
E·XFL

Zilog - Z8F041AHJ020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.173", 4.40mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f041ahj020sc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reset, Stop Mode Recovery, and Low Voltage Detection	23
Reset Types	23
Reset Sources	
Power-On Reset	
Voltage Brownout Reset	
Watchdog Timer Reset External Reset Input	
External Reset Indicator	
On-Chip Debugger Initiated Reset	
Stop Mode Recovery	
Stop Mode Recovery Using Watchdog Timer Time-Out	
Stop Mode Recovery Using a GPIO Port Pin Transition	29
Stop Mode Recovery Using the External RESET Pin	30
Low Voltage Detection	30
Reset Register Definitions	30
Low-Power Modes	33
STOP Mode	33
HALT Mode	34
Peripheral-Level Power Control	34
Power Control Register Definitions	34
General-Purpose Input/Output	37
GPIO Port Availability By Device	37
Architecture	
GPIO Alternate Functions	
Direct LED Drive	
Shared Reset Pin	39
Shared Debug Pin	
Crystal Oscillator Override	
5 V Tolerance	40
External Clock Setup	40
GPIO Interrupts	45
GPIO Control Register Definitions	45
Port A–D Address Registers	
Port A–D Control Registers	
Port A–D Data Direction Sub-Registers	
Port A–D Alternate Function Sub-Registers	47

The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

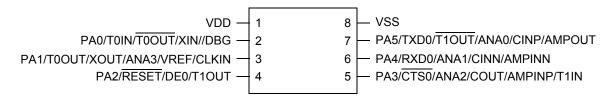


Figure 2. Z8F08xA, Z8F04xA, Z8F02xA, and Z8F01xA in 8-Pin SOIC, QFN/MLF-S, or PDIP Package

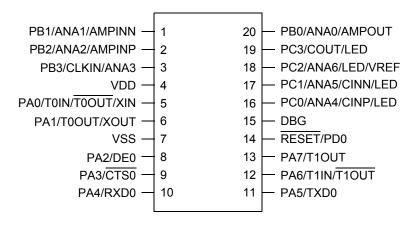


Figure 3. Z8F08xA, Z8F04xA, Z8F02xA, and Z8F01xA in 20-Pin SOIC, SSOP or PDIP Package

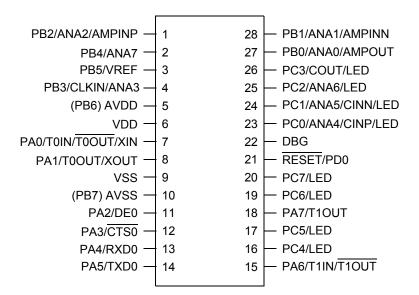


Figure 4. Z8F08xA, Z8F04xA, Z8F02xA, and Z8F01xA in 28-Pin SOIC, SSOP or PDIP Package

Signal Descriptions

Table 2 describes the Z8 Encore! XP F082A Series signals. See Pin Configurations on page 9 to determine the signals available for the specific package styles.

Signal Mnemonic	I/O	Description
General-Purpose I/0	O Ports	A–D
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.
PB[7:0]	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.
PD[0]	I/O	Port D. This pin is used for general-purpose output only.
Note: PB6 and PB7 ar replaced by AV _E		vailable in 28-pin packages without ADC. In 28-pin packages with ADC, they are $V_{\rm SS}.$
UART Controllers		
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.
RXD0	Ι	Receive Data. This signal is the receive input for the UART and IrDA.
CTS0	Ι	Clear To Send. This signal is the flow control input for the UART.
DE	0	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 register. The DE signal may be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.
Timers		
T0OUT/T1OUT	0	Timer Output 0–1. These signals are outputs from the timers.
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM Dual Output mode.
T0IN/T1IN	Ι	Timer Input 0–1. These signals are used as the capture, gating and counter inputs.
Comparator		
CINP/CINN	Ι	Comparator Inputs. These signals are the positive and negative inputs to the comparator.
COUT	0	Comparator Output.

Table 2. Signal Descriptions

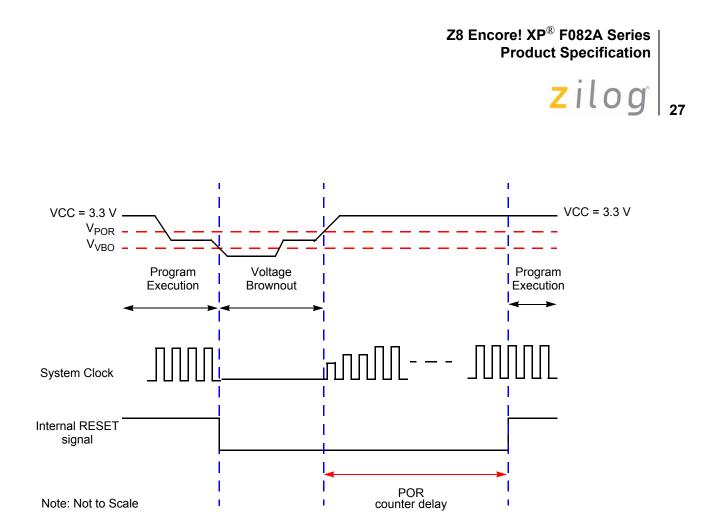


Figure 6. Voltage Brownout Reset Operation

The POR level is greater than the VBO level by the specified hysteresis value. This ensures that the device undergoes a Power-On Reset after recovering from a VBO condition.

Watchdog Timer Reset

If the device is in NORMAL or HALT mode, the Watchdog Timer can initiate a System Reset at time-out if the WDT_RES Flash Option Bit is programmed to 1. This is the unprogrammed state of the WDT_RES Flash Option Bit. If the bit is programmed to 0, it configures the Watchdog Timer to cause an interrupt, not a System Reset, at time-out.

The WDT bit in the Reset Status (RSTSTAT) register is set to signify that the reset was initiated by the Watchdog Timer.

External Reset Input

The $\overline{\text{RESET}}$ pin has a Schmitt-Triggered input and an internal pull-up resistor. Once the $\overline{\text{RESET}}$ pin is asserted for a minimum of four system clock cycles, the device progresses through the System Reset sequence. Because of the possible asynchronicity of the system clock and reset signals, the required reset duration may be as short as three clock periods

zilog ₃₇

General-Purpose Input/Output

The Z8 Encore! XP[®] F082A Series products support a maximum of 25 port pins (Ports A– D) for general-purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality, and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability By Device

Table 13 lists the port pins available with each device and package type.

Devices	Package	ADC	Port A	Port B	Port C	Port D	Total I/O
Z8F082ASB, Z8F082APB, Z8F082AQB	8-pin	Yes	[5:0]	No	No	No	6
Z8F042ASB, Z8F042APB, Z8F042AQB							
Z8F022ASB, Z8F022APB, Z8F022AQB							
Z8F012ASB, Z8F012APB, Z8F012AQB							
Z8F081ASB, Z8F081APB, Z8F081AQB	8-pin	No	[5:0]	No	No	No	6
Z8F041ASB, Z8F041APB, Z8F041AQB							
Z8F021ASB, Z8F021APB, Z8F021AQB							
Z8F011ASB, Z8F011APB, Z8F011AQB							
Z8F082APH, Z8F082AHH, Z8F082ASH	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17
Z8F042APH, Z8F042AHH, Z8F042ASH							
Z8F022APH, Z8F022AHH, Z8F022ASH							
Z8F012APH, Z8F012AHH, Z8F012ASH							
Z8F081APH, Z8F081AHH, Z8F081ASH	20-pin	No	[7:0]	[3:0]	[3:0]	[0]	17
Z8F041APH, Z8F041AHH, Z8F041ASH	•						
Z8F021APH, Z8F021AHH, Z8F021ASH							
Z8F011APH, Z8F011AHH, Z8F011ASH							
Z8F082APJ, Z8F082ASJ, Z8F082AHJ	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23
Z8F042APJ, Z8F042ASJ, Z8F042AHJ	•						
Z8F022APJ, Z8F022ASJ, Z8F022AHJ							
Z8F012APJ, Z8F012ASJ, Z8F012AHJ							
Z8F081APJ, Z8F081ASJ, Z8F081AHJ	28-pin	No	[7:0]	[7:0]	[7:0]	[0]	25
Z8F041APJ, Z8F041ASJ, Z8F041AHJ	•						
Z8F021APJ, Z8F021ASJ, Z8F021AHJ							
Z8F011APJ, Z8F011ASJ, Z8F011AHJ							

Table 13. Port Availability by Device and Package Type

PIN[7:0]—Port Input Data
Sampled data from the corresponding port pin input.
0 = Input data is logical 0 (Low).
1 = Input data is logical 1 (High).

Port A–D Output Data Register

The Port A–D Output Data register (Table 28) controls the output data to the pins.

BITS	7	6	5	4	3	2	1	0			
FIELD	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		FD3H, FD7H, FDBH, FDFH									

Table 28. Port A–D Output Data Register (PxOUT)

POUT[7:0]—Port Output Data

These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for alternate function operation.

0 = Drive a logical 0 (Low).

1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding Port Output Control register bit to 1.

LED Drive Enable Register

The LED Drive Enable register (Table 29) activates the controlled current drive. The Port C pin must first be enabled by setting the Alternate Function register to select the LED function.

BITS	7	6	5	4	3	2	1	0
FIELD				LEDE	N[7:0]			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F8	2H			

Table 29. LED Drive Enable (LEDEN)

Figure 11. UART Asynchronous Data Format without Parity

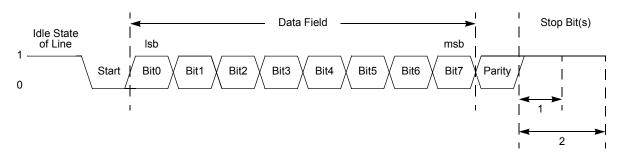


Figure 12. UART Asynchronous Data Format with Parity

Transmitting Data using the Polled Method

Follow the steps below to transmit data using the polled method of operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the required baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Write to the UART Control 1 register, if MULTIPROCESSOR mode is appropriate, to enable MULTIPROCESSOR (9-bit) mode functions.
- 4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR mode.
- 5. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission.
 - Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR mode is not enabled, and select either even or odd parity (PSEL).
 - Set or clear the CTSE bit to enable or disable control from the remote receiver using the CTS pin.

zilog | 1

- 6. Check the TDRE bit in the UART Status 0 register to determine if the Transmit Data register is empty (indicated by a 1). If empty, continue to Step 7. If the Transmit Data register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data register becomes available to receive new data.
- 7. Write the UART Control 1 register to select the outgoing address bit.
- 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 9. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR mode is enabled.
- 11. To transmit additional bytes, return to Step 5.

Transmitting Data using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data register to accept new data for transmission. Follow the steps below to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO Port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
- 5. Write to the UART Control 1 register to enable MULTIPROCESSOR (9-bit) mode functions, if MULTIPROCESSOR mode is appropriate.
- 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR mode.
- 7. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission.
 - Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
 - Set or clear CTSE to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin.
- 8. Execute an EI instruction to enable interrupts.

- 3. Write to the ADC Control Register 0 to configure the ADC for continuous conversion. The bit fields in the ADC Control register may be written simultaneously:
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Set CONT to 1 to select continuous conversion.
 - If the internal VREF must be output to a pin, set the REFEXT bit to 1. The internal voltage reference must be enabled in this case.
 - Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in ADC Control/Status Register 1.
 - Set CEN to 1 to start the conversions.
- 4. When the first conversion in continuous operation is complete (after 5129 system clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic performs the following operations:
 - CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all subsequent conversions in continuous operation.
 - An interrupt request is sent to the Interrupt Controller to indicate the conversion is complete.
- 5. The ADC writes a new data result every 256 system clock cycles. For each completed conversion, the ADC control logic performs the following operations:
 - Writes the 13-bit two's complement result to {ADCD_H[7:0], ADCD L[7:3]}.
 - Sends an interrupt request to the Interrupt Controller denoting conversion complete.
- 6. To disable continuous conversion, clear the CONT bit in the ADC Control Register to 0.

Interrupts

The ADC is able to interrupt the CPU when a conversion has been completed. When the ADC is disabled, no new interrupts are asserted; however, an interrupt pending when the ADC is disabled is not cleared.

Calibration and Compensation

The Z8 Encore! XP[®] F082A Series ADC is factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, you can perform your own calibration, storing the values into Flash themselves. Thirdly, the user code can perform a manual offset calibration during DIFFERENTIAL mode operation.

zilog[°]

ANAIN[3:0]—Analog Input Select

These bits select the analog input for conversion. Not all Port pins in this list are available in all packages for the Z8 Encore! XP[®] F082A Series. For information on port pins available with each package style, see Pin Description on page 9. Do not enable unavailable analog inputs. Usage of these bits changes depending on the buffer mode selected in ADC Control/Status Register 1.

For the reserved values, all input switches are disabled to avoid leakage or other undesirable operation. ADC samples taken with reserved bit settings are undefined.

SINGLE-ENDED:

- 0000 = ANA0 (transimpedance amp output when enabled)
- 0001 = ANA1 (transimpedance amp inverting input)
- 0010 = ANA2 (transimpedance amp non-inverting input)
- 0011 = ANA3
- 0100 = ANA4
- 0101 = ANA5
- 0110 = ANA6
- 0111 = ANA7
- 1000 = Reserved
- 1001 = Reserved
- 1010 = Reserved
- 1011 = Reserved
- 1100 = Hold transimpedance input nodes (ANA1 and ANA2) to ground.
- 1101 = Reserved
- 1110 = Temperature Sensor.
- 1111 = Reserved.

DIFFERENTIAL (non-inverting input and inverting input respectively):

- 0000 = ANA0 and ANA10001 = ANA2 and ANA30010 = ANA4 and ANA50011 = ANA1 and ANA00100 = ANA3 and ANA20101 = ANA5 and ANA40110 = ANA6 and ANA50111 = ANA0 and ANA50111 = ANA0 and ANA21000 = ANA0 and ANA31001 = ANA0 and ANA41010 = ANA0 and ANA51011 = Reserved1100 = Reserved1101 = Reserved1101 = Reserved1110 = Reserved
- 1111 = Manual Offset Calibration Mode

ADC Control/Status Register 1

The ADC Control/Status Register 1 (ADCCTL1) configures the input buffer stage, enables the threshold interrupts and contains the status of both threshold triggers. It is also used to select the voltage reference configuration.

Table 72. ADC Control/Status Register 1 (ADCCTL1)

BITS	7	6	5	4	3	2	0				
FIELD	REFSELH		Rese	erved		BUFMODE[2:0]					
RESET	1	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W R/W R/W R/W R/W							
ADDR				F7	1H		·				

REFSELH—Voltage Reference Level Select High Bit; in conjunction with the Low bit (REFSELL) in ADC Control Register 0, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL}; this reference is independent of the Comparator reference.

00= Internal Reference Disabled, reference comes from external pin

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

11= Reserved

BUFMODE[2:0] - Input Buffer Mode Select

000 =Single-ended, unbuffered input

- 001 = Single-ended, buffered input with unity gain
- 010 = Reserved
- 011 = Reserved
- 100 = Differential, unbuffered input
- 101 = Differential, buffered input with unity gain
- 110 = Reserved
- 111 = Reserved

ADC Data High Byte Register

The ADC Data High Byte (ADCD_H) register contains the upper eight bits of the ADC output. The output is an 13-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

138

Flash Option Bits

Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore! $XP^{\text{(R)}}$ F082A Series operation. The feature configuration data is stored in the Flash program memory and loaded into holding registers during Reset. The features available for control through the Flash Option Bits include:

- Watchdog Timer time-out response selection-interrupt or system reset
- Watchdog Timer always on (enabled at Reset)
- The ability to prevent unwanted read access to user code in Program Memory
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory
- Voltage Brownout configuration-always enabled or disabled during STOP mode to reduce STOP mode power consumption
- Oscillator mode selection-for high, medium, and low power crystal oscillators, or external RC oscillator
- Factory trimming information for the internal precision oscillator and low voltage detection
- Factory calibration values for ADC, temperature sensor, and Watchdog Timer compensation
- Factory serialization and randomized lot identifier (optional)

Operation

Option Bit Configuration By Reset

Each time the Flash Option Bits are programmed or erased, the device must be Reset for the change to take effect. During any reset operation (System Reset, Power-On Reset, or Stop Mode Recovery), the Flash Option Bits are automatically read from the Flash Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the Z8 Encore! XP F082A Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Info Page Address	Memory Address	Usage
5C	FE5C	Randomized Lot ID Byte 23
5D	FE5D	Randomized Lot ID Byte 22
5E	FE5E	Randomized Lot ID Byte 21
5F	FE5F	Randomized Lot ID Byte 20
61	FE61	Randomized Lot ID Byte 19
62	FE62	Randomized Lot ID Byte 18
64	FE64	Randomized Lot ID Byte 17
65	FE65	Randomized Lot ID Byte 16
67	FE67	Randomized Lot ID Byte 15
68	FE68	Randomized Lot ID Byte 14
6A	FE6A	Randomized Lot ID Byte 13
6B	FE6B	Randomized Lot ID Byte 12
6D	FE6D	Randomized Lot ID Byte 11
6E	FE6E	Randomized Lot ID Byte 10
70	FE70	Randomized Lot ID Byte 9
71	FE71	Randomized Lot ID Byte 8
73	FE73	Randomized Lot ID Byte 7
74	FE74	Randomized Lot ID Byte 6
76	FE76	Randomized Lot ID Byte 5
77	FE77	Randomized Lot ID Byte 4
79	FE79	Randomized Lot ID Byte 3
7A	FE7A	Randomized Lot ID Byte 2
7C	FE7C	Randomized Lot ID Byte 1
7D	FE7D	Randomized Lot ID Byte 0 (least significant)

Table 102. Randomized Lot ID Locations (Continued)

High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

OCD Unlock Sequence (8-Pin Devices Only)

Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to access the DBG pin. If this sequence is not completed during a system reset, then the PA0/DBG pin functions only as a GPIO pin.

The following sequence unlocks the DBG pin:

- 1. Hold PA2/RESET Low.
- 2. Wait 5ms for the internal reset sequence to complete.
- 3. Send the following bytes serially to the debug pin:

```
DBG \leftarrow 80H (autobaud)
DBG \leftarrow EBH
DBG \leftarrow 5AH
DBG \leftarrow 70H
DBG \leftarrow CDH (32-bit unlock key)
```

4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the DBG pin on the 20-/28-pin device. To enter DEBUG mode, re-autobaud and write 80H to the OCD control register (see On-Chip Debugger Commands on page 179).

Caution: Between Step 3 and Step 4, there is an interval during which the 8-pin device is neither in RESET nor DEBUG mode. If a device has been erased or has not yet been programmed, all program memory bytes contain FFH. The CPU interprets this as an illegal instruction, so some irregular behavior can occur before entering DEBUG mode, and the register values after entering DEBUG mode differs from their specified reset values. However, none of these irregularities prevent programming the Flash memory. Before beginning system debug, it is recommended that some legal code be programmed into the 8-pin device, and that a RESET occurs.

Breakpoints

Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are enabled, the OCD enters DEBUG mode and idles the eZ8 CPU. If Breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

zilog[°]

215

Assembly	Symbolic	Addres	s Mode	Opcode(s)			FI	ags	Fetch	Instr.		
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н		Cycles
XOR dst, src	$dst \gets dst \ XOR \ src$	r	r	B2	_	*	*	0	_	-	2	3
		r	lr	B3	-						2	4
		R	R	B4	-						3	3
		R	IR	B5	-						3	4
		R	IM	B6	-						3	3
		IR	IM	B7	-						3	4
XORX dst, src	$dst \gets dst \ XOR \ src$	ER	ER	B8	-	*	*	0	_	-	4	3
		ER	IM	B9	-						4	3
Flags Notation:	* = Value is a function of – = Unaffected X = Undefined	the result	of the o	peration.	-	: Re : Se		to (1	C			

Table 124. eZ8 CPU Instruction Summary (Continued)

220

On-Chip Debugger Timing

Figure 36 and Table 141 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4 ns maximum rise and fall time.

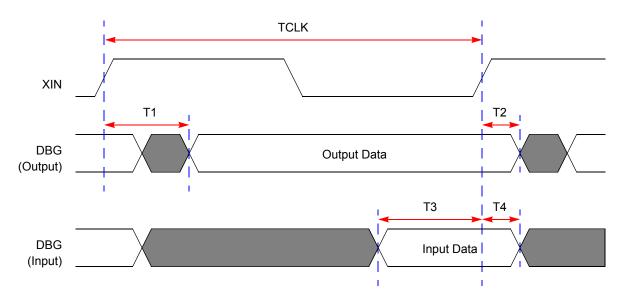


Figure 36. On-Chip Debugger Timing

		Delay (ns)					
Parameter	Abbreviation	Minimum	Maximum				
DBG							
T ₁	XIN Rise to DBG Valid Delay	-	15				
T ₂	XIN Rise to DBG Output Hold Time	2	_				
T ₃	DBG to XIN Rise Input Setup Time	5	_				
T ₄	DBG to XIN Rise Input Hold Time	5	_				

Table 141. On-Chip Debugger Timing

zilog 257

Part Number	Flash	RAM	SUVN	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description	
Z8 Encore! XP [®] F082A Series with 1 KB Flash, 10-Bit Analog-to-Digital Converter												
Standard Temperatu	re: 0 °C	to 70 °C	;									
Z8F012APB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package	
Z8F012AQB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package	
Z8F012ASB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package	
Z8F012ASH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package	
Z8F012AHH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package	
Z8F012APH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package	
Z8F012ASJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package	
Z8F012AHJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package	
Z8F012APJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package	
Extended Temperatu	re: -40 °	C to 10	5 °C									
Z8F012APB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package	
Z8F012AQB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package	
Z8F012ASB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package	
Z8F012ASH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package	
Z8F012AHH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package	
Z8F012APH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package	
Z8F012ASJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package	
Z8F012AHJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package	
Z8F012APJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package	

zilog[°]

268

subtract with carry - extended addressing 203 SUBX 203 SWAP 207 swap nibbles 207 symbols, additional 202

Т

TCM 204 **TCMX 204 Technical Support 271** test complement under mask 204 test complement under mask - extended addressing 204 test under mask 204 test under mask - extended addressing 204 timer signals 11 timers 69 architecture 69 block diagram 70 CAPTURE mode 77, 78, 85, 86 CAPTURE/COMPARE mode 81, 85 COMPARE mode 79, 85 CONTINUOUS mode 71, 84 COUNTER mode 72, 73 COUNTER modes 84 GATED mode 80, 85 ONE-SHOT mode 70, 84 operating mode 70 PWM mode 74, 76, 85 reading the timer count values 82 reload high and low byte registers 87 timer control register definitions 83 timer output signal operation 82 timers 0-3 control registers 83, 84 high and low byte registers 87, 88 TM 204 TMX 204 transmit IrDA data 118 transmitting UART data-polled method 99 transmitting UART dat-interrupt-driven method 100

TRAP 206

U

UART 7

architecture 97 baud rate generator 107 baud rates table 115 control register definitions 108 controller signals 11 data format 98 interrupts 105 multiprocessor mode 103 receiving data using interrupt-driven method 102 receiving data using the polled method 101 transmitting data usin the interrupt-driven method 100 transmitting data using the polled method 99 x baud rate high and low registers 114 x control 0 and control 1 registers 108 x status 0 and status 1 registers 111, 112 UxBRH register 114 UxBRL register 114 UxCTL0 register 108, 114 UxCTL1 register 109 UxRXD register 113 UxSTAT0 register 111 UxSTAT1 register 112 UxTXD register 113

V

vector 201 Voltage Brownout reset (VBR) 26

W

Watchdog Timer approximate time-out delay 91 approximate time-out delays 135 CNTL 26 control register 94, 136, 190