E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f042ahj020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Zilog ₁₉

Register Map

Table 7 provides the address map for the Register File of the Z8 Encore! XP[®] F082A Series devices. Not all devices and package styles in the Z8 Encore! XP F082A Series support the ADC, or all of the GPIO Ports. Consider registers for unimplemented peripherals as Reserved.

Table 7. Register File Address Map

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
General-Purpo	se RAM			
Z8F082A/Z8F08	31A Devices			
000–3FF	General-Purpose Register File RAM		XX	
400–EFF	Reserved	_	XX	
Z8F042A/Z8F04	IA Devices			
000–3FF	General-Purpose Register File RAM		XX	
400–EFF	Reserved	—	XX	
Z8F022A/Z8F02	21A Devices			
000–1FF	General-Purpose Register File RAM	_	XX	
200–EFF	Reserved	_	XX	
Z8F012A/Z8F0	I1A Devices			
000–0FF	General-Purpose Register File RAM	_	XX	
100–EFF	Reserved	—	XX	
Timer 0				
F00	Timer 0 High Byte	ТОН	00	87
F01	Timer 0 Low Byte	TOL	01	87
F02	Timer 0 Reload High Byte	T0RH	FF	88
F03	Timer 0 Reload Low Byte	TORL	FF	88
F04	Timer 0 PWM High Byte	T0PWMH	00	88
F05	Timer 0 PWM Low Byte	TOPWML	00	89
F06	Timer 0 Control 0	T0CTL0	00	83
F07	Timer 0 Control 1	T0CTL1	00	84
Timer 1				
F08	Timer 1 High Byte	T1H	00	87
F09	Timer 1 Low Byte	T1L	01	87
F0A	Timer 1 Reload High Byte	T1RH	FF	88
XX=Undefined				

- 2. Write to the Timer High and Low Byte registers to set the starting count value. Writing these registers only affects the first pass in GATED mode. After the first timer reset in GATED mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input deassertion and reload events. If appropriate, configure the timer interrupt to be generated only at the input deassertion event or the reload event by setting TICONFIG field of the TxCTL0 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The INPCAP bit in TxCTL0 register is set to indicate the timer interrupt is caused by an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL0 register is cleared to indicate the timer interrupt is not because of an input capture event.

Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE/COMPARE mode.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.

110 = 64 cycles delay 111 = 128 cycles delay

INPCAP—Input Capture Event

This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture Event.

0 = Previous timer interrupt is not a result of Timer Input Capture Event

1 = Previous timer interrupt is a result of Timer Input Capture Event

Timer 0–1 Control Register 1

The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler value, and determine the timer operating mode (Table 49).

Table 49. Timer 0–1 Control Register 1 (TxCTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	TPOL		PRES		TMODE		
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F07H,	F0FH			

TEN—Timer Enable

0 = Timer is disabled.

1 = Timer enabled to count.

TPOL—Timer Input/Output Polarity

Operation of this bit is a function of the current operating mode of the timer.

ONE-SHOT mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

CONTINUOUS mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

COUNTER mode

If the timer is enabled the Timer Output signal is complemented after timer reload.

0 = Count occurs on the rising edge of the Timer Input signal.

1 = Count occurs on the falling edge of the Timer Input signal.

Universal Asynchronous Receiver/Transmitter

The universal asynchronousceever/transmitter (UART) is full-duplex communication channel capable of handling asynchronous tratesfers. The UART uses a single 8-bit data mode with selectable parifyeatures of the UART include:

- 8-bit asynchronous data transfer.
- Selectable even- and odd-parity generation and checking.
- Option of one or two STOP bits.
- •

Ņ

MPMD[1:0]—MULTIPROCESSOR Mode

If MULTIPROCESSOR (9-bit) mode is enabled,

00 = The UART generates an interrupt request on all received bytes (data and address).

01 = The UART generates an interrupt request only on received address bytes.

10 = The UART generates an interrupt request when a received address byte matches the value stored in the Address Compare Register and on all successive data bytes until an address mismatch occurs.

11 = The UART generates an interrupt request on all received data bytes for which the most recent address byte matched the value in the Address Compare Register.

MPEN—MULTIPROCESSOR (9-bit) Enable

This bit is used to enable MULTIPROCESSOR (9-bit) mode.

0 = Disable MULTIPROCESSOR (9-bit) mode.

1 = Enable MULTIPROCESSOR (9-bit) mode.

MPBT—Multiprocessor Bit Transmit

This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled. The 9th bit is used by the receiving device to determine if the data byte contains address or data information.

0 = Send a 0 in the multiprocessor bit location of the data stream (data byte).

1 = Send a 1 in the multiprocessor bit location of the data stream (address byte).

DEPOL—Driver Enable Polarity

0 = DE signal is Active High.

1 = DE signal is Active Low.

BRGCTL—Baud Rate Control

This bit causes an alternate UART behavior depending on the value of the REN bit in the UART Control 0 Register.

When the UART receiver is **not** enabled (REN=0), this bit determines whether the Baud Rate Generator issues interrupts.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value 1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0. Reads from the Baud Rate High and Low Byte registers return the current BRG count value.

When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate Registers to return the BRG count value instead of the Reload Value.

0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value. 1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High Byte is read.

RDAIRQ—Receive Data Interrupt Enable

0 = Received data and receiver errors generates an interrupt request to the Interrupt Controller.

116

3.579545 MHz System Clock								
Acceptable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)					
1250.0	N/A	N/A	N/A					
625.0	N/A	N/A	N/A					
250.0	1	223.72	-10.51					
115.2	2	111.9	-2.90					
57.6	4	55.9	-2.90					
38.4	6	37.3	-2.90					
19.2	12	18.6	-2.90					
9.60	23	9.73	1.32					
4.80	47	4.76	-0.83					
2.40	93	2.41	0.23					
1.20	186	1.20	0.23					
0.60	373	0.60	-0.04					
0.30	746	0.30	-0.04					
-								

Table 70. UART Baud Rates (Continued)

1.8432 MHz \$	System Clock		
Acceptable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)
1250.0	N/A	N/A	N/A
625.0	N/A	N/A	N/A
250.0	N/A	N/A	N/A
115.2	1	115.2	0.00
57.6	2	57.6	0.00
38.4	3	38.4	0.00
19.2	6	19.2	0.00
9.60	12	9.60	0.00
4.80	24	4.80	0.00
2.40	48	2.40	0.00
1.20	96	1.20	0.00
0.60	192	0.60	0.00
0.30	384	0.30	0.00

1001 = 1.8 V 1010–1111 = Reserved

For 8-pin devices:

000000 = 0.00 V000001 = 0.05 V000010 = 0.10 V 000011 = 0.15 V 000100 = 0.20 V 000101 = 0.25 V000110 = 0.30 V 000111 = 0.35 V 001000 = 0.40 V 001001 = 0.45 V 001010 = 0.50 V 001011 = 0.55 V 001100 = 0.60 V 001101 = 0.65 V 001110 = 0.70 V001111 = 0.75 V 010000 = 0.80 V010001 = 0.85 V010010 = 0.90 V 010011 = 0.95 V 010100 = 1.00 V (Default) 010101 = 1.05 V 010110 = 1.10 V 010111 = 1.15 V 011000 = 1.20 V 011001 = 1.25 V 011010 = 1.30 V 011011 = 1.35 V 011100 = 1.40 V 011101 = 1.45 V 011110 = 1.50 V 011111 = 1.55 V 100000 = 1.60 V100001 = 1.65 V 100010 = 1.70 V 100011 = 1.75 V

zilog ₁₄

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a program or erase operation on Flash memory, you must first configure the Flash Frequency High and Low Byte registers. The Flash Frequency registers allow programming and erasing of the Flash with system clock frequencies ranging from 32 kHz (32768 Hz) through 20 MHz.

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash Frequency value must contain the system clock frequency (in kHz). This value is calculated using the following equation:

 $FFREQ[15:0] = \frac{System Clock Frequency (Hz)}{1000}$

Caution: Flash programming and erasure are not supported for system clock frequencies below 32 kHz (32768 Hz) or above 20 MHz. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore! XP[®] F082A Series devices.

Flash Code Protection Against External Access

The user code contained within the Flash memory can be protected against external access by the on-chip debugger. Programming the FRP Flash Option Bit prevents reading of the user code with the On-Chip Debugger. See Flash Option Bits on page 153 and On-Chip Debugger on page 173 for more information.

Flash Code Protection Against Accidental Program and Erasure

The Z8 Encore! XP F082A Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash Option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.

Flash Code Protection Using the Flash Option Bits

The FRP and FWP Flash Option Bits combine to provide three levels of Flash Program Memory protection as listed in Table 77. See Flash Option Bits on page 153 for more information.

zilog

BITS	7	6	5	4	3	2	1	0
FIELD	INFO_EN				PAGE			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FF	9H			

Table 80. Flash Page Select Register (FPS)

INFO_EN—Information Area Enable

0 = Information Area us not selected.

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase and page unlocking. Program Memory Address[15:9] = PAGE[6:0]. For the Z8F08xx devices, the upper 3 bits must be zero. For the Z8F04xx devices, the upper 4 bits must be zero. For Z8F02xx devices, the upper 5 bits must always be 0. For the Z8F01xx devices, the upper 6 bits must always be 0.

Flash Sector Protect Register

The Flash Sector Protect (FPROT) register is shared with the Flash Page Select Register. When the Flash Control Register is written with 73H followed by 5EH, the next write to this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash Page Select Register.

This register selects one of the 8 available Flash memory sectors to be protected. The reset state of each Sector Protect bit is an unprotected state. After a sector is protected by setting its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared) without powering down the device.

Table 81. Flash Sector Pr	otect Register	(FPROT)

BITS	7	6	5	4	3	2	1	0
FIELD	SPROT7	SPROT6	SPROT5	SPROT4	SPROT3	SPROT2	SPROT1	SPROT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FF	9H			

159

Trim Bit Address 0001H

Table 89. Trim Option Bits at 0001H

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved							
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 0021H							
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.							

Reserved—Altering this register may result in incorrect device operation.

Trim Bit Address 0002H

Table 90. Trim Option Bits at 0002H (TIPO)

BITS	7	6	5	4	3	2	1	0
FIELD	IPO_TRIM							
RESET	U							
R/W				R/	Ŵ			
ADDR	Information Page Memory 0022H							
Note: U =	Note: U = Unchanged by Reset R/W = Read/Write							

IPO_TRIM—Internal Precision Oscillator Trim Byte Contains trimming bits for Internal Precision Oscillator.

Trim Bit Address 0003H

Note: *The LVD is available on 8-pin devices only.*

Table 91. Trim Option Bits at Address 0003H (TLVD)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved			LVD_TRIM				
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 0023H							
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.							

PS022825-0908

zilog

163

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
34	FE34	Negative Gain High Byte	Differential Unbuffered	External 2.0 V
35	FE35	Negative Gain Low Byte	Differential Unbuffered	External 2.0 V
78	FE78	Offset	Differential 1x Buffered	Internal 2.0 V
18	FE18	Positive Gain High Byte	Differential 1x Buffered	Internal 2.0 V
19	FE19	Positive Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
36	FE36	Negative Gain High Byte	Differential 1x Buffered	Internal 2.0 V
37	FE37	Negative Gain Low Byte	Differential 1x Buffered	Internal 2.0 V
7B	FE7B	Offset	Differential 1x Buffered	External 2.0 V
1A	FE1A	Positive Gain High Byte	Differential 1x Buffered	External 2.0 V
1B	FE1B	Positive Gain Low Byte	Differential 1x Buffered	External 2.0 V
38	FE38	Negative Gain High Byte	Differential 1x Buffered	External 2.0 V
39	FE39	Negative Gain Low Byte	Differential 1x Buffered	External 2.0 V

Table 94. ADC Calibration Data Location (Continued)

High. Because of the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if the OCD is transmitting a character.

OCD Unlock Sequence (8-Pin Devices Only)

Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to access the DBG pin. If this sequence is not completed during a system reset, then the PA0/DBG pin functions only as a GPIO pin.

The following sequence unlocks the DBG pin:

- 1. Hold PA2/RESET Low.
- 2. Wait 5ms for the internal reset sequence to complete.
- 3. Send the following bytes serially to the debug pin:

```
DBG \leftarrow 80H (autobaud)
DBG \leftarrow EBH
DBG \leftarrow 5AH
DBG \leftarrow 70H
DBG \leftarrow CDH (32-bit unlock key)
```

4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the DBG pin on the 20-/28-pin device. To enter DEBUG mode, re-autobaud and write 80H to the OCD control register (see On-Chip Debugger Commands on page 179).

Caution: Between Step 3 and Step 4, there is an interval during which the 8-pin device is neither in RESET nor DEBUG mode. If a device has been erased or has not yet been programmed, all program memory bytes contain FFH. The CPU interprets this as an illegal instruction, so some irregular behavior can occur before entering DEBUG mode, and the register values after entering DEBUG mode differs from their specified reset values. However, none of these irregularities prevent programming the Flash memory. Before beginning system debug, it is recommended that some legal code be programmed into the 8-pin device, and that a RESET occurs.

Breakpoints

Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are enabled, the OCD enters DEBUG mode and idles the eZ8 CPU. If Breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

zilog ₂₀₁

Table 114. Notational Shorthand

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
CC	Condition Code	—	Refer to Condition Codes section in the eZ8 CPU Core User Manual (UM0128).
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
lr	Indirect Working Register	@Rn	n = 0–15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 – 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of +127 to – 128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 115 lists additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

zilog[°]

208

Assembly	Symbolic Operation	Address Mode		Opcode(s)	Flags					Fetch	Instr.	
Mnemonic		dst	src	(Hex)	С	Ζ	S	۷	D	н	Cycles	Cycles
AND dst, src	$dst \gets dst \ AND \ src$	r	r	52	_	*	*	0	_	-	2	3
		r	lr	53	-						2	4
		R	R	54	-						3	3
		R	IR	55	-						3	4
		R	IM	56	-						3	3
		IR	IM	57	-						3	4
ANDX dst, src	$dst \gets dst \ AND \ src$	ER	ER	58	-	*	*	0	_	-	4	3
		ER	IM	59	-						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	_	_	_	_	_	_	1	2
BCLR bit, dst	$dst[bit] \leftarrow 0$	r		E2	-	-	-	-	-	-	2	2
BIT p, bit, dst	$dst[bit] \leftarrow p$	r		E2	_	-	-	-	-	-	2	2
BRK	Debugger Break			00	-	-	-	-	-	-	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	_	_	_	_	_	-	2	2
BSWAP dst	$dst[7:0] \leftarrow dst[0:7]$	R		D5	Х	*	*	0	_	_	2	2
BTJ p, bit, src, dst	if src[bit] = p		r	F6	_	_	_	_	_	-	3	3
	$PC \leftarrow PC + X$		lr	F7	-						3	4
BTJNZ bit, src, dst	if src[bit] = 1		r	F6	_	_	_	-	_	-	3	3
	$PC \leftarrow PC + X$		lr	F7	-						3	4
BTJZ bit, src, dst	if src[bit] = 0		r	F6	-	-	-	-	-	-	3	3
	$PC \leftarrow PC + X$		lr	F7	-						3	4
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	_	_	_	_	_	-	2	6
	@SP ← PC PC ← dst	DA		D6	-						3	3
CCF	$C \leftarrow \simC$			EF	*	_	_	_	_		1	2
CLR dst	$dst \gets 00H$	R		B0	_	_	_	_	_	-	2	2
		IR		B1	-						2	3
Flags Notation:	* = Value is a function of – = Unaffected X = Undefined	the result	of the o	peration.	0 = 1 =	Re Se	eset et to	to (1)			

Table 124. eZ8 CPU Instruction Summary (Continued)

zilog[°]

21	Λ
∠ I	4

Assembly	Symbolic Operation	Address Mode		Opcode(s)	Flags						Fetch	Instr.
Mnemonic		dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	Cycles
SUBX dst, src	$dst \gets dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29							4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	-	-	2	2
		IR		F1	-						2	3
TCM dst, src	(NOT dst) AND src	r	r	62	_	*	*	0	-	-	2	3
		r	lr	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	_	*	*	0	-	_	4	3
		ER	IM	69	-						4	3
TM dst, src	dst AND src	r	r	72	_	*	*	0	-	_	2	3
		r	lr	73	-						2	4
		R	R	74	-						3	3
		R	IR	75	-						3	4
		R	IM	76	-						3	3
		IR	IM	77	-						3	4
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	-	-	4	3
		ER	IM	79	-						4	3
TRAP Vector	$\begin{array}{l} SP \leftarrow SP - 2\\ @SP \leftarrow PC\\ SP \leftarrow SP - 1\\ @SP \leftarrow FLAGS\\ PC \leftarrow @Vector \end{array}$		Vector	F2	_	-	-	_	_	_	2	6
WDT				5F	_	_	_	_	_	_	1	2
Flags Notation:	* = Value is a function of - = Unaffected X = Undefined	the resul	It of the o	peration.	0 = 1 =	Re Se	eset et to	to (1)			

Table 124. eZ8 CPU Instruction Summary (Continued)

220

236

General Purpose I/O Port Output Timing

Figure 35 and Table 140 provide timing information for GPIO Port pins.

Figure 35. GPIO Port Output Timing

			Delay (ns)					
Parameter	Abbreviation	-	Minimum	Maximum				
GPIO Port p	bins							
T ₁	XIN Rise to Port Output Valid Delay		_	15				
T ₂	XIN Rise to Port Output Hold Time		2	_				

Table 140. GPIO Port Output Timing

zilog ₂₄₇

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 45. 28-Pin Plastic Dual Inline Package (PDIP)