E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f042ahh020sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Sector Protect Register 1 Flash Frequency High and Low Byte Registers 1	
Flash Option Bits	53
Operation11Option Bit Configuration By Reset11Option Bit Types11Reading the Flash Information Page11Flash Option Bit Control Register Definitions11Trim Bit Address Register11Trim Bit Data Register11Flash Option Bit Address Space11Flash Program Memory Address 0000H11Flash Program Memory Address 0001H11Trim Bit Address Space11Trim Bit Address 0000H11Trim Bit Address 0000H11Trim Bit Address 0000H11Trim Bit Address 0001H11Trim Bit Address 0002H11Trim Bit Address 0003H11Trim Bit Address 0004H11	53 54 55 55 56 56 56 58 58 58 58 59 59 59
Zilog Calibration Data 10 ADC Calibration Data 10 Temperature Sensor Calibration Data 10 Watchdog Timer Calibration Data 10 Serialization Data 10 Randomized Lot Identifier 10	61 64 64 65 66
Non-Volatile Data Storage 10	
NVDS Code Interface 10 Byte Write 10 Byte Read 11	69 70 71
On-Chip Debugger1	73
	74 74

zilog[°]

Table 3. Pin Characteristics (20- and 28-pin Devices) (Continued)

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull- up or Pull-down	Schmitt- Trigger Input	Open Drain Output	5 V Tolerance
PC[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PC[7:3] unless pullups enabled
RESET/PD0	I/O	I/O <u>(defaults</u> to RESET)	Low (in Reset mode)	Yes (PD0 only)	Programmable for PD0 <u>; always</u> on for RESET	Yes	Programmable for PD0 <u>; always</u> on for RESET	Yes, unless pullups enabled
VDD	N/A	N/A	N/A	N/A			N/A	N/A
VSS	N/A	N/A	N/A	N/A			N/A	N/A

Note: *PB6 and PB7 are available only in those devices without ADC.*

Table 4. Pin Characteristics (8-Pin Devices)

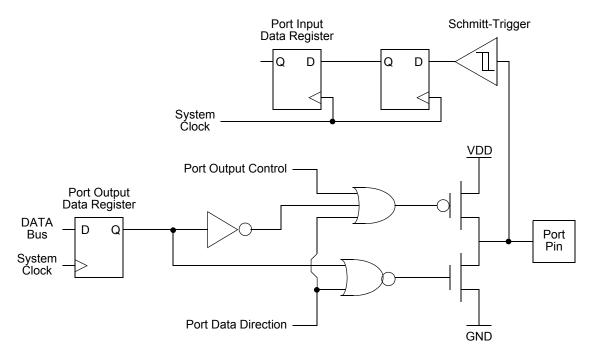
Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull- up or Pull-down	Schmitt- Trigger Input	Open Drain Output	5 V Tolerance
PA0/DBG	I/O	I (but can change during reset if key sequence detected)	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
PA1	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
RESET/PA2	I/O	I/O <u>(defaults</u> to RESET)	Low (in Reset mode)	Yes	Programmable for PA2; always on for RESET	Yes	Programmable for PA2; always on for RESET	Yes, unless pull-ups enabled
PA[5:3]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	Yes, unless pull-ups enabled
V _{DD}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
V _{SS}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

14

Zilog ₁₉

Register Map

Table 7 provides the address map for the Register File of the Z8 Encore! XP[®] F082A Series devices. Not all devices and package styles in the Z8 Encore! XP F082A Series support the ADC, or all of the GPIO Ports. Consider registers for unimplemented peripherals as Reserved.


Table 7. Register File Address Map

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
General-Purpo	se RAM			
Z8F082A/Z8F0	81A Devices			
000–3FF	General-Purpose Register File RAM	_	XX	
400–EFF	Reserved	—	XX	
Z8F042A/Z8F0	41A Devices			
000–3FF	General-Purpose Register File RAM	_	XX	
400–EFF	Reserved	_	XX	
Z8F022A/Z8F0	21A Devices			
000–1FF	General-Purpose Register File RAM	_	XX	
200–EFF	Reserved	—	XX	
Z8F012A/Z8F0	11A Devices			
000–0FF	General-Purpose Register File RAM	_	XX	
100–EFF	Reserved	—	XX	
Timer 0				
F00	Timer 0 High Byte	T0H	00	87
F01	Timer 0 Low Byte	TOL	01	87
F02	Timer 0 Reload High Byte	T0RH	FF	88
F03	Timer 0 Reload Low Byte	T0RL	FF	88
F04	Timer 0 PWM High Byte	T0PWMH	00	88
F05	Timer 0 PWM Low Byte	T0PWML	00	89
F06	Timer 0 Control 0	TOCTLO	00	83
F07	Timer 0 Control 1	T0CTL1	00	84
Timer 1				
F08	Timer 1 High Byte	T1H	00	87
F09	Timer 1 Low Byte	T1L	01	87
F0A	Timer 1 Reload High Byte	T1RH	FF	88

Architecture

Figure 7 displays a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength is not displayed.

Figure 7. GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins can be used for general-purpose I/O and access to on-chip peripheral functions such as the timers and serial communication devices. The Port A–D Alternate Function sub-registers configure these pins for either General-Purpose I/O or alternate function operation. When a pin is configured for alternate function, control of the port pin direction (input/output) is passed from the Port A–D Data Direction registers to the alternate function assigned to this pin. Table 14 on page 41 lists the alternate functions possible with each port pin. For those pins with more one alternate function, the alternate function is defined through Alternate Function Sets sub-registers AFS1 and AFS2.

The crystal oscillator functionality is not controlled by the GPIO block. When the crystal oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1 is overridden. In that case, those pins function as input and output for the crystal oscillator.

Port A–D Address Registers

The Port A–D Address registers select the GPIO Port functionality accessible through the Port A–D Control registers. The Port A–D Address and Control registers combine to provide access to all GPIO Port controls (Table 17).

Table 17. Port A–D GPIO Address Registers (PxADDR)

BITS	7	6	5	4	3	2	1	0	
FIELD		PADDR[7:0]							
RESET		00H							
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR		FD0H, FD4H, FD8H, FDCH							

PADDR[7:0]—Port Address

The Port Address selects one of the sub-registers accessible through the Port Control register.

PADDR[7:0]	Port Control sub-register accessible using the Port A–D Control Registers
00H	No function. Provides some protection against accidental Port reconfiguration.
01H	Data Direction.
02H	Alternate Function.
03H	Output Control (Open-Drain).
04H	High Drive Enable.
05H	Stop Mode Recovery Source Enable.
06H	Pull-up Enable.
07H	Alternate Function Set 1.
08H	Alternate Function Set 2.
09H–FFH	No function.

Port A–D Control Registers

The Port A–D Control registers set the GPIO port operation. The value in the corresponding Port A–D Address register determines which sub-register is read from or written to by a Port A–D Control register transaction (Table 18).

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COUNTER mode.
 - Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

COUNTER Mode Timer Input Transitions = Current Count Value-Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPAR-ATOR COUNTER mode, the prescaler is disabled.

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency. Further, the high or low state of the comparator output signal pulse must be no less than twice the system clock period. A shorter pulse may not be captured.

After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

110 = 64 cycles delay 111 = 128 cycles delay

INPCAP—Input Capture Event

This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture Event.

0 = Previous timer interrupt is not a result of Timer Input Capture Event

1 = Previous timer interrupt is a result of Timer Input Capture Event

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode (Table 49).

Table 49. Timer 0–1 Control Register 1 (TxCTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	TPOL	PRES TMODE					
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W R/W R/W R/W R/W				
ADDR		F07H, F0FH						

TEN-Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL—Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

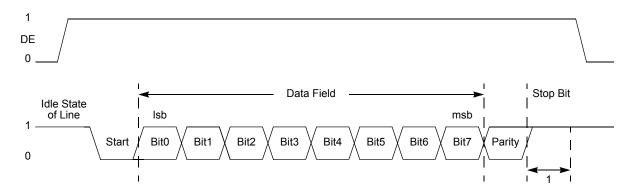
ONE-SHOT mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

CONTINUOUS mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

COUNTER mode


If the timer is enabled the Timer Output signal is complemented after timer reload.

0 = Count occurs on the rising edge of the Timer Input signal.

1 = Count occurs on the falling edge of the Timer Input signal.

zilog[®]

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts when a byte is written to the UART Transmit Data register. The Driver Enable signal asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the final Stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

$$\left(\frac{1}{\text{Baud Rate (Hz)}}\right) \le \text{DE to Start Bit Setup Time (s)} \le \left(\frac{2}{\text{Baud Rate (Hz)}}\right)$$

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit of data out. The Transmit Data register can now be written with the next character to

105

MPMD[1:0]—MULTIPROCESSOR Mode

If MULTIPROCESSOR (9-bit) mode is enabled,

00 = The UART generates an interrupt request on all received bytes (data and address).

01 = The UART generates an interrupt request only on received address bytes.

10 = The UART generates an interrupt request when a received address byte matches the value stored in the Address Compare Register and on all successive data bytes until an address mismatch occurs.

11 = The UART generates an interrupt request on all received data bytes for which the most recent address byte matched the value in the Address Compare Register.

MPEN—MULTIPROCESSOR (9-bit) Enable

This bit is used to enable MULTIPROCESSOR (9-bit) mode.

0 = Disable MULTIPROCESSOR (9-bit) mode.

1 = Enable MULTIPROCESSOR (9-bit) mode.

MPBT—Multiprocessor Bit Transmit

This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled. The 9th bit is used by the receiving device to determine if the data byte contains address or data information.

0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).

1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).

DEPOL—Driver Enable Polarity

0 = DE signal is Active High.

1 = DE signal is Active Low.

BRGCTL—Baud Rate Control

This bit causes an alternate UART behavior depending on the value of the REN bit in the UART Control 0 Register.

When the UART receiver is **not** enabled (REN=0), this bit determines whether the Baud Rate Generator issues interrupts.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value 1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0. Reads from the Baud Rate High and Low Byte registers return the current BRG count value.

When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate Registers to return the BRG count value instead of the Reload Value.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value. 1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High Byte is read.

RDAIRQ—Receive Data Interrupt Enable

0 = Received data and receiver errors generates an interrupt request to the Interrupt Controller.

MPRX—Multiprocessor Receive

Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Transmit Data Register

Data bytes written to the UART Transmit Data (UxTXD) register (Table 65) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

BITS	7	6	5	4	3	2	1	0	
FIELD		TXD							
RESET	Х	X X X X X X X X							
R/W	W	w w w w w w w							
ADDR		F40H							

Table 65. UART Transmit Data Register (U0TXD)

TXD-Transmit Data

UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data (UxRXD) register (Table 66). The read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

Table 66. UART Receive Data Register (U0RXD)

BITS	7	6	5	4	3	2	1	0	
FIELD	RXD								
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
ADDR	F40H								
X = Undef	K = Undefined.								

RXD—Receive Data

UART receiver data byte from the RXDx pin

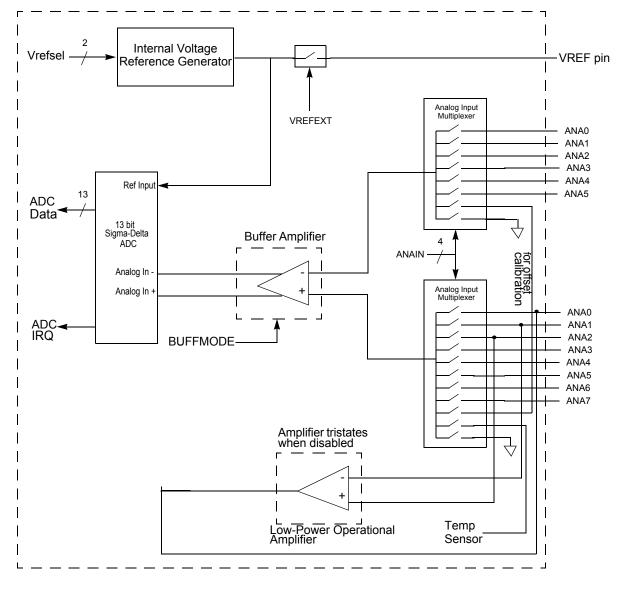


Figure 19. Analog-to-Digital Converter Block Diagram

Operation

Data Format

In both SINGLE-ENDED and DIFFERENTIAL modes, the effective output of the ADC is an 11-bit, signed, two's complement digital value. In DIFFERENTIAL mode, the ADC

zilog ₁₂₃

can output values across the entire 11-bit range, from -1024 to +1023. In SINGLE-ENDED mode, the output generally ranges from 0 to +1023, but offset errors can cause small negative values.

The ADC registers actually return 13 bits of data, but the two LSBs are intended for compensation use only. When the software compensation routine is performed on the 13 bit raw ADC value, two bits of resolution are lost because of a rounding error. As a result, the final value is an 11-bit number.

Hardware Overflow

When the hardware overflow bit (OVF) is set in ADC Data Low Byte (ADCD_L) register, all other data bits are invalid. The hardware overflow bit is set for values greater than V_{ref} and less than $-V_{ref}$ (DIFFERENTIAL mode).

Automatic Powerdown

If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles, portions of the ADC are automatically powered down. From this powerdown state, the ADC requires 40 system clock cycles to power up. The ADC powers up when a conversion is requested by the ADC Control register.

Single-Shot Conversion

When configured for single-shot conversion, the ADC performs a single analog-to-digital conversion on the selected analog input channel. After completion of the conversion, the ADC shuts down. Follow the steps below for setting up the ADC and initiating a single-shot conversion:

- 1. Enable the desired analog inputs by configuring the general-purpose I/O pins for alternate analog function. This configuration disables the digital input and output drivers.
- 2. Write the ADC Control/Status Register 1 to configure the ADC.
 - Write to BUFMODE [2:0] to select SINGLE-ENDED or DIFFERENTIAL mode, as well as unbuffered or buffered mode.
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is. contained in the ADC Control Register 0.
- 3. Write to the ADC Control Register 0 to configure the ADC and begin the conversion. The bit fields in the ADC Control register can be written simultaneously (the ADC can be configured and enabled with the same write instruction):
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Clear CONT to 0 to select a single-shot conversion.

İ	l	0	g	133
				133

BITS	7	6	5	4	3	2	1	0	
FIELD	ADCDH								
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
ADDR	F72H								
X = Undef	X = Undefined.								

Table 73. ADC Data High Byte Register (ADCD_H)

ADCDH—ADC Data High Byte

This byte contains the upper eight bits of the ADC output. These bits are not valid during a single-shot conversion. During a continuous conversion, the most recent conversion output is held in this register. These bits are undefined after a Reset.

ADC Data Low Byte Register

The ADC Data Low Byte (ADCD_L) register contains the lower bits of the ADC output as well as an overflow status bit. The output is a 13-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data Low Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

Table 74. ADC Data Low Byte Register (ADCD_L)

BITS	7	6	5	4	3	2	1	0		
FIELD			ADCDL	Rese	OVF					
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R	R	R	R	R	R	R	R		
ADDR	F73H									
X = Undefined.										

ADCDL—ADC Data Low Bits

These bits are the least significant five bits of the 13-bits of the ADC output. These bits are undefined after a Reset.

Reserved—Must be undefined.

OVF—Overflow Status

0= A hardware overflow did not occur in the ADC for the current sample. 1= A hardware overflow did occur in the ADC for the current sample, therefore the current sample is invalid.

zilog |

Comparator

The Z8 Encore! XP[®] F082A Series devices feature a general purpose comparator that compares two analog input signals. These analog signals may be external stimulus from a pin (CINP and/or CINN) or internally generated signals. Both a programmable voltage reference and the temperature sensor output voltage are available internally. The output is available as an interrupt source or can be routed to an external pin.

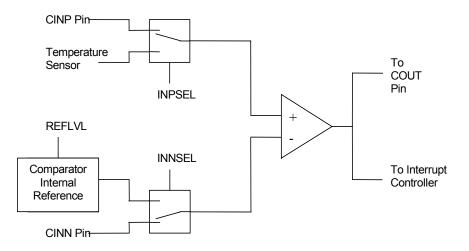


Figure 20. Comparator Block Diagram

Operation

When the positive comparator input exceeds the negative input by more than the specified hysteresis, the output is a logic HIGH. When the negative input exceeds the positive by more than the hysteresis, the output is a logic LOW. Otherwise, the comparator output retains its present value. See Table 137 on page 233 for details.

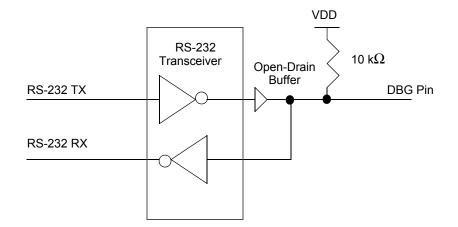
The comparator may be powered down to reduce supply current. See Power Control Register 0 on page 34 for details.

Caution: Because of the propagation delay of the comparator, it is not recommended to enable or reconfigure the comparator without first disabling interrupts and waiting for the comparator output to settle. Doing so can result in spurious interrupts. The following example describes how to safely enable the comparator:

```
di
ld cmp0, r0 ; load some new configuration
nop
```


Flash Option Bits

Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore! $XP^{\text{(R)}}$ F082A Series operation. The feature configuration data is stored in the Flash program memory and loaded into holding registers during Reset. The features available for control through the Flash Option Bits include:


- Watchdog Timer time-out response selection-interrupt or system reset
- Watchdog Timer always on (enabled at Reset)
- The ability to prevent unwanted read access to user code in Program Memory
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory
- Voltage Brownout configuration-always enabled or disabled during STOP mode to reduce STOP mode power consumption
- Oscillator mode selection-for high, medium, and low power crystal oscillators, or external RC oscillator
- Factory trimming information for the internal precision oscillator and low voltage detection
- Factory calibration values for ADC, temperature sensor, and Watchdog Timer compensation
- Factory serialization and randomized lot identifier (optional)

Operation

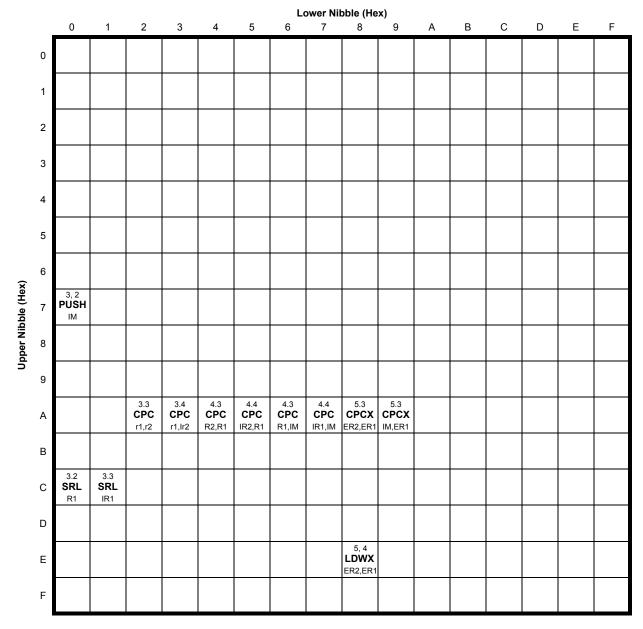
Option Bit Configuration By Reset

Each time the Flash Option Bits are programmed or erased, the device must be Reset for the change to take effect. During any reset operation (System Reset, Power-On Reset, or Stop Mode Recovery), the Flash Option Bits are automatically read from the Flash Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the Z8 Encore! XP F082A Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Figure 25. Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface (2)

DEBUG Mode

The operating characteristics of the devices in DEBUG mode are:


- The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute specific instructions.
- The system clock operates unless in STOP mode.
- All enabled on-chip peripherals operate unless in STOP mode.
- Automatically exits HALT mode.
- Constantly refreshes the Watchdog Timer, if enabled.

Entering DEBUG Mode

The operating characteristics of the devices entering DEBUG mode are:

- The device enters DEBUG mode after the eZ8 CPU executes a BRK (Breakpoint) instruction.
- If the DBG pin is held Low during the final clock cycle of system reset, the part enters DEBUG mode immediately (20-/28-pin products only).
- **Note:** Holding the DBG pin Low for an additional 5000 (minimum) clock cycles after reset (making sure to account for any specified frequency error if using an internal oscillator) prevents a false interpretation of an Autobaud sequence (see OCD Auto-Baud Detector/Generator on page 176).

Table 128. Power Consumption (Continued)

		V _{DI}	_o = 2.7 V to 3			
			Maximum ²			
Symbol	Parameter	Typical 1	Std Temp	Ext Temp	Units	Conditions
I _{DD} LPO	Low-Power Operational Amplifier Supply Current	3	5	5	μΑ	Driving a high- impedance load
I _{DD} TS	Temperature Sensor Supply Current	60			μA	See Notes 4
I _{DD} BG	Band Gap Supply	320	480	500	μA	For 20-/28-pin devices
	Current					For 8-pin devices

Notes

1. Typical conditions are defined as V_{DD} = 3.3 V and +30 °C.

2. Standard temperature is defined as $T_A = 0$ °C to +70 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

3. Extended temperature is defined as T_A = -40 °C to +105 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current. This bandgap current is only added once, regardless of how many peripherals are using it.

zilog

		V _{DD}	= 2.7 V to				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions	
T _{AERR}	Temperature Error		<u>+</u> 0.5	<u>+</u> 2	°C	Over the range +20 °C to +30 °C (as measured by ADC) ¹	
			<u>+</u> 1	<u>+</u> 5	°C	Over the range +0 °C to +70 °C (as measured by ADC)	
			<u>+</u> 2	<u>+</u> 7	°C	Over the range +0 °C to +105 °C (as measured by ADC)	
			<u>+</u> 7		°C	Over the range -40 °C to +105 °C (as measured by ADC)	
T _{AERR}	Temperature Error		TBD		°C	Over the range -40 °C to +105 °C (as measured by comparator)	
t _{WAKE}	Wakeup Time		80	100	μs	Time required for Temperature Sensor to stabilize after enabling	

Table 138. Temperature Sensor Electrical Characteristics

¹Devices are factory calibrated at for maximal accuracy between +20 °C and +30 °C, so the sensor is maximally accurate in that range. User re-calibration for a different temperature range is possible and increases accuracy near the new calibration point.

General Purpose I/O Port Input Data Sample Timing

Figure 34 displays timing of the GPIO Port input sampling. The input value on a GPIO Port pin is sampled on the rising edge of the system clock. The Port value is available to the eZ8 CPU on the second rising clock edge following the change of the Port value.

ג ש ק ע ק ע ק ע ק ע ק ע ק ע ק ע ק ע ק ע ק	Flash Serie	S Devel	SQ NN Opmen	t Kit	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description	
Z8F08A28100KITG	·											
Z8F04A28100KITG		Z8 Encore! XP F042A Series 28-Pin Development Kit										
Z8F04A08100KITG		Z8 Encore! XP F042A Series 8-Pin Development Kit										
ZUSBSC00100ZACG		USB Smart Cable Accessory Kit										
ZUSBOPTSC01ZACG		USB Opto-Isolated Smart Cable Accessory Kit										
ZENETSC0100ZACG		Ethernet Smart Cable Accessory Kit										