E·XFL

Zilog - Z8F042AHJ020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f042ahj020sc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog[°]

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

ISO 9001:2000 FS 507510 Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

Port A–D Address Registers

The Port A–D Address registers select the GPIO Port functionality accessible through the Port A–D Control registers. The Port A–D Address and Control registers combine to provide access to all GPIO Port controls (Table 17).

Table 17. Port A–D GPIO Address Registers (PxADDR)

BITS	7	6	5	4	3	2	1	0	
FIELD				PADD	R[7:0]				
RESET	00H								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		FD0H, FD4H, FD8H, FDCH							

PADDR[7:0]—Port Address

The Port Address selects one of the sub-registers accessible through the Port Control register.

PADDR[7:0]	Port Control sub-register accessible using the Port A–D Control Registers
00H	No function. Provides some protection against accidental Port reconfiguration.
01H	Data Direction.
02H	Alternate Function.
03H	Output Control (Open-Drain).
04H	High Drive Enable.
05H	Stop Mode Recovery Source Enable.
06H	Pull-up Enable.
07H	Alternate Function Set 1.
08H	Alternate Function Set 2.
09H–FFH	No function.

Port A–D Control Registers

The Port A–D Control registers set the GPIO port operation. The value in the corresponding Port A–D Address register determines which sub-register is read from or written to by a Port A–D Control register transaction (Table 18).

PAFS1[7:0]—Port Alternate Function Set 1 0 = Port Alternate Function selected as defined in Table 14 and Table 15 on page 44. 1 = Port Alternate Function selected as defined in Table 14 and Table 15 on page 44.

Port A–D Alternate Function Set 2 Sub-Registers

The Port A–D Alternate Function Set 2 sub-register (Table 26) is accessed through the Port A–D Control register by writing 08H to the Port A–D Address register. The Alternate Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register is defined in Table 15.

• Note: Alternate function selection on port pins must also be enabled as described in Port A–D Alternate Function Sub-Registers on page 47.

BITS	7	6	5	4	3	2	1	0	
FIELD	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20	
RESET	00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Table 26. Port A–D Alternate Function Set 2 Sub-Registers (PxAFS2)

PAFS2[7:0]—Port Alternate Function Set 2

0 = Port Alternate Function selected as defined in Table 15.

1 = Port Alternate Function selected as defined in Table 15.

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 27) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

If 08H in Port A–D Address Register, accessible through the Port A–D Control Register

Table 21. Full A=C input Data Registers (FXIN	Table 27.	Port A-C In	put Data F	Registers ((PxIN)
---	-----------	-------------	------------	-------------	--------

BITS	7	6	5	4	3	2	1	0
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
ADDR	FD2H, FD6H, FDAH							
X = Undef	<pre>< = Undefined.</pre>							

ADDR

Watchdog Timer Refresh

When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded with the WDT Reload value stored in the Watchdog Timer Reload registers. Counting resumes following the reload operation.

When the Z8 Encore! XP[®] F082A Series devices are operating in DEBUG mode (using the on-chip debugger), the Watchdog Timer is continuously refreshed to prevent any Watchdog Timer time-outs.

Watchdog Timer Time-Out Response

The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash Option Bit determines the time-out response of the Watchdog Timer. For information on programming the WDT_RES Flash Option Bit, see Flash Option Bits on page 153.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Reset Status (RSTSTAT) register (see Reset Status Register on page 30). If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter is not automatically returned to its Reload Value.

The Reset Status (RSTSTAT) register must be read before clearing the WDT interrupt. This read clears the WDT timeout Flag and prevents further WDT interrupts from immediately occurring.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP F082A Series devices are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Reset Status (RSTSTAT) register are set to 1 following a WDT time-out in STOP mode. For more information on Stop Mode Recovery, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address.

92

zilog[®]

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts when a byte is written to the UART Transmit Data register. The Driver Enable signal asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the final Stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)

The Driver Enable to Start bit setup time is calculated as follows:

$$\left(\frac{1}{\text{Baud Rate (Hz)}}\right) \le \text{DE to Start Bit Setup Time (s)} \le \left(\frac{2}{\text{Baud Rate (Hz)}}\right)$$

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit of data out. The Transmit Data register can now be written with the next character to

105

zilog

send. This action provides 7 bit periods of latency to load the Transmit Data register before the Transmit shift register completes shifting the current character. Writing to the UART Transmit Data register clears the TDRE bit to 0.

Receiver Interrupts

The receiver generates an interrupt when any of the following occurs:

- A data byte is received and is available in the UART Receive Data register. This interrupt can be disabled independently of the other receiver interrupt sources. The received data interrupt occurs after the receive character has been received and placed in the Receive Data register. To avoid an overrun error, software must respond to this received data available condition before the next character is completely received.
- · |

Note: In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on the multiprocessor configuration and the most recent address byte.

- A break is received.
- An overrun is detected.
- A data framing error is detected.

UART Overrun Errors

When an overrun error condition occurs the UART prevents overwriting of the valid data currently in the Receive Data register. The Break Detect and Overrun status bits are not displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 register is updated to indicate the overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that the Receive Data register contains a data byte. However, because the overrun error occurred, this byte may not contain valid data and must be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status byte indicating an overrun error, the Receive Data register must be read again to clear the error bits is the UART Status 0 register. Updates to the Receive Data register occur only when the next data word is received.

UART Data and Error Handling Procedure

Figure 15 displays the recommended procedure for use in UART receiver interrupt service routines.

zilog[°].

(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

UART Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer with interrupt on time-out. Follow the steps below to configure the Baud Rate Generator as a timer with interrupt on time-out:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BRGCTL bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval(s) = System Clock Period (s) \times BRG[15:0]

UART Control Register Definitions

The UART control registers support the UART and the associated Infrared Encoder/ Decoders. For more information on infrared operation, see Infrared Encoder/Decoder on page 117.

UART Control 0 and Control 1 Registers

The UART Control 0 (UxCTL0) and Control 1 (UxCTL1) registers (Table 61 and Table 62) configure the properties of the UART's transmit and receive operations. The UART Control registers must not be written while the UART is enabled.

BITS	7	6	5	4	3	2	1	0	
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		F42H							

Table 61. UART Control 0 Register (U0CTL0)

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal

Figure 22. Flash Controller Operation Flow Chart

Flash Option Bits

Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore! XP[®] F082A Series operation. The feature configuration data is stored in the Flash program memory and loaded into holding registers during Reset. The features available for control through the Flash Option Bits include:

- Watchdog Timer time-out response selection-interrupt or system reset
- Watchdog Timer always on (enabled at Reset)
- The ability to prevent unwanted read access to user code in Program Memory
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory
- Voltage Brownout configuration-always enabled or disabled during STOP mode to reduce STOP mode power consumption
- Oscillator mode selection-for high, medium, and low power crystal oscillators, or external RC oscillator
- Factory trimming information for the internal precision oscillator and low voltage detection
- Factory calibration values for ADC, temperature sensor, and Watchdog Timer compensation
- Factory serialization and randomized lot identifier (optional)

Operation

Option Bit Configuration By Reset

Each time the Flash Option Bits are programmed or erased, the device must be Reset for the change to take effect. During any reset operation (System Reset, Power-On Reset, or Stop Mode Recovery), the Flash Option Bits are automatically read from the Flash Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the Z8 Encore! XP F082A Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Temperature Sensor Calibration Data

Table 95. Temperature Sensor Calibration High Byte at 003A (TSCALH)

BITS	7	6	5	4	3	2	1	0
FIELD				TSC	ALH			
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Information Page Memory 003A							
Note: U =	Unchanged b	v Reset, R/W	= Read/Write	<u>,</u>				

TSCALH – Temperature Sensor Calibration High Byte

The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibration value. For more details, see Temperature Sensor Operation on page 139.

Table 96. Temperature Sensor Calibration Low Byte at 003B (TSCALL)

BITS	7	6	5	4	3	2	1	0					
FIELD	TSCALL												
RESET	U	U	U	U	U	U	U	U					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
ADDR	Information Page Memory 003B												
Note: U =	Unchanged by	y Reset. R/W	= Read/Write).	Note: U = Unchanged by Reset. R/W = Read/Write.								

TSCALL – Temperature Sensor Calibration Low Byte

The TSCALH and TSCALL bytes combine to form the 12-bit temperature sensor offset calibration value. For usage details, see Temperature Sensor Operation on page 139.

Watchdog Timer Calibration Data

Table 97. Watchdog Calibration High Byte at 007EH (WDTCALH)

BITS	7	6	5	4	3	2	1	0	
FIELD	WDTCALH								
RESET	U	U	U	U	U	U	U	U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	Information Page Memory 007EH								
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.								

168

zilog | 177

The Auto-Baud Detector/Generator is clocked by the system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation with asynchronous datastreams, the maximum recommended baud rate is the system clock frequency divided by 8. The maximum possible baud rate for asynchronous datastreams is the system clock frequency divided by 4, but this theoretical maximum is possible only for low noise designs with clean signals. Table 105 lists minimum and recommended maximum baud rates for sample crystal frequencies.

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (Kbps)	Recommended Standard PC Baud Rate (bps)	Minimum Baud Rate (Kbps)
20.0	2500.0	1,843,200	39
1.0	125.0	115,200	1.95
0.032768 (32 kHz)	4.096	2,400	0.064

Table 105. OCD Baud-Rate Limits

If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud Detector/Generator resets. Reconfigure the Auto-Baud Detector/Generator by sending 80H.

OCD Serial Errors

The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

- Serial Break (a minimum of nine continuous bits Low)
- Framing Error (received Stop bit is Low)
- Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long Serial Break back to the host, and resets the Auto-Baud Detector/Generator. A Framing Error or Transmit Collision may be caused by the host sending a Serial Break to the OCD. Because of the open-drain nature of the interface, returning a Serial Break break back to the host only extends the length of the Serial Break if the host releases the Serial Break early.

The host transmits a Serial Break on the DBG pin when first connecting to the Z8 Encore! XP F082A Series devices or when recovering from an error. A Serial Break from the host resets the Auto-Baud Generator/Detector but does not reset the OCD Control register. A Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is held in Reset until the end of the Serial Break when the DBG pin returns

If the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, this command reads and discards one byte.

DBG \leftarrow 12H DBG \leftarrow 1-5 byte opcode

On-Chip Debugger Control Register Definitions

OCD Control Register

The OCD Control register controls the state of the On-Chip Debugger. This register is used to enter or exit DEBUG mode and to enable the BRK instruction. It can also reset the Z8 Encore! $XP^{\text{(B)}}$ F082A Series device.

A reset and stop function can be achieved by writing 81H to this register. A reset and go function can be achieved by writing 41H to this register. If the device is in DEBUG mode, a run function can be implemented by writing 40H to this register.

Table 106. OCD Control Register (OCDCTL)

BITS	7	6	5	4	3	2	1	0	
FIELD	DBGMODE	BRKEN	DBGACK		Reserved				
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R	R	R	R	R/W	

DBGMODE—DEBUG Mode

The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and Breakpoints are enabled. If the Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0.

0 = The Z8 Encore! XP F082A Series device is operating in NORMAL mode.

1 = The Z8 Encore! XP F082A Series device is in DEBUG mode.

BRKEN—Breakpoint Enable

This bit controls the behavior of the BRK instruction (opcode 00H). By default, Breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1, when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1.

0 = Breakpoints are disabled.

1 = Breakpoints are enabled.

zilog

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! XP F082A Series device ceases functioning and can only be recovered by Power-On-Reset.

Oscillator Control Register Definitions

Oscillator Control Register

The Oscillator Control Register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control Register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

BITS	7	6	5	4	3	2	1	0		
FIELD	INTEN	XTLEN	WDTEN	SOFEN	WDFEN	SCKSEL				
RESET	1	0	1	0	0	0 0		0		
R/W	R/W	R/W								
ADDR	F86H									

Table 109. Oscillator Control Register (OSCCTL)

INTEN—Internal Precision Oscillator Enable

1 = Internal precision oscillator is enabled

0 = Internal precision oscillator is disabled

XTLEN-Crystal Oscillator Enable; this setting overrides the GPIO register control for PA0 and PA1

1 = Crystal oscillator is enabled

0 = Crystal oscillator is disabled

WDTEN—Watchdog Timer Oscillator Enable

1 = Watchdog Timer oscillator is enabled

0 = Watchdog Timer oscillator is disabled

SOFEN—System Clock Oscillator Failure Detection Enable

1 = Failure detection and recovery of system clock oscillator is enabled

0 = Failure detection and recovery of system clock oscillator is disabled

Figure 34. Port Input Sample Timing

Table	139.	GPIO	Port	Input	Timing
-------	------	-------------	------	-------	--------

		Delay (ns)					
Parameter	Abbreviation	Minimum	Maximum				
T _{S_PORT}	Port Input Transition to XIN Rise Setup Time (Not pictured)	5	-				
T _{H_PORT}	XIN Rise to Port Input Transition Hold Time (Not pictured)	0	-				
T _{SMR}	GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1 μs					

Packaging

Figure 39 displays the 8-pin Plastic Dual Inline Package (PDIP) available for Z8 Encore! $XP^{\textcircled{R}}$ F082A Series devices.

Figure 39. 8-Pin Plastic Dual Inline Package (PDIP)

zilog[°]

251

Ordering Information

Order the Z8 Encore! XP[®] F082A Series from Zilog[®], using the following part numbers. For more information on ordering, please consult your local Zilog sales office. The Zilog website (<u>www.zilog.com</u>) lists all regional offices and provides additional Z8 Encore! XP product information.

Part Number	Flash	RAM	NVDS	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082A Series with 8 KB Flash, 10-Bit Analog-to-Digital Converter											
Standard Temperature: 0 °C to 70°C											
Z8F082APB020SC	8 KB	1 KB	0	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F082AQB020SC	8 KB	1 KB	0	6	14	2	4	1	1	1	QFN 8-pin package
Z8F082ASB020SC	8 KB	1 KB	0	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F082ASH020SC	8 KB	1 KB	0	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F082AHH020SC	8 KB	1 KB	0	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F082APH020SC	8 KB	1 KB	0	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F082ASJ020SC	8 KB	1 KB	0	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F082AHJ020SC	8 KB	1 KB	0	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F082APJ020SC	8 KB	1 KB	0	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperature: -40 °C to 105 °C											
Z8F082APB020EC	8 KB	1 KB	0	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F082AQB020EC	8 KB	1 KB	0	6	14	2	4	1	1	1	QFN 8-pin package
Z8F082ASB020EC	8 KB	1 KB	0	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F082ASH020EC	8 KB	1 KB	0	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F082AHH020EC	8 KB	1 KB	0	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F082APH020EC	8 KB	1 KB	0	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F082ASJ020EC	8 KB	1 KB	0	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F082AHJ020EC	8 KB	1 KB	0	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F082APJ020EC	8 KB	1 KB	0	23	20	2	8	1	1	1	PDIP 28-pin package
Replace C with G for Lead-Free Packaging											

261

Index

Symbols

202 % 202 @ 202

Numerics

10-bit ADC 7 40-lead plastic dual-inline package 248, 249

Α

absolute maximum ratings 221 AC characteristics 227 ADC 203 architecture 121 automatic power-down 122 block diagram 122 continuous conversion 124 control register 130, 132 control register definitions 130 data high byte register 132 data low bits register 133 electrical characteristics and timing 231 operation 122 single-shot conversion 123 ADCCTL register 130, 132 ADCDH register 132 ADCDL register 133 ADCX 203 ADD 203 add - extended addressing 203 add with carry 203 add with carry - extended addressing 203 additional symbols 202 address space 15 ADDX 203 analog signals 12 analog-to-digital converter (ADC) 121 AND 205

ANDX 205 arithmetic instructions 203 assembly language programming 199 assembly language syntax 200

В

B 202 b 201 baud rate generator, UART 107 **BCLR 204** binary number suffix 202 **BIT 204** bit 201 clear 204 manipulation instructions 204 set 204 set or clear 204 swap 204 test and jump 206 test and jump if non-zero 206 test and jump if zero 206 bit jump and test if non-zero 206 bit swap 206 block diagram 4 block transfer instructions 204 **BRK 206** BSET 204 BSWAP 204, 206 **BTJ 206 BTJNZ 206 BTJZ 206**

С

CALL procedure 206 CAPTURE mode 85, 86 CAPTURE/COMPARE mode 85 cc 201 CCF 204 characteristics, electrical 221 clear 205 CLR 205 COM 205

264

DJNZ 206 EI 204 **HALT 204 INC 203 INCW 203 IRET 206** JP 206 LD 205 LDC 205 LDCI 204, 205 LDE 205 LDEI 204 LDX 205 LEA 205 logical 205 **MULT 203** NOP 204 OR 205 **ORX 206** POP 205 **POPX 205** program control 206 **PUSH 205** PUSHX 205 **RCF 204 RET 206** RL 206 **RLC 206** rotate and shift 206 RR 206 **RRC 206** SBC 203 SCF 204, 205 SRA 207 SRL 207 **SRP 205 STOP 205** SUB 203 SUBX 203 **SWAP 207** TCM 204 **TCMX 204** TM 204 TMX 204

TRAP 206 Watchdog Timer refresh 205 XOR 206 **XORX 206** instructions, eZ8 classes of 202 interrupt control register 67 interrupt controller 55 architecture 55 interrupt assertion types 58 interrupt vectors and priority 58 operation 57 register definitions 60 software interrupt assertion 59 interrupt edge select register 66 interrupt request 0 register 60 interrupt request 1 register 61 interrupt request 2 register 62 interrupt return 206 interrupt vector listing 55 interrupts **UART 105** IR 201 lr 201 IrDA architecture 117 block diagram 117 control register definitions 120 operation 117 receiving data 119 transmitting data 118 **IRET 206** IRQ0 enable high and low bit registers 62 IRQ1 enable high and low bit registers 63 IRQ2 enable high and low bit registers 65 **IRR 201** Irr 201

J

JP 206 jump, conditional, relative, and relative conditional 206

RL 206

Z8 Encore! XP[®] F082A Series Product Specification

zilog | 267

register 201 ADC control (ADCCTL) 130, 132 ADC data high byte (ADCDH) 132 ADC data low bits (ADCDL) 133 flash control (FCTL) 149, 155, 156 flash high and low byte (FFREQH and FREEQL) 152 flash page select (FPS) 150, 151 flash status (FSTAT) 150 GPIO port A-H address (PxADDR) 46 GPIO port A-H alternate function sub-registers 48 GPIO port A-H control address (PxCTL) 47 GPIO port A-H data direction sub-registers 47 OCD control 184 OCD status 185 UARTx baud rate high byte (UxBRH) 114 UARTx baud rate low byte (UxBRL) 114 UARTx Control 0 (UxCTL0) 108, 114 UARTx control 1 (UxCTL1) 109 UARTx receive data (UxRXD) 113 UARTx status 0 (UxSTAT0) 111 UARTx status 1 (UxSTAT1) 112 UARTx transmit data (UxTXD) 113 Watchdog Timer control (WDTCTL) 31, 94, 136, 190 Watchdog Timer reload high byte (WDTH) 95 Watchdog Timer reload low byte (WDTL) 95 Watchdog Timer reload upper byte (WD-TU) 95 register file 15 register pair 201 register pointer 202 reset and stop mode characteristics 24 and Stop Mode Recovery 23 carry flag 204 sources 25 **RET 206** return 206

RLC 206 rotate and shift instuctions 206 rotate left 206 rotate left through carry 206 rotate right 206 rotate right through carry 206 RP 202 RR 201, 206 rr 201 RRC 206

S

SBC 203 SCF 204, 205 second opcode map after 1FH 219 set carry flag 204, 205 set register pointer 205 shift right arithmatic 207 shift right logical 207 signal descriptions 11 single-shot conversion (ADC) 123 software trap 206 source operand 202 SP 202 SRA 207 src 202 SRL 207 **SRP 205** stack pointer 202 **STOP 205** STOP mode 33 stop mode 205 Stop Mode Recovery sources 28 using a GPIO port pin transition 29 using Watchdog Timer time-out 29 stop mode recovery sources 30 using a GPIO port pin transition 30 SUB 203 subtract 203 subtract - extended addressing 203 subtract with carry 203