

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	6
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f041asb020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Sector Protect Register 1 Flash Frequency High and Low Byte Registers 1	
Flash Option Bits	53
Operation11Option Bit Configuration By Reset11Option Bit Types11Reading the Flash Information Page11Flash Option Bit Control Register Definitions11Trim Bit Address Register11Trim Bit Data Register11Flash Option Bit Address Space11Flash Program Memory Address 0000H11Flash Program Memory Address 0001H11Trim Bit Address Space11Trim Bit Address 0000H11Trim Bit Address 0000H11Trim Bit Address 0000H11Trim Bit Address 0001H11Trim Bit Address 0002H11Trim Bit Address 0003H11Trim Bit Address 0004H11	53 54 55 55 56 56 56 58 58 58 58 59 59 59
Zilog Calibration Data 10 ADC Calibration Data 10 Temperature Sensor Calibration Data 10 Watchdog Timer Calibration Data 10 Serialization Data 10 Randomized Lot Identifier 10	61 64 64 65 66
Non-Volatile Data Storage 10	
NVDS Code Interface 10 Byte Write 10 Byte Read 11	69 70 71
On-Chip Debugger1	73
	74 74

Universal Asynchronous Receiver/Transmitter

The full-duplex universal asynchronous receiver/transmitter (UART) is included in all Z8 Encore! XP package types. The UART supports 8- and 9-bit data modes and selectable parity. The UART also supports multi-drop address processing in hardware. The UART baud rate generator (BRG) can be configured and used as a basic 16-bit timer.

Timers

Two enhanced 16-bit reloadable timers can be used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in ONE-SHOT, CONTINUOUS, GATED, CAPTURE, CAPTURE RESTART, COMPARE, CAPTURE and COMPARE, PWM SINGLE OUTPUT and PWM DUAL OUTPUT modes.

General-Purpose Input/Output

The Z8 Encore! XP F082A Series features 6 to 25 port pins (Ports A–D) for general- purpose input/output (GPIO). The number of GPIO pins available is a function of package, and each pin is individually programmable. 5 V tolerant input pins are available on all I/Os on 8-pin devices and most I/Os on other package types.

Direct LED Drive

The 20- and 28-pin devices support controlled current sinking output pins capable of driving LEDs without the need for a current limiting resistor. These LED drivers are independently programmable to four different intensity levels.

Flash Controller

The Flash Controller programs and erases Flash memory. The Flash Controller supports several protection mechanisms against accidental program and erasure, as well as factory serialization and read protection.

Non-Volatile Data Storage

The non-volatile data storage (NVDS) uses a hybrid hardware/software scheme to implement a byte programmable data memory and is capable of over 100,000 write cycles.

Note: Devices with 8 KB Flash memory do not include the NVDS feature.

Table 2. Signal Descriptions (Continued)

Signal Mnemonic	I/O	Description
Power Supply		
V _{DD}	Ι	Digital Power Supply.
AV _{DD}	Ι	Analog Power Supply.
V _{SS}	I	Digital Ground.
AV _{SS}	Ι	Analog Ground.
Note: The AV	Vee siar	nals are available only in 28-pin packages with ADC. They are replaced by PB6 and

Note: The AV_{DD} and AV_{SS} signals are available only in 28-pin packages with ADC. They are replaced by PB6 and PB7 on 28-pin packages without ADC.

Pin Characteristics

Table 3 describes the characteristics for each pin available on the Z8 Encore! XP F082A Series 20- and 28-pin devices. Data in Table 3 is sorted alphabetically by the pin symbol mnemonic.

Table 4 on page 14 provides detailed information about the characteristics for each pin available on the Z8 Encore! XP F082A Series 8-pin devices.

Note:

All six I/O pins on the 8-pin packages are 5 V-tolerant (unless the pull-up devices are enabled). The column in Table 3 below describes 5 V-tolerance for the 20- and 28-pin packages only.

Table 3. Pin Characteristics (20- and 28-pin Devices)

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull- up or Pull-down	Schmitt- Trigger Input	Open Drain Output	5 V Tolerance
AVDD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AVSS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
DBG	I/O	I	N/A	Yes	Yes	Yes	Yes	No
PA[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PA[7:2] unless pullups enabled
PB[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PB[7:6] unless pullups enabled

function). (Push-pull output)

1 = The source current for the associated pin is disabled (open-drain mode).

Port A–D High Drive Enable Sub-Registers

The Port A–D High Drive Enable sub-register (Table 22) is accessed through the Port A–D Control register by writing 04H to the Port A–D Address register. Setting the bits in the Port A–D High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–D High Drive Enable sub-register affects the pins directly and, as a result, alternate functions are also affected.

Table 22. Port A–D High Drive Enable Sub-Registers (PxHDE)

BITS	7	6	5	4	3	2	1	0			
FIELD	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR	lf 04H i	If 04H in Port A–D Address Register, accessible through the Port A–D Control Register									

PHDE[7:0]—Port High Drive Enabled

0 = The Port pin is configured for standard output current drive.

1 = The Port pin is configured for high output current drive.

Port A–D Stop Mode Recovery Source Enable Sub-Registers

The Port A–D Stop Mode Recovery Source Enable sub-register (Table 23) is accessed through the Port A–D Control register by writing 05H to the Port A–D Address register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable sub-registers to 1 configures the specified Port pins as a Stop Mode Recovery source. During STOP mode, any logic transition on a Port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery.

BITS	7	6	5	4	3	2	1	0		
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	lf 05H i	If 05H in Port A–D Address Register, accessible through the Port A–D Control Register								

PSMRE[7:0]—Port Stop Mode Recovery Source Enabled

0 = The Port pin is not configured as a Stop Mode Recovery source. Transitions on this pin

Table 31. LED Drive Level Low Register (LEDLVLL)

BITS	7	6	5	4	3	2	1	0		
FIELD	LEDLVLL[7:0]									
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F84H								

LEDLVLL[7:0]—LED Level Low Bit

{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.

00 = 3 mA01 = 7 mA10 = 13 mA

11 = 20 mA

56

Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watchdog Timer (see Watchdog Timer on page 91)
	003AH	Primary Oscillator Fail Trap (not an interrupt)
	003CH	Watchdog Oscillator Fail Trap (not an interrupt)
	0006H	Illegal Instruction Trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	UART 0 receiver
	0010H	UART 0 transmitter
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A Pin 7, selectable rising or falling input edge or LVD (see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23)
	001AH	Port A Pin 6, selectable rising or falling input edge or Comparator Output
	001CH	Port A Pin 5, selectable rising or falling input edge
	001EH	Port A Pin 4, selectable rising or falling input edge
	0020H	Port A Pin 3, selectable rising or falling input edge
	0022H	Port A Pin 2, selectable rising or falling input edge
	0024H	Port A Pin 1, selectable rising or falling input edge
	0026H	Port A Pin 0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C Pin 3, both input edges
	0032H	Port C Pin 2, both input edges

Table 32. Trap and Interrupt Vectors in Order of Priority

Priority	Program Memory Vector Address	Interrupt or Trap Source
	0034H	Port C Pin 1, both input edges
Lowest	0036H	Port C Pin 0, both input edges
	0038H	Reserved

Table 32. Trap and Interrupt Vectors in Order of Priority (Continued)

Architecture

Figure 8 displays the interrupt controller block diagram.

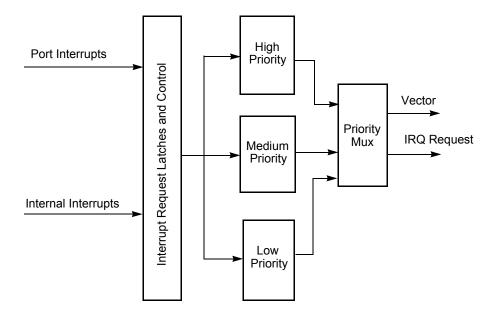


Figure 8. Interrupt Controller Block Diagram

Operation

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables and disables interrupts.

zilog

Caution: To avoid re-triggerings of the Watchdog Timer interrupt after exiting the associated interrupt service routine, it is recommended that the service routine continues to read from the RSTSTAT register until the WDT bit is cleared as given in the following coding sample:

CLEARWDT: LDX r0, RSTSTAT ; read reset status register to clear wdt bit BTJNZ 5, r0, CLEARWDT ; loop until bit is cleared

Interrupt Control Register Definitions

For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail Trap, and the Watchdog Oscillator Fail Trap, the interrupt control registers enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) register (Table 33) stores the interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 0 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0		
FIELD	Reserved	T1I	TOI	U0RXI	U0TXI	Reserved	Reserved	ADCI		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FC0H								

Table 33. Interrupt Request 0 Register (IRQ0)

Reserved—Must be 0.

T1I—Timer 1 Interrupt Request

- 0 = No interrupt request is pending for Timer 1.
- 1 = An interrupt request from Timer 1 is awaiting service.

T0I—Timer 0 Interrupt Request

- 0 = No interrupt request is pending for Timer 0.
- 1 = An interrupt request from Timer 0 is awaiting service.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COUNTER mode.
 - Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

COUNTER Mode Timer Input Transitions = Current Count Value-Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPAR-ATOR COUNTER mode, the prescaler is disabled.

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency. Further, the high or low state of the comparator output signal pulse must be no less than twice the system clock period. A shorter pulse may not be captured.

After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

zilog

BITS	7	6	5	4	3	2	1	0	
FIELD	INFO_EN		PAGE						
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		FF9H							

Table 80. Flash Page Select Register (FPS)

INFO_EN—Information Area Enable

0 = Information Area us not selected.

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase and page unlocking. Program Memory Address[15:9] = PAGE[6:0]. For the Z8F08xx devices, the upper 3 bits must be zero. For the Z8F04xx devices, the upper 4 bits must be zero. For Z8F02xx devices, the upper 5 bits must always be 0. For the Z8F01xx devices, the upper 6 bits must always be 0.

Flash Sector Protect Register

The Flash Sector Protect (FPROT) register is shared with the Flash Page Select Register. When the Flash Control Register is written with 73H followed by 5EH, the next write to this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Register.

This register selects one of the 8 available Flash memory sectors to be protected. The reset state of each Sector Protect bit is an unprotected state. After a sector is protected by setting its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared) without powering down the device.

Table 81. Flash S	ector Protect	Register (FPROI)	

BITS	7	6	5	4	3	2	1	0		
FIELD	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FF9H								

zilog[°]

Option Bit Types

User Option Bits

The user option bits are contained in the first two bytes of program memory. User access to these bits has been provided because these locations contain application-specific device configurations. The information contained here is lost when page 0 of the program memory is erased.

Trim Option Bits

The trim option bits are contained in the information page of the Flash memory. These bits are factory programmed values required to optimize the operation of onboard analog circuitry and cannot be permanently altered. Program Memory may be erased without endangering these values. It is possible to alter working values of these bits by accessing the Trim Bit Address and Data Registers, but these working values are lost after a power loss or any other reset event.

There are 32 bytes of trim data. To modify one of these values the user code must first write a value between 00H and 1FH into the Trim Bit Address Register. The next write to the Trim Bit Data register changes the working value of the target trim data byte.

Reading the trim data requires the user code to write a value between 00H and 1FH into the Trim Bit Address Register. The next read from the Trim Bit Data register returns the working value of the target trim data byte.

The trim address range is from information address 20-3F only. The remainder of the information page is not accessible through the trim bit address and data registers.

Calibration Option Bits

The calibration option bits are also contained in the information page. These bits are factory programmed values intended for use in software correcting the device's analog performance. To read these values, the user code must employ the LDC instruction to access the information area of the address space as defined in See Flash Information Area on page 17.

Serialization Bits

As an optional feature, Zilog[®] is able to provide factory-programmed serialization. For serialized products, the individual devices are programmed with unique serial numbers. These serial numbers are binary values, four bytes in length. The numbers increase in size with each device, but gaps in the serial sequence may exist.

These serial numbers are stored in the Flash information page (see Reading the Flash Information Page on page 155 and Serialization Data on page 165 for more details) and are unaffected by mass erasure of the device's Flash memory.

Note:

168

If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, this command reads and discards one byte.

DBG \leftarrow 12H DBG \leftarrow 1-5 byte opcode

On-Chip Debugger Control Register Definitions

OCD Control Register

The OCD Control register controls the state of the On-Chip Debugger. This register is used to enter or exit DEBUG mode and to enable the BRK instruction. It can also reset the Z8 Encore! XP[®] F082A Series device.

A reset and stop function can be achieved by writing \$1H to this register. A reset and go function can be achieved by writing \$1H to this register. If the device is in DEBUG mode, a run function can be implemented by writing \$0H to this register.

Table 106. OCD Control Register (OCDCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	DBGMODE	BRKEN	DBGACK		RST			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R	R	R/W

DBGMODE—DEBUG Mode

The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and Breakpoints are enabled. If the Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0.

0 = The Z8 Encore! XP F082A Series device is operating in NORMAL mode.

1 = The Z8 Encore! XP F082A Series device is in DEBUG mode.

BRKEN—Breakpoint Enable

This bit controls the behavior of the BRK instruction (opcode 00H). By default, Breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1, when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1.

0 = Breakpoints are disabled.

1 = Breakpoints are enabled.

204

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 118. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses

Table 119. CPU Control Instructions

Mnemonic	Operands	Instruction
ATM	_	Atomic Execution
CCF	_	Complement Carry Flag
DI	_	Disable Interrupts
EI	_	Enable Interrupts
HALT	_	Halt Mode
NOP	_	No Operation
RCF	_	Reset Carry Flag

zilog[°]

2	n	0
4	υ	3

Assembly	Symbolic	Addres	s Mode	Opcode(s)			Fla	ags	Fetch	Instr.		
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
COM dst	$dst \gets \simdst$	R		60	-	*	*	0	-	-	2	2
		IR		61	-						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	-	-	2	3
		r	lr	A3	-						2	4
		R	R	A4	-						3	3
		R	IR	A5	-						3	4
		R	IM	A6	-						3	3
		IR	IM	A7	-						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	-	-	3	3
		r	lr	1F A3	-						3	4
		R	R	1F A4	-						4	3
		R	IR	1F A5	-						4	4
		R	IM	1F A6	-						4	3
		IR	IM	1F A7	-						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	_	_	5	3
		ER	IM	1F A9	-						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	_	_	4	3
		ER	IM	A9	-						4	3
DA dst	$dst \gets DA(dst)$	R		40	*	*	*	Х	_	_	2	2
		IR		41	-						2	3
DEC dst	$dst \gets dst \text{ - } 1$	R		30	_	*	*	*	_	_	2	2
		IR		31	-						2	3
DECW dst	$dst \gets dst \text{ - } 1$	RR		80	_	*	*	*	_	_	2	5
		IRR		81	-						2	6
DI	$IRQCTL[7] \leftarrow 0$			8F	_	_	_	_	_	_	1	2
DJNZ dst, RA	$\begin{array}{l} dst \leftarrow dst - 1 \\ if \ dst \neq 0 \\ PC \leftarrow PC + X \end{array}$	r		0A-FA	_	_	_	_	_	_	2	3
EI	$IRQCTL[7] \leftarrow 1$			9F	_	-	_	_	-	-	1	2
Flags Notation:	* = Value is a function – = Unaffected X = Undefined	of the result	of the o	peration.		Re Se)			

Table 124. eZ8 CPU Instruction Summary (Continued)

zilog

22

Table 126. Absolute Maximum Ratings (Continued)

Parameter	Minimum Maximum	Units	Notes
28-pin Packages Maximum Ratings at 0 °C to 70 °C			
Total power dissipation	450	mW	
Maximum current into V_{DD} or out of V_{SS}	125	mA	

Operating temperature is specified in DC Characteristics.

This voltage applies to all pins except the following: V_{DD}, AV_{DD}, pins supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins but V_{DD}.

2. This voltage applies to pins on the 20-/28-pin packages supporting analog input (Port B[5:0], Port C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1).

DC Characteristics

Table 127 lists the DC characteristics of the Z8 Encore! $XP^{\mathbb{R}}$ F082A Series products. All voltages are referenced to V_{SS} , the primary system ground.

Table 127. DC Characteristics	
-------------------------------	--

			40 °C to + therwise	105 °C specified)		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{DD}	Supply Voltage	2.7	_	3.6	V	
V _{IL1}	Low Level Input Voltage	-0.3	_	0.3*V _{DD}	V	
V _{IH1}	High Level Input Voltage	0.7*V _{DD}	-	5.5	V	For all input pins without analog or oscillator function. For all signal pins on the 8-pin devices. Programmable pull-ups must also be disabled.
V _{IH2}	High Level Input Voltage	0.7*V _{DD}	-	V _{DD} +0.3	V	For those pins with analog or oscillator function (20-/28-pin devices only), or when programmable pull-ups are enabled.
V _{OL1}	Low Level Output Voltage	-	-	0.4	V	I _{OL} = 2 mA; V _{DD} = 3.0 V High Output Drive disabled.
V _{OH1}	High Level Output Voltage	2.4	-	_	V	I _{OH} = -2 mA; V _{DD} = 3.0 V High Output Drive disabled.

230

	V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C (unless otherwise stated)					
Parameter	Minimum Typical		Maximum	Units	Notes	
Flash Byte Read Time	100	-	-	ns		
Flash Byte Program Time	20	_	40	μs		
Flash Page Erase Time	10	-	-	ms		
Flash Mass Erase Time	200	-	-	ms		
Writes to Single Address Before Next Erase	-	_	2			
Flash Row Program Time	-	_	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.	
Data Retention	100	_	_	years	25 °C	
Endurance	10,000	_	_	cycles	Program/erase cycles	

Table 132. Flash Memory Electrical Characteristics and Timing

Table 133. Watchdog Timer Electrical Characteristics and Timing

V _{DD} = 2.7 V to 3.6 V	
T _A = -40 °C to +105 °C	
(unless otherwise stated)	

Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency		10		kHz	
F _{WDT}	WDT Oscillator Error			<u>+</u> 50	%	
T _{WDTCAL}	WDT Calibrated Timeout	0.98	1	1.02	S	V _{DD} = 3.3 V; T _A = 30 °C
		0.70	1	1.30	S	V_{DD} = 2.7 V to 3.6 V T _A = 0 °C to 70 °C
		0.50	1	1.50	S	V_{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C

zilog

		V _{DD}	V _{DD} = 2.7 V to 3.6 V			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
T _{AERR}	Temperature Error		<u>+</u> 0.5	<u>+</u> 2	°C	Over the range +20 °C to +30 °C (as measured by ADC) ¹
			<u>+</u> 1	<u>+</u> 5	°C	Over the range +0 °C to +70 °C (as measured by ADC)
			<u>+</u> 2	<u>+</u> 7	°C	Over the range +0 °C to +105 °C (as measured by ADC)
			<u>+</u> 7		°C	Over the range -40 °C to +105 °C (as measured by ADC)
T _{AERR}	Temperature Error		TBD		°C	Over the range -40 °C to +105 °C (as measured by comparator)
t _{WAKE}	Wakeup Time		80	100	μs	Time required for Temperature Sensor to stabilize after enabling

Table 138. Temperature Sensor Electrical Characteristics

¹Devices are factory calibrated at for maximal accuracy between +20 °C and +30 °C, so the sensor is maximally accurate in that range. User re-calibration for a different temperature range is possible and increases accuracy near the new calibration point.

General Purpose I/O Port Input Data Sample Timing

Figure 34 displays timing of the GPIO Port input sampling. The input value on a GPIO Port pin is sampled on the rising edge of the system clock. The Port value is available to the eZ8 CPU on the second rising clock edge following the change of the Port value.

265

L LD 205 LDC 205 LDCI 204, 205 LDE 205 LDEI 204, 205 LDX 205 LEA 205 load 205 load constant 204 load constant to/from program memory 205 load constant with auto-increment addresses 205 load effective address 205 load external data 205 load external data to/from data memory and auto-increment addresses 204 load external to/from data memory and auto-increment addresses 205 load using extended addressing 205 logical AND 205 logical AND/extended addressing 205 logical exclusive OR 206 logical exclusive OR/extended addressing 206 logical instructions 205 logical OR 205 logical OR/extended addressing 206 low power modes 33

Μ

master interrupt enable 57 memory data 17 program 15 mode CAPTURE 85, 86 CAPTURE/COMPARE 85 CONTINUOUS 84 COUNTER 84 GATED 85 ONE-SHOT 84 PWM 85 modes 85 MULT 203 multiply 203 multiprocessor mode, UART 103

Ν

NOP (no operation) 204 notation b 201 cc 201 DA 201 ER 201 IM 201 IR 201 Ir 201 IRR 201 Irr 201 p 201 R 201 r 201 RA 201 RR 201 rr 201 vector 201 X 201 notational shorthand 201

O OCD

architecture 173 auto-baud detector/generator 176 baud rate limits 177 block diagram 173 breakpoints 178 commands 179 control register 184 data format 176 DBG pin to RS-232 Interface 174 debug mode 175 debugger break 206 interface 174 serial errors 177 status register 185