E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f041ash020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal Descriptions

Table 2 describes the Z8 Encore! XP F082A Series signals. See Pin Configurations on page 9 to determine the signals available for the specific package styles.

Signal Mnemonic	I/O	Description					
General-Purpose I/O Ports A–D							
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.					
PB[7:0]	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.					
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.					
PD[0]	I/O	Port D. This pin is used for general-purpose output only.					
Note: PB6 and PB7 ar replaced by AV _E		vailable in 28-pin packages without ADC. In 28-pin packages with ADC, they are $V_{\rm SS}.$					
UART Controllers							
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.					
RXD0	Ι	Receive Data. This signal is the receive input for the UART and IrDA.					
CTS0	Ι	Clear To Send. This signal is the flow control input for the UART.					
DE	0	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 register. The DE signal may be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.					
Timers							
T0OUT/T1OUT	0	Timer Output 0–1. These signals are outputs from the timers.					
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM Dual Output mode.					
T0IN/T1IN	Ι	Timer Input 0–1. These signals are used as the capture, gating and counter inputs.					
Comparator							
CINP/CINN	Ι	Comparator Inputs. These signals are the positive and negative inputs to the comparator.					
COUT	0	Comparator Output.					

Table 2. Signal Descriptions

zilog[°]

addresses outside the available Flash memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 5 describes the Program Memory Maps for the Z8 Encore! XP F082A Series products.

Program Memory Address (Hex)	Function				
Z8F082A and Z8F081A Products					
0000–0001	Flash Option Bits				
0002–0003	Reset Vector				
0004–0005	WDT Interrupt Vector				
0006–0007	Illegal Instruction Trap				
0008–0037	Interrupt Vectors*				
0038–0039	Reserved				
003A-003D	Oscillator Fail Trap Vectors				
003E-1FFF	Program Memory				
Z8F042A and Z8F041A Products					
0000–0001	Flash Option Bits				
0002–0003	Reset Vector				
0004–0005	WDT Interrupt Vector				
0006–0007	Illegal Instruction Trap				
0008–0037	Interrupt Vectors*				
0038–0039	Reserved				
003A-003D	Oscillator Fail Trap Vectors				
003E-0FFF	Program Memory				

Table 5. Z8 Encore! XP F082A Series Program Memory Maps

Zilog ₁₇

Program Memory Address (Hex)	Function
Z8F022A and Z8F021A Products	
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-07FF	Program Memory
Z8F012A and Z8F011A Products	
0000–0001	Flash Option Bits
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–0039	Reserved
003A-003D	Oscillator Fail Trap Vectors
003E-03FF	Program Memory
* See Table 32 on page 56 for a list of the	interrupt vectors.

Table 5. Z8 Encore! XP F082A Series Program Memory Maps (Continued)

Data Memory

The Z8 Encore! XP F082A Series does not use the eZ8 CPU's 64 KB Data Memory address space.

Flash Information Area

Table 6 on page 18 describes the Z8 Encore! XP F082A Series Flash Information Area. This 128 B Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Infor-

HALT Mode

Executing the eZ8 CPU's HALT instruction places the device into HALT mode, which powers down the CPU but leaves all other peripherals active. In HALT mode, the operating characteristics are:

- Primary oscillator is enabled and continues to operate.
- System clock is enabled and continues to operate.
- eZ8 CPU is stopped.
- Program counter (PC) stops incrementing.
- Watchdog Timer's internal RC oscillator continues to operate.
- If enabled, the Watchdog Timer continues to operate.
- All other on-chip peripherals continue to operate, if enabled.

The eZ8 CPU can be brought out of HALT mode by any of the following operations:

- Interrupt
- Watchdog Timer time-out (interrupt or reset)
- Power-On Reset
- Voltage Brownout reset
- External **RESET** pin assertion

To minimize current in HALT mode, all GPIO pins that are configured as inputs must be driven to one of the supply rails (V_{CC} or GND).

Peripheral-Level Power Control

In addition to the STOP and HALT modes, it is possible to disable each peripheral on each of the Z8 Encore! XP F082A Series devices. Disabling a given peripheral minimizes its power consumption.

Power Control Register Definitions

The following sections define the Power Control registers.

Power Control Register 0

Each bit of the following registers disables a peripheral block, either by gating its system clock input or by removing power from the block. The default state of the low-power

zilog[®]

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT*	Timer 0 Input/Timer 0 Output Complement	N/A
		Reserved		-
	PA1	TOOUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
		Reserved		-
	PA3	CTS0	UART 0 Clear to Send	-
		Reserved		-
	PA4	RXD0/IRRX0	UART 0/IrDA 0 Receive Data	-
		Reserved		-
	PA5	TXD0/IRTX0	UART 0/IrDA 0 Transmit Data	-
		Reserved		-
	PA6	T1IN/T1OUT*	Timer 1 Input/Timer 1 Output Complement	-
		Reserved		-
	PA7	T1OUT	Timer 1 Output	-
		Reserved		-

Table 14. Port Alternate Function Mapping (Non 8-Pin Parts)

Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in Port A–D Alternate Function Sub-Registers on page 47 automatically enables the associated alternate function.

* Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in Timer Pin Signal Operation on page 82.

Priority	Program Memory Vector Address	Interrupt or Trap Source
	0034H	Port C Pin 1, both input edges
Lowest	0036H	Port C Pin 0, both input edges
	0038H	Reserved

Table 32. Trap and Interrupt Vectors in Order of Priority (Continued)

Architecture

Figure 8 displays the interrupt controller block diagram.

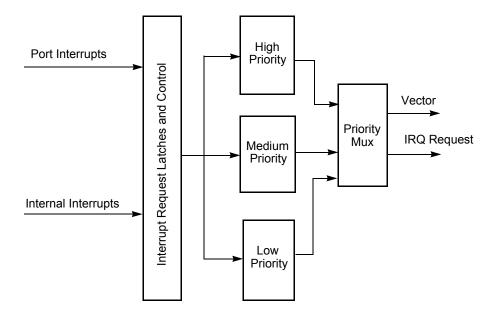


Figure 8. Interrupt Controller Block Diagram

Operation

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables and disables interrupts.

zilog^{*}

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

Follow the steps below for configuring a timer for PWM SINGLE OUTPUT mode and initiating the PWM operation:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for PWM SINGLE OUTPUT mode.
 - Set the prescale value.
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

 $PWM Period (s) = \frac{Reload Value \times Prescale}{System Clock Frequency (Hz)}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, use the ONE-SHOT mode equation to determine the first PWM time-out period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$

If TPOL is set to 1, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{PWM Value}{Reload Value} \times 100$

Watchdog Timer Refresh

When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the Watchdog Timer Reload registers. Counting resumes following the reload operation.

When the Z8 Encore! XP[®] F082A Series devices are operating in DEBUG mode (using the on-chip debugger), the Watchdog Timer is continuously refreshed to prevent any Watchdog Timer time-outs.

Watchdog Timer Time-Out Response

The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash Option Bit determines the time-out response of the Watchdog Timer. For information on programming the WDT_RES Flash Option Bit, see Flash Option Bits on page 153.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Reset Status (RSTSTAT) register (see Reset Status Register on page 30). If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter is not automatically returned to its Reload Value.

The Reset Status (RSTSTAT) register must be read before clearing the WDT interrupt. This read clears the WDT timeout Flag and prevents further WDT interrupts from immediately occurring.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP F082A Series devices are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Reset Status (RSTSTAT) register are set to 1 following a WDT time-out in STOP mode. For more information on Stop Mode Recovery, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address.

1 = Received data does not generate an interrupt request to the Interrupt Controller. Only receiver errors generate an interrupt request.

IREN—Infrared Encoder/Decoder Enable

0 =Infrared Encoder/Decoder is disabled. UART operates normally.

1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through the Infrared Encoder/Decoder.

UART Status 0 Register

The UART Status 0 (UxSTAT0) and Status 1(UxSTAT1) registers (Table 63 and Table 64) identify the current UART operating configuration and status.

Table 63. UART Status 0 Register (U0STAT0)

BITS	7	6	5	4	3	2	1	0	
FIELD	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS	
RESET	0	0	0	0	0	1	1	Х	
R/W	R	R	R	R	R	R	R	R	
ADDR		F41H							

RDA—Receive Data Available

This bit indicates that the UART Receive Data register has received data. Reading the UART Receive Data register clears this bit.

0 = The UART Receive Data register is empty.

1 = There is a byte in the UART Receive Data register.

PE—Parity Error

This bit indicates that a parity error has occurred. Reading the UART Receive Data register clears this bit.

0 = No parity error has occurred.

1 = A parity error has occurred.

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is received and the UART Receive Data register has not been read. If the RDA bit is reset to 0, reading the UART Receive Data register clears this bit.

- 0 = No overrun error occurred.
- 1 = An overrun error occurred.

FE—Framing Error

This bit indicates that a framing error (no Stop bit following data reception) was detected. Reading the UART Receive Data register clears this bit.

MPRX—Multiprocessor Receive

Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Transmit Data Register

Data bytes written to the UART Transmit Data (UxTXD) register (Table 65) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

BITS	7	6	5	4	3	2	1	0
FIELD		TXD						
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
ADDR		F40H						

Table 65. UART Transmit Data Register (U0TXD)

TXD-Transmit Data

UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data (UxRXD) register (Table 66). The read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

Table 66. UART Receive Data Register (U0RXD)

BITS	7	6	5	4	3	2	1	0
FIELD	RXD							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
ADDR	F40H							
X = Undef	X = Undefined.							

RXD—Receive Data

UART receiver data byte from the RXDx pin

zilog ₁₂₃

can output values across the entire 11-bit range, from -1024 to +1023. In SINGLE-ENDED mode, the output generally ranges from 0 to +1023, but offset errors can cause small negative values.

The ADC registers actually return 13 bits of data, but the two LSBs are intended for compensation use only. When the software compensation routine is performed on the 13 bit raw ADC value, two bits of resolution are lost because of a rounding error. As a result, the final value is an 11-bit number.

Hardware Overflow

When the hardware overflow bit (OVF) is set in ADC Data Low Byte (ADCD_L) register, all other data bits are invalid. The hardware overflow bit is set for values greater than V_{ref} and less than $-V_{ref}$ (DIFFERENTIAL mode).

Automatic Powerdown

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered down. From this powerdown state, the ADC requires 40 system clock cycles to power up. The ADC powers up when a conversion is requested by the ADC Control register.

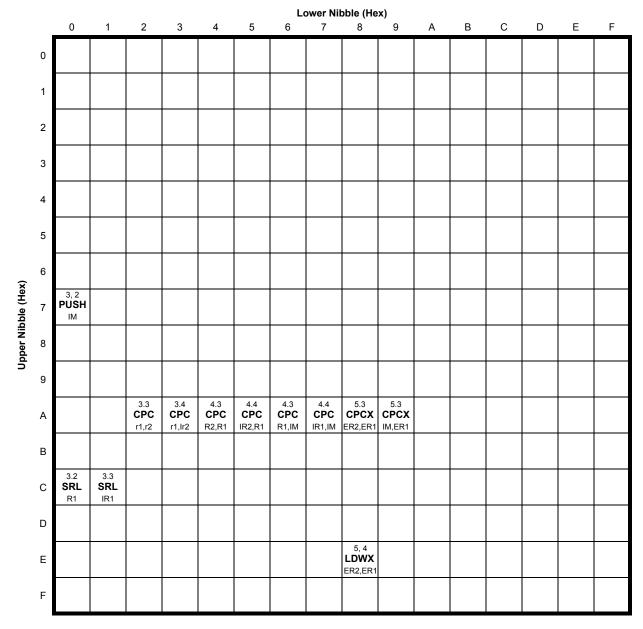
Single-Shot Conversion

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. Follow the steps below for setting up the ADC and initiating a single-shot conversion:

- 1. Enable the desired analog inputs by configuring the general-purpose I/O pins for alternate analog function. This configuration disables the digital input and output drivers.
- 2. Write the ADC Control/Status Register 1 to configure the ADC.
 - Write to BUFMODE [2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, as well as unbuffered or buffered mode.
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is. contained in the ADC Control Register 0.
- 3. Write to the ADC Control Register 0 to configure the ADC and begin the conversion. The bit fields in the ADC Control register can be written simultaneously (the ADC can be configured and enabled with the same write instruction):
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Clear CONT to 0 to select a single-shot conversion.

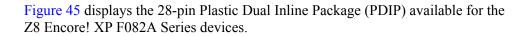
204

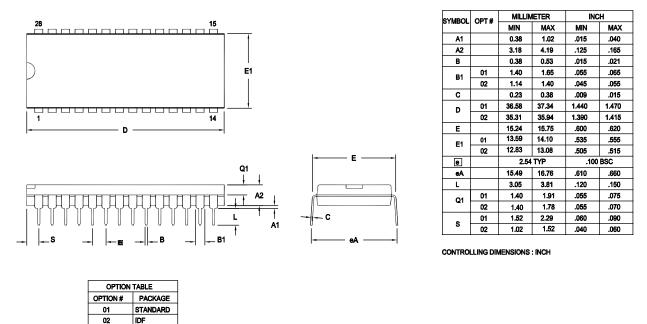
Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing


Table 118. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses

Table 119. CPU Control Instructions


Mnemonic	Operands	Instruction					
ATM	_	Atomic Execution					
CCF	_	Complement Carry Flag					
DI	_	Disable Interrupts					
EI	_	Enable Interrupts					
HALT	_	Halt Mode					
NOP	_	No Operation					
RCF	_	Reset Carry Flag					



zilog ₂₄₇

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 45. 28-Pin Plastic Dual Inline Package (PDIP)

zilog | 249

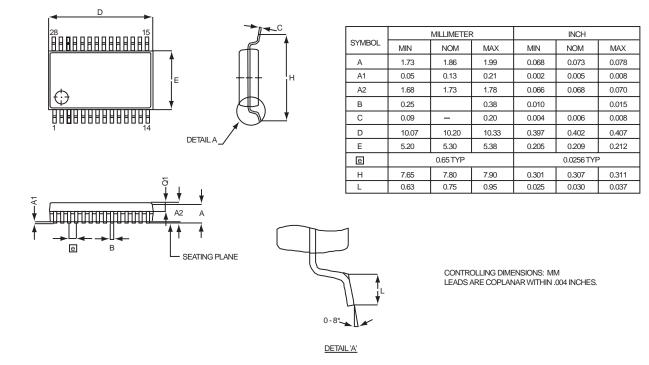


Figure 47 displays the 28-pin Small Shrink Outline Package (SSOP) available for the Z8 Encore! XP F082A Series devices.

Figure 47. 28-Pin Small Shrink Outline Package (SSOP)

zilog 257

Part Number	Flash	RAM	SUVN	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description	
Z8 Encore! XP [®] F082A Series with 1 KB Flash, 10-Bit Analog-to-Digital Converter												
Standard Temperatu	re: 0 °C	to 70 °C	;									
Z8F012APB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package	
Z8F012AQB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package	
Z8F012ASB020SC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package	
Z8F012ASH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package	
Z8F012AHH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package	
Z8F012APH020SC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package	
Z8F012ASJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package	
Z8F012AHJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package	
Z8F012APJ020SC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package	
Extended Temperatu	re: -40 °	C to 10	5 °C									
Z8F012APB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	PDIP 8-pin package	
Z8F012AQB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	QFN 8-pin package	
Z8F012ASB020EC	1 KB	256 B	16 B	6	14	2	4	1	1	1	SOIC 8-pin package	
Z8F012ASH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SOIC 20-pin package	
Z8F012AHH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	SSOP 20-pin package	
Z8F012APH020EC	1 KB	256 B	16 B	17	20	2	7	1	1	1	PDIP 20-pin package	
Z8F012ASJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SOIC 28-pin package	
Z8F012AHJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	SSOP 28-pin package	
Z8F012APJ020EC	1 KB	256 B	16 B	23	20	2	8	1	1	1	PDIP 28-pin package	