

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f022apj020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog[°]

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

ISO 9001:2000 FS 507510 Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

Interrupt Controller

The Z8 Encore! XP[®] F082A Series products support up to 20 interrupts. These interrupts consist of 8 internal peripheral interrupts and 12 general-purpose I/O pin interrupt sources. The interrupts have three levels of programmable interrupt priority.

Reset Controller

The Z8 Encore! XP F082A Series products can be reset using the $\overline{\text{RESET}}$ pin, Power-On Reset, Watchdog Timer (WDT) time-out, STOP mode exit, or Voltage Brownout (VBO) warning signal. The $\overline{\text{RESET}}$ pin is bi-directional, that is, it functions as reset source as well as a reset indicator.

Signal Descriptions

Table 2 describes the Z8 Encore! XP F082A Series signals. See Pin Configurations on page 9 to determine the signals available for the specific package styles.

Signal Mnemonic	I/O	Description
General-Purpose I/C) Ports	A–D
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.
PB[7:0]	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.
PD[0]	I/O	Port D. This pin is used for general-purpose output only.
Note: PB6 and PB7 are replaced by AV _{DI}	e only av _D and A ^v	vailable in 28-pin packages without ADC. In 28-pin packages with ADC, they are $V_{\rm SS}$.
UART Controllers		
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.
RXD0	I	Receive Data. This signal is the receive input for the UART and IrDA.
CTS0	I	Clear To Send. This signal is the flow control input for the UART.
DE	0	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 register. The DE signal may be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.
Timers		
T0OUT/T1OUT	0	Timer Output 0–1. These signals are outputs from the timers.
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM Dual Output mode.
T0IN/T1IN	Ι	Timer Input 0–1. These signals are used as the capture, gating and counter inputs.
Comparator		
CINP/CINN	Ι	Comparator Inputs. These signals are the positive and negative inputs to the comparator.
COUT	0	Comparator Output.

Table 2. Signal Descriptions

zilog ₃₇

General-Purpose Input/Output

The Z8 Encore! XP[®] F082A Series products support a maximum of 25 port pins (Ports A– D) for general-purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality, and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability By Device

Table 13 lists the port pins available with each device and package type.

Devices	Package	ADC	Port A	Port B	Port C	Port D	Total I/O
Z8F082ASB, Z8F082APB, Z8F082AQB Z8F042ASB, Z8F042APB, Z8F042AQB Z8F022ASB, Z8F022APB, Z8F022AQB Z8F012ASB, Z8F012APB, Z8F012AQB	8-pin	Yes	[5:0]	No	No	No	6
Z8F081ASB, Z8F081APB, Z8F081AQB Z8F041ASB, Z8F041APB, Z8F041AQB Z8F021ASB, Z8F021APB, Z8F021AQB Z8F011ASB, Z8F011APB, Z8F011AQB	8-pin	No	[5:0]	No	No	No	6
Z8F082APH, Z8F082AHH, Z8F082ASH Z8F042APH, Z8F042AHH, Z8F042ASH Z8F022APH, Z8F022AHH, Z8F022ASH Z8F012APH, Z8F012AHH, Z8F012ASH	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17
Z8F081APH, Z8F081AHH, Z8F081ASH Z8F041APH, Z8F041AHH, Z8F041ASH Z8F021APH, Z8F021AHH, Z8F021ASH Z8F011APH, Z8F011AHH, Z8F011ASH	20-pin	No	[7:0]	[3:0]	[3:0]	[0]	17
Z8F082APJ, Z8F082ASJ, Z8F082AHJ Z8F042APJ, Z8F042ASJ, Z8F042AHJ Z8F022APJ, Z8F022ASJ, Z8F022AHJ Z8F012APJ, Z8F012ASJ, Z8F012AHJ	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23
Z8F081APJ, Z8F081ASJ, Z8F081AHJ Z8F041APJ, Z8F041ASJ, Z8F041AHJ Z8F021APJ, Z8F021ASJ, Z8F021AHJ Z8F011APJ, Z8F011ASJ, Z8F011AHJ	28-pin	No	[7:0]	[7:0]	[7:0]	[0]	25

Table 13. Port Availability by Device and Package Type

function). (Push-pull output)

1 = The source current for the associated pin is disabled (open-drain mode).

Port A–D High Drive Enable Sub-Registers

The Port A–D High Drive Enable sub-register (Table 22) is accessed through the Port A–D Control register by writing 04H to the Port A–D Address register. Setting the bits in the Port A–D High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–D High Drive Enable sub-register affects the pins directly and, as a result, alternate functions are also affected.

Table 22. Port A–D High Drive Enable Sub-Registers (PxHDE)

BITS	7	6	5	4	3	2	1	0
FIELD	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 04H i	n Port A–D	Address Reg	gister, acces	sible throug	h the Port A-	-D Control F	Register

PHDE[7:0]—Port High Drive Enabled

0 = The Port pin is configured for standard output current drive.

1 = The Port pin is configured for high output current drive.

Port A–D Stop Mode Recovery Source Enable Sub-Registers

The Port A–D Stop Mode Recovery Source Enable sub-register (Table 23) is accessed through the Port A–D Control register by writing 05H to the Port A–D Address register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable sub-registers to 1 configures the specified Port pins as a Stop Mode Recovery source. During STOP mode, any logic transition on a Port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery.

Table 23. Port A–D Stop Mode Recove	ry Source Enable Sub-Registers (PxSMRE)
-------------------------------------	---

BITS	7	6	5	4	3	2	1	0					
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0					
RESET	0	0	0	0	0	0	0	0					
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W											
ADDR	lf 05H i	n Port A–D	Address Reg	gister, acces	sible throug	n the Port A-	-D Control F	Register					

PSMRE[7:0]—Port Stop Mode Recovery Source Enabled

0 = The Port pin is not configured as a Stop Mode Recovery source. Transitions on this pin

zilog[°].

PWM DUAL OUTPUT Mode

In PWM DUAL OUTPUT mode, the timer outputs a Pulse-Width Modulated (PWM) output signal pair (basic PWM signal and its complement) through two GPIO Port pins. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

The timer also generates a second PWM output signal Timer Output Complement. The Timer Output Complement is the complement of the Timer Output PWM signal. A programmable deadband delay can be configured to time delay (0 to 128 system clock cycles) PWM output transitions on these two pins from a low to a high (inactive to active). This ensures a time gap between the deassertion of one PWM output to the assertion of its complement.

Follow the steps below for configuring a timer for PWM DUAL OUTPUT mode and initiating the PWM operation:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for PWM DUAL OUTPUT mode by writing the TMODE bits in the TxCTL1 register and the TMODEHI bit in TxCTL0 register.
 - Set the prescale value.
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the PWM Control register to set the PWM dead band delay value. The deadband delay must be less than the duration of the positive phase of the PWM signal (as defined by the PWM high and low byte registers). It must also be less than the

zilog | 11

UART Address Compare Register

The UART Address Compare (UxADDR) register stores the multi-node network address of the UART (see Table 67). When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are compared to the value stored in the Address Compare register. Receive interrupts and RDA assertions only occur in the event of a match.

Table 67. UART Address Compare Register (U0ADDR)

BITS	7	6	5	4	3	2	1	0					
FIELD		COMP_ADDR											
RESET	0	0 0 0 0 0 0 0 0											
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W											
ADDR				F4	5H								

COMP_ADDR—Compare Address

This 8-bit value is compared to incoming address bytes.

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High (UxBRH) and Low Byte (UxBRL) registers (Table 68 and Table 69) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART.

Table 68. UART Baud Rate High Byte Register (U0BRH)

BITS	7	6	5	4	3	2	1	0					
FIELD		BRH											
RESET	1	1 1 1 1 1 1 1 1											
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W											
ADDR		F46H											

Table 69. UART Baud Rate Low Byte Register (U0BRL)

BITS	7	6	5	4	3	2	1	0					
FIELD	BRL												
RESET	1	1 1 1 1 1 1 1 1											
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W											
ADDR		F47H											

zilog ₁₂₃

can output values across the entire 11-bit range, from -1024 to +1023. In SINGLE-ENDED mode, the output generally ranges from 0 to +1023, but offset errors can cause small negative values.

The ADC registers actually return 13 bits of data, but the two LSBs are intended for compensation use only. When the software compensation routine is performed on the 13 bit raw ADC value, two bits of resolution are lost because of a rounding error. As a result, the final value is an 11-bit number.

Hardware Overflow

When the hardware overflow bit (OVF) is set in ADC Data Low Byte (ADCD_L) register, all other data bits are invalid. The hardware overflow bit is set for values greater than V_{ref} and less than $-V_{ref}$ (DIFFERENTIAL mode).

Automatic Powerdown

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered down. From this powerdown state, the ADC requires 40 system clock cycles to power up. The ADC powers up when a conversion is requested by the ADC Control register.

Single-Shot Conversion

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. Follow the steps below for setting up the ADC and initiating a single-shot conversion:

- 1. Enable the desired analog inputs by configuring the general-purpose I/O pins for alternate analog function. This configuration disables the digital input and output drivers.
- 2. Write the ADC Control/Status Register 1 to configure the ADC.
 - Write to BUFMODE [2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, as well as unbuffered or buffered mode.
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is. contained in the ADC Control Register 0.
- 3. Write to the ADC Control Register 0 to configure the ADC and begin the conversion. The bit fields in the ADC Control register can be written simultaneously (the ADC can be configured and enabled with the same write instruction):
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Clear CONT to 0 to select a single-shot conversion.

zilog 1

- If the internal voltage reference must be output to a pin, set the REFEXT bit to 1. The internal voltage reference must be enabled in this case.
- Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in the ADC Control/Status Register 1.
- Set CEN to 1 to start the conversion.
- 4. CEN remains 1 while the conversion is in progress. A single-shot conversion requires 5129 system clock cycles to complete. If a single-shot conversion is requested from an ADC powered-down state, the ADC uses 40 additional clock cycles to power up before beginning the 5129 cycle conversion.
- 5. When the conversion is complete, the ADC control logic performs the following operations:
 - 13-bit two's-complement result written to {ADCD_H[7:0], ADCD_L[7:3]}.
 - Sends an interrupt request to the Interrupt Controller denoting conversion complete.
 - CEN resets to 0 to indicate the conversion is complete.
- 6. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically powered-down.

Continuous Conversion

When configured for continuous conversion, the ADC continuously performs an analog-to-digital conversion on the selected analog input. Each new data value over-writes the previous value stored in the ADC Data registers. An interrupt is generated after each conversion.

Caution: In CONTINUOUS mode, ADC updates are limited by the input signal bandwidth of the ADC and the latency of the ADC and its digital filter. Step changes at the input are not immediately detected at the next output from the ADC. The response of the ADC (in all modes) is limited by the input signal bandwidth and the latency.

Follow the steps below for setting up the ADC and initiating continuous conversion:

- 1. Enable the desired analog input by configuring the general-purpose I/O pins for alternate function. This action disables the digital input and output driver.
- 2. Write the ADC Control/Status Register 1 to configure the ADC.
 - Write to BUFMODE[2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, as well as unbuffered or buffered mode.
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is contained in the ADC Control Register 0.

- 3. Write to the ADC Control Register 0 to configure the ADC for continuous conversion. The bit fields in the ADC Control register may be written simultaneously:
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Set CONT to 1 to select continuous conversion.
 - If the internal VREF must be output to a pin, set the REFEXT bit to 1. The internal voltage reference must be enabled in this case.
 - Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in ADC Control/Status Register 1.
 - Set CEN to 1 to start the conversions.
- 4. When the first conversion in continuous operation is complete (after 5129 system clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic performs the following operations:
 - CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all subsequent conversions in continuous operation.
 - An interrupt request is sent to the Interrupt Controller to indicate the conversion is complete.
- 5. The ADC writes a new data result every 256 system clock cycles. For each completed conversion, the ADC control logic performs the following operations:
 - Writes the 13-bit two's complement result to {ADCD_H[7:0], ADCD L[7:3]}.
 - Sends an interrupt request to the Interrupt Controller denoting conversion complete.
- 6. To disable continuous conversion, clear the CONT bit in the ADC Control Register to 0.

Interrupts

The ADC is able to interrupt the CPU when a conversion has been completed. When the ADC is disabled, no new interrupts are asserted; however, an interrupt pending when the ADC is disabled is not cleared.

Calibration and Compensation

The Z8 Encore! XP[®] F082A Series ADC is factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, you can perform your own calibration, storing the values into Flash themselves. Thirdly, the user code can perform a manual offset calibration during DIFFERENTIAL mode operation.

zilog

Caution: Although the ADC can be used without the gain and offset compensation, it does exhibit non-unity gain. Designing the ADC with sub-unity gain reduces noise across the ADC range but requires the ADC results to be scaled by a factor of 8/7.

ADC Compensation Details

High efficiency assembly code that performs this compensation is available for download on <u>www.zilog.com</u>. The following is a bit-specific description of the ADC compensation process used by this code.

The following data bit definitions are used:

0-9, a-f = bit indices in hexadecimal

s = sign bit

v = overflow bit

- = unused

Input Data

			MS	ΒB								LS	В				
ន	b	a	9	8	7	6	5	4	3	2	1	0	-	-	v	(ADC)	ADC Output Word; if $v = 1$, the data is invalid
								S	6	5	4	3	2	1	0		Offset Correction Byte
s	s	s	s	s	7	6	5	4	З	2	1	0	0	0	0	(Offset)	Offset Byte shifted to align
	2	2	2	2		0			0	-	_	0	0	0	Ū	(022200)	with ADC data
S	е	d	С	b	a	9	8	7	6	5	4	3	2	1	0	(Gain)]	Gain Correction Word
																-	
																1	

Temperature Sensor Calibration Data

Table 95. Temperature Sensor Calibration High Byte at 003A (TSCALH)

BITS	7	6	5	4	3	2	1	0					
FIELD	TSCALH												
RESET	U	U U U U U U U U											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
ADDR	Information Page Memory 003A												
Note: U =	Unchanged b	v Reset, R/W	= Read/Write	<u>,</u>									

TSCALH – Temperature Sensor Calibration High Byte

The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibration value. For more details, see Temperature Sensor Operation on page 139.

Table 96. Temperature Sensor Calibration Low Byte at 003B (TSCALL)

BITS	7	6	5	4	3	2	1	0					
FIELD	TSCALL												
RESET	U	U U U U U U U U											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
ADDR	Information Page Memory 003B												
Note: U =	Unchanged by	y Reset. R/W	= Read/Write).									

TSCALL – Temperature Sensor Calibration Low Byte

The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibration value. For usage details, see Temperature Sensor Operation on page 139.

Watchdog Timer Calibration Data

Table 97. Watchdog Calibration High Byte at 007EH (WDTCALH)

BITS	7	6	5	4	3	2	1	0		
FIELD	WDTCALH									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	Information Page Memory 007EH									
Note: U = Unchanged by Reset. R/W = Read/Write.										

High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

OCD Unlock Sequence (8-Pin Devices Only)

Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to access the DBG pin. If this sequence is not completed during a system reset, then the PA0/DBG pin functions only as a GPIO pin.

The following sequence unlocks the DBG pin:

- 1. Hold PA2/RESET Low.
- 2. Wait 5ms for the internal reset sequence to complete.
- 3. Send the following bytes serially to the debug pin:

```
DBG \leftarrow 80H (autobaud)
DBG \leftarrow EBH
DBG \leftarrow 5AH
DBG \leftarrow 70H
DBG \leftarrow CDH (32-bit unlock key)
```

4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the DBG pin on the 20-/28-pin device. To enter DEBUG mode, re-autobaud and write 80H to the OCD control register (see On-Chip Debugger Commands on page 179).

Caution: Between Step 3 and Step 4, there is an interval during which the 8-pin device is neither in RESET nor DEBUG mode. If a device has been erased or has not yet been programmed, all program memory bytes contain FFH. The CPU interprets this as an illegal instruction, so some irregular behavior can occur before entering DEBUG mode, and the register values after entering DEBUG mode differs from their specified reset values. However, none of these irregularities prevent programming the Flash memory. Before beginning system debug, it is recommended that some legal code be programmed into the 8-pin device, and that a RESET occurs.

Breakpoints

Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are enabled, the OCD enters DEBUG mode and idles the eZ8 CPU. If Breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

zilog

180

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Flash Read Protect Option Bit
Write Register	08H	_	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	_	Disabled
Write Program Memory	0AH	_	Disabled
Read Program Memory	0BH	_	Disabled
Write Data Memory	0CH	_	Yes
Read Data Memory	0DH	_	-
Read Program Memory CRC	0EH	_	-
Reserved	0FH	_	-
Step Instruction	10H	_	Disabled
Stuff Instruction	11H	_	Disabled
Execute Instruction	12H	_	Disabled
Reserved	13H–FFH	_	_

In the following bulleted list of OCD Commands, data and commands sent from the host to the On-Chip Debugger are identified by 'DBG \leftarrow Command/Data'. Data sent from the On-Chip Debugger back to the host is identified by 'DBG \rightarrow Data'

• **Read OCD Revision (00H)**—The Read OCD Revision command determines the version of the On-Chip Debugger. If OCD commands are added, removed, or changed, this revision number changes.

```
DBG \leftarrow 00H
DBG \rightarrow OCDRev[15:8] (Major revision number)
DBG \rightarrow OCDRev[7:0] (Minor revision number)
```

• **Read OCD Status Register (02H)**—The Read OCD Status Register command reads the OCDSTAT register.

```
DBG \leftarrow 02H
DBG \rightarrow OCDSTAT[7:0]
```

• **Read Runtime Counter (03H)**—The Runtime Counter counts system clock cycles in between Breakpoints. The 16-bit Runtime Counter counts up from 0000H and stops at the maximum count of FFFFH. The Runtime Counter is overwritten during the

zilog

196

Figure 29 displays the typical (3.3 V and 25 °C) oscillator frequency as a function of the capacitor (C in pF) employed in the RC network assuming a 45 K Ω external resistor. For very small values of C, the parasitic capacitance of the oscillator XIN pin and the printed circuit board must be included in the estimation of the oscillator frequency.

It is possible to operate the RC oscillator using only the parasitic capacitance of the package and printed circuit board. To minimize sensitivity to external parasitics, external capacitance values in excess of 20 pF are recommended.

Figure 29. Typical RC Oscillator Frequency as a Function of the External Capacitance with a 45 k Ω Resistor

Caution:

When using the external RC oscillator mode, the oscillator can stop oscillating if the power supply drops below 2.7 V, but before the power supply drops to the Voltage Brownout threshold. The oscillator resumes oscillation when the supply voltage exceeds 2.7 V.

200

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed if manual program coding is preferred or if you intend to implement your own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 112. Assembly Language Syntax Example 1

Assembly Language Code	ADD	43H,	08H	(ADD dst, src)
Object Code	04	08	43	(OPC src, dst)

Example 2: In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0–255 or, using Escaped Mode Addressing, a Working Register R0–R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 113. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in Table 114.

zilog[°]

215

Assembly	Symbolic	Addres	s Mode	Opcode(s) (Hex)	Flags						Fetch	Instr.
Mnemonic	Operation	dst	src		С	Ζ	S	۷	D	Н	Cycles	Cycles
XOR dst, src	$dst \gets dst \: XOR \: src$	r	r	B2	_	*	*	0	-	-	2	3
		r	lr	B3	-						2	4
		R	R	B4	-						3	3
		R	IR	B5	-						3	4
		R	IM	B6	-						3	3
		IR	IM	B7	-						3	4
XORX dst, src	$dst \gets dst \: XOR \: src$	ER	ER	B8	_	*	*	0	-	-	4	3
		ER	IM	B9	-						4	3
Flags Notation:	* = Value is a function – = Unaffected X = Undefined	of the result	of the o	peration.	0 = 1 =	Re Se	set t to	to (1	D			

Table 124. eZ8 CPU Instruction Summary (Continued)

Opcode Maps

A description of the opcode map data and the abbreviations are provided in Figure 30. Figure 31 and Figure 32 displays the eZ8 CPU instructions. Table 125 lists Opcode Map abbreviations.

Figure 30. Opcode Map Cell Description

250

zilog[°]

268

subtract with carry - extended addressing 203 SUBX 203 SWAP 207 swap nibbles 207 symbols, additional 202

Т

TCM 204 **TCMX 204 Technical Support 271** test complement under mask 204 test complement under mask - extended addressing 204 test under mask 204 test under mask - extended addressing 204 timer signals 11 timers 69 architecture 69 block diagram 70 CAPTURE mode 77, 78, 85, 86 CAPTURE/COMPARE mode 81, 85 COMPARE mode 79, 85 CONTINUOUS mode 71, 84 COUNTER mode 72, 73 COUNTER modes 84 GATED mode 80, 85 ONE-SHOT mode 70, 84 operating mode 70 PWM mode 74, 76, 85 reading the timer count values 82 reload high and low byte registers 87 timer control register definitions 83 timer output signal operation 82 timers 0-3 control registers 83, 84 high and low byte registers 87, 88 TM 204 TMX 204 transmit IrDA data 118 transmitting UART data-polled method 99 transmitting UART dat-interrupt-driven method 100

TRAP 206

U

UART 7

architecture 97 baud rate generator 107 baud rates table 115 control register definitions 108 controller signals 11 data format 98 interrupts 105 multiprocessor mode 103 receiving data using interrupt-driven method 102 receiving data using the polled method 101 transmitting data usin the interrupt-driven method 100 transmitting data using the polled method 99 x baud rate high and low registers 114 x control 0 and control 1 registers 108 x status 0 and status 1 registers 111, 112 UxBRH register 114 UxBRL register 114 UxCTL0 register 108, 114 UxCTL1 register 109 UxRXD register 113 UxSTAT0 register 111 UxSTAT1 register 112 UxTXD register 113

V

vector 201 Voltage Brownout reset (VBR) 26

W

Watchdog Timer approximate time-out delay 91 approximate time-out delays 135 CNTL 26 control register 94, 136, 190