bits must always be 0. For the Z8F01xx devices, the upper 6 bits must always be 0.

Flash Sector Protect Register

The Flash Sector Protect (FPROT) register is shared with the Flash Page Select Register. When the Flash Control Register is written with 73H followed by 5EH, the next write to this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Register.

This register selects one of the 8 available Flash memory sectors to be protected. The reset state of each Sector Protect bit is an unprotected state. After a sector is protected by setting its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared) without powering down the device.

Table 81. Flash S	ector Protect	Register (FPROI)	

BITS	7	6	5	4	3	2	1	0
FIELD	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FF	9H			

zilog

163

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
34	FE34	Negative Gain High Byte	Differential Unbuffered	External 2.0 V
35	FE35	Negative Gain Low Byte	Differential Unbuffered	External 2.0 V
78	FE78	Offset	Differential 1x Buffered	Internal 2.0 V
18	FE18	Positive Gain High Byte	Differential 1x Buffered	Internal 2.0 V
19	FE19	Positive Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
36	FE36	Negative Gain High Byte	Differential 1x Buffered	Internal 2.0 V
37	FE37	Negative Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
7B	FE7B	Offset	Differential 1x Buffered	External 2.0 V
1A	FE1A	Positive Gain High Byte	Differential 1x Buffered	External 2.0 V
1B	FE1B	Positive Gain Low Byte	Differential 1x Buffered	External 2.0 V
38	FE38	Negative Gain High Byte	Differential 1x Buffered	External 2.0 V
39	FE39	Negative Gain Low Byte	Differential 1x Buffered	External 2.0 V

Table 94. ADC Calibration Data Location (Continued)

Table 108. Oscillator Configuration and Selection

Clock Source	Characteristics	Required Setup
Internal Precision RC Oscillator	 32.8 kHz or 5.53 MHz High accuracy No external components required 	Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53 MHz or 32.8 kHz
External Crystal/ Resonator	 32 kHz to 20 MHz Very high accuracy (dependent on crystal or resonator used) Requires external components 	 Configure Flash option bits for correct external oscillator mode Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de- asserted, no waiting is required)
External RC Oscillator	 32 kHz to 4 MHz Accuracy dependent on external components 	 Configure Flash option bits for correct external oscillator mode Unlock and write OSCCTL to enable crystal oscillator and select as system clock
External Clock Drive	 0 to 20 MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10 kHz nominal Low accuracy; no external components required Very low power consumption 	 Enable WDT if not enabled and wait until WDT Oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator

Caution: Unintentional accesses to the oscillator control register can actually stop the chip by switching to a non-functioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the oscillator control register, unlock it by making two writes to the OSCCTL register with the values E7H followed by 18H. A third write to the OSCCTL register changes the value of the actual register and returns the register to a locked state. Any other sequence of oscillator control register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

189

When selecting a new clock source, the system clock oscillator failure detection circuitry and the Watchdog Timer oscillator failure circuitry must be disabled. If SOFEN and WOFEN are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a failure of either oscillator. The Failure detection circuitry can be enabled anytime after a successful write of OSCSEL in the OSCCTL register.

The internal precision oscillator is enabled by default. If the user code changes to a different oscillator, it may be appropriate to disable the IPO for power savings. Disabling the IPO does not occur automatically.

Clock Failure Detection and Recovery

System Clock Oscillator Failure

The Z8F04xA family devices can generate non-maskable interrupt-like events when the primary oscillator fails. To maintain system function in this situation, the clock failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the system clock. The Watchdog Timer oscillator must be enabled to allow the recovery. Although this oscillator runs at a much slower speed than the original system clock, the CPU continues to operate, allowing execution of a clock failure vector and software routines that either remedy the oscillator failure or issue a failure alert. This automatic switch-over is not available if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the Watchdog Timer reset function (see Watchdog Timer on page 91).

The primary oscillator failure detection circuitry asserts if the system clock frequency drops below 1 kHz \pm 50%. If an external signal is selected as the system oscillator, it is possible that a very slow but non-failing clock can generate a failure condition. Under these conditions, do not enable the clock failure circuitry (SOFEN must be deasserted in the OSCCTL register).

Watchdog Timer Failure

In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the system clock oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while looking for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

Crystal Oscillator

The products in the Z8 Encore! XP[®] F082A Series contain an on-chip crystal oscillator for use with external crystals with 32 kHz to 20 MHz frequencies. In addition, the oscillator supports external RC networks with oscillation frequencies up to 4 MHz or ceramic resonators with frequencies up to 8 MHz. The on-chip crystal oscillator can be used to generate the primary system clock for the internal eZ8 CPU and the majority of the on-chip peripherals. Alternatively, the X_{IN} input pin can also accept a CMOS-level clock input signal (32 kHz–20 MHz). If an external clock generator is used, the X_{OUT} pin must be left unconnected. The Z8 Encore! XP F082A Series products do not contain an internal clock divider. The frequency of the signal on the X_{IN} input pin determines the frequency of the system clock.

Note:

Although the XIN pin can be used as an input for an external clock generator, the CLKIN pin is better suited for such use (see System Clock Selection on page 187).

Operating Modes

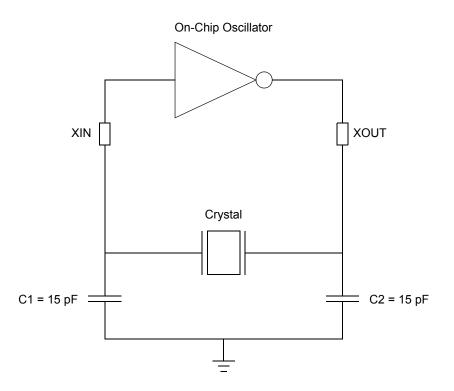
The Z8 Encore! XP F082A Series products support four oscillator modes:

- Minimum power for use with very low frequency crystals (32 kHz–1 MHz).
- Medium power for use with medium frequency crystals or ceramic resonators (0.5 MHz to 8 MHz).
- Maximum power for use with high frequency crystals (8 MHz to 20 MHz).
- On-chip oscillator configured for use with external RC networks (<4 MHz).

The oscillator mode is selected using user-programmable Flash Option Bits. See Flash Option Bits on page 153 for information.

Crystal Oscillator Operation

The Flash Option bit XTLDIS controls whether the crystal oscillator is enabled during reset. The crystal may later be disabled after reset if a new oscillator has been selected as the system clock. If the crystal is manually enabled after reset through the OSCCTL register, the user code must wait at least 1000 crystal oscillator cycles for the crystal to stabilize. After this, the crystal oscillator may be selected as the system clock.


• Note: The stabilization time varies depending on the crystal or resonator used, as well as on the feedback network. See Table 111 for transconductance values to compute oscillator stabilization times.

PS022825-0908

zilog

194

Figure 27 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended 20 MHz crystal specifications are provided in Table 110. Printed circuit board layout must add no more than 4 pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C₁ and C₂ to decrease loading.

Figure 27. Recommended 20 MHz Crystal Oscillator Configuration

Table 110. Recommended Crystal Oscillator Specifications
--

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	60	Ω	Maximum
Load Capacitance (C _L)	30	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

zilog[°]

21	Λ
~	4

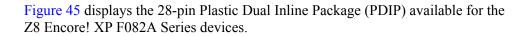
Assembly	Symbolic	Addre	ss Mode	Opcode(s)			FI	Fetch	Instr.			
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
SUBX dst, src	$dst \gets dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29	-						4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	_	-	2	2
		IR		F1	-						2	3
TCM dst, src	(NOT dst) AND src	r	r	62	_	*	*	0	_	_	2	3
		r	lr	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	_	*	*	0	_	-	4	3
		ER	IM	69	-						4	3
TM dst, src	dst AND src	r	r	72	-	*	*	0	-	-	2	3
		r	lr	73	-						2	4
		R	R	74	-						3	3
		R	IR	75	-						3	4
		R	IM	76	-						3	3
		IR	IM	77	-						3	4
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	-	-	4	3
		ER	IM	79	-						4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC $SP \leftarrow SP - 1$ @SP \leftarrow FLAGS PC \leftarrow @Vector		Vector	F2	_	_	_	_	_	_	2	6
WDT				5F	_	_	_	_	_	_	1	2
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	of the resul	peration.	0 = Reset to 0 1 = Set to 1								

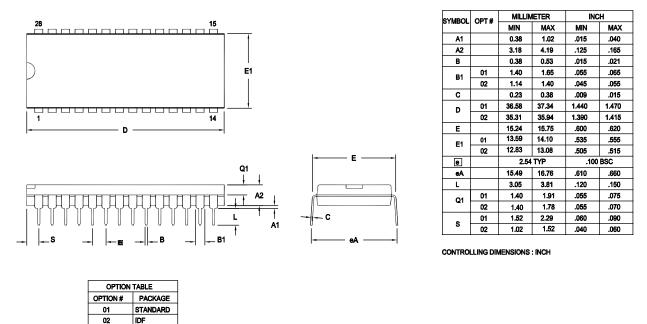
Table 124. eZ8 CPU Instruction Summary (Continued)

Table 128. Power Consumption (Continued)

		V _{DI}	_o = 2.7 V to 3	5.6 V		
			Maximum ²	-		
Symbol	Parameter	Typical 1	Std Temp	Ext Temp	Units	Conditions
I _{DD} LPO	Low-Power Operational Amplifier Supply Current	3	5	5	μΑ	Driving a high- impedance load
I _{DD} TS	Temperature Sensor Supply Current	60			μA	See Notes 4
I _{DD} BG	Band Gap Supply	320	480	500	μA	For 20-/28-pin devices
	Current					For 8-pin devices

Notes


1. Typical conditions are defined as V_{DD} = 3.3 V and +30 °C.


2. Standard temperature is defined as $T_A = 0$ °C to +70 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

3. Extended temperature is defined as T_A = -40 °C to +105 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current. This bandgap current is only added once, regardless of how many peripherals are using it.

zilog ₂₄₇

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 45. 28-Pin Plastic Dual Inline Package (PDIP)

zilog[°]

255

Part Number	Flash	RAM	SOVN	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082A Series with 2 KB Flash, 10-Bit Analog-to-Digital Converter											
Standard Temperature											
Z8F022APB020SC		512 B	64 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F022AQB020SC	2 KB	512 B	64 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F022ASB020SC	2 KB	512 B	64 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F022ASH020SC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F022AHH020SC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F022APH020SC	2 KB	512 B	64 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F022ASJ020SC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F022AHJ020SC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F022APJ020SC	2 KB	512 B	64 B	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperatur	'e: -40 °	C to 10	5 °C								
Z8F022APB020EC	2 KB	512 B	64 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F022AQB020EC	2 KB	512 B	64 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F022ASB020EC	2 KB	512 B	64 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F022ASH020EC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F022AHH020EC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F022APH020EC	2 KB	512 B	64 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F022ASJ020EC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F022AHJ020EC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F022APJ020EC	2 KB	512 B	64 B	23	20	2	8	1	1	1	PDIP 28-pin package
Replace C with G for Lead	d-Free F	ackaging									