E·XFL

Zilog - Z8F042ASH020EC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f042ash020ec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reset, Stop Mode Recovery, and Low Voltage Detection	23
Reset Types	23
Reset Sources	
Power-On Reset	
Voltage Brownout Reset	
Watchdog Timer Reset External Reset Input	
External Reset Indicator	
On-Chip Debugger Initiated Reset	
Stop Mode Recovery	28
Stop Mode Recovery Using Watchdog Timer Time-Out	29
Stop Mode Recovery Using a GPIO Port Pin Transition	
Stop Mode Recovery Using the External RESET Pin	
Low Voltage Detection	
Reset Register Definitions	30
Low-Power Modes	33
STOP Mode	33
HALT Mode	34
Peripheral-Level Power Control	34
Power Control Register Definitions	34
General-Purpose Input/Output	37
GPIO Port Availability By Device	37
Architecture	38
GPIO Alternate Functions	38
Direct LED Drive	39
Shared Reset Pin	39
Shared Debug Pin	39
Crystal Oscillator Override	40
5 V Tolerance	40
External Clock Setup	40
GPIO Interrupts	45
GPIO Control Register Definitions	45
Port A–D Address Registers	
Port A–D Control Registers	
Port A D Data Direction Sub-Registers	
Port A–D Alternate Function Sub-Registers	41

Overview

Zilog's Z8 Encore![®] MCU family of products are the first in a line of Zilog[®] microcontroller products based upon the 8-bit eZ8 CPU. Zilog's Z8 Encore! XP[®] F082A Series products expand upon Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward compatible with existing Z8[®] instructions. The rich peripheral set of the Z8 Encore! XP F082A Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

The key features of Z8 Encore! XP F082A Series products include:

- 20 MHz eZ8 CPU
- 1 KB, 2 KB, 4 KB, or 8 KB Flash memory with in-circuit programming capability
- 256 B, 512 B, or 1 KB register RAM
- Up to 128 B non-volatile data storage (NVDS)
- Internal precision oscillator trimmed to $\pm 1\%$ accuracy
- External crystal oscillator, operating up to 20 MHz
- Optional 8-channel, 10-bit analog-to-digital converter (ADC)
- Optional on-chip temperature sensor
- On-chip analog comparator
- Optional on-chip low-power operational amplifier (LPO)
- Full-duplex UART
- The UART baud rate generator (BRG) can be configured and used as a basic 16-bit timer
- Infrared Data Association (IrDA)-compliant infrared encoder/decoders, integrated with UART
- Two enhanced 16-bit timers with capture, compare, and PWM capability
- Watchdog Timer (WDT) with dedicated internal RC oscillator
- Up to 20 vectored interrupts
- 6 to 25 I/O pins depending upon package

Timer Control Register Definitions

Timer 0–1 Control Registers

Time 0–1 Control Register 0

The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1) determine the timer operating mode (Table 48). It also includes a programmable PWM deadband delay, two bits to configure timer interrupt definition, and a status bit to identify if the most recent timer interrupt is caused by an input capture event.

Table 48. Timer 0–1 Control Register 0 (TxCTL0)

BITS	7	6	5	4	3	2	1	0		
FIELD	TMODEHI	TICO	NFIG	Reserved		INPCAP				
RESET	0	0	0	0	0	0 0 0				
R/W	R/W	R/W	R/W	R/W	R/W	R				
ADDR		F06H, F0EH								

TMODEHI—Timer Mode High Bit

This bit along with the TMODE field in TxCTL1 register determines the operating mode of the timer. This is the most significant bit of the Timer mode selection value. See the TxCTL1 register description for details of the full timer mode decoding.

TICONFIG—Timer Interrupt Configuration

This field configures timer interrupt definition.

- 0x = Timer Interrupt occurs on all defined Reload, Compare and Input Events
- 10 = Timer Interrupt only on defined Input Capture/Deassertion Events
- 11 = Timer Interrupt only on defined Reload/Compare Events

Reserved—Must be 0.

PWMD—PWM Delay value

This field is a programmable delay to control the number of system clock cycles delay before the Timer Output and the Timer Output Complement are forced to their active state.

- 000 = No delay
- 001 = 2 cycles delay
- 010 = 4 cycles delay
- 011 = 8 cycles delay
- 100 = 16 cycles delay
- 101 = 32 cycles delay

85

PWM SINGLE OUTPUT mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

CAPTURE mode

0 = Count is captured on the rising edge of the Timer Input signal.

1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

GATED mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.

1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE mode

0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.

1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PWM DUAL OUTPUT mode

0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload. When enabled, the Timer Output Complement is forced Low (0) upon PWM count match and forced High (1) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to High (1).

1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload. When enabled, the Timer Output Complement is forced High (1) upon PWM count match and forced Low (0) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to Low (0).

1000 = PWM DUAL OUTPUT mode 1001 = CAPTURE RESTART mode 1010 = COMPARATOR COUNTER mode

Timer 0–1 High and Low Byte Registers

The Timer 0–1 High and Low Byte (TxH and TxL) registers (Table 50 and Table 51) contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TxL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from TxL read the register directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

BITS	7	6	5	4	3	2	1	0				
FIELD	TH											
RESET	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W R/W R/W						
ADDR				F00H,	F08H							

Table 50. Timer 0–1 High Byte Register (TxH)

Table 51. Timer 0–1 Low Byte Register (TxL)

BITS	7	6	5	4	3	2	1	0				
FIELD	TL											
RESET	0	0	0	0	0	0	0	1				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
ADDR		F01H, F09H										

TH and TL—Timer High and Low Bytes

These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers (Table 52 and Table 53) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte register are stored in a temporary holding register. When a write to the

WDT Reset in Normal Operation

If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the device into the System Reset state. The WDT status bit in the Reset Status (RSTSTAT) register is set to 1. For more information on system reset, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

WDT Reset in STOP Mode

If configured to generate a Reset when a time-out occurs and the device is in STOP mode, the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the STOP bit in the Reset Status (RSTSTAT) register are set to 1 following WDT time-out in STOP mode.

Watchdog Timer Reload Unlock Sequence

Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. Follow the steps below to unlock the Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

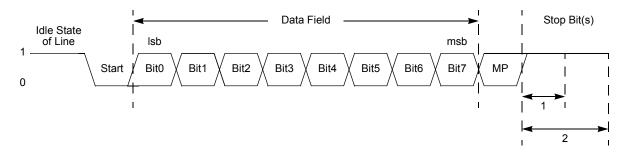
- 1. Write 55H to the Watchdog Timer Control register (WDTCTL).
- 2. Write AAH to the Watchdog Timer Control register (WDTCTL).
- 3. Write the Watchdog Timer Reload Upper Byte register (WDTU) with the desired time-out value.
- 4. Write the Watchdog Timer Reload High Byte register (WDTH) with the desired time-out value.
- 5. Write the Watchdog Timer Reload Low Byte register (WDTL) with the desired time-out value.

All three Watchdog Timer Reload registers must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

Watchdog Timer Calibration

Due to its extremely low operating current, the Watchdog Timer oscillator is somewhat inaccurate. This variation can be corrected using the calibration data stored in the Flash Information Page (see Table 97 and Table 98 on page 165). Loading these values into the

zilog[°]


- 3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.
- 4. Executes the IRET instruction to return from the interrupt-service routine and await more data.

Clear To Send (CTS) Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this action is typically performed during Stop Bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

MULTIPROCESSOR (9-bit) Mode

The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTI-PROCESSOR mode (also referred to as 9-bit mode), the multiprocessor bit (MP) is transmitted immediately following the 8-bits of data and immediately preceding the Stop bit(s) as displayed in Figure 13. The character format is:

Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format

In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the Multiprocessor control bit. The UART Control 1 and Status 1 registers provide MULTI-PROCESSOR (9-bit) mode control and status information. If an automatic address matching scheme is enabled, the UART Address Compare register holds the network address of the device.

MULTIPROCESSOR (9-bit) Mode Receive Interrupts

When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed to it. The determination of whether a frame of data is addressed to the UART can be made in hardware, software or some combination of the two, depending on the multiprocessor

zilog[°]

configuration bits. In general, the address compare feature reduces the load on the CPU, because it does not require access to the UART when it receives data directed to other devices on the multi-node network. The following three MULTIPROCESSOR modes are available in hardware:

- 1. Interrupt on all address bytes.
- 2. Interrupt on matched address bytes and correctly framed data bytes.
- 3. Interrupt only on correctly framed data bytes.

These modes are selected with MPMD [1:0] in the UART Control 1 Register. For all multiprocessor modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. Each new incoming byte interrupts the CPU. The software is responsible for determining the end of the frame. It checks for the end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, MPMD[0] must be set to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme requires the following: set MPMD[1:0] to 10B and write the UART's address into the UART Address Compare Register. This mode introduces additional hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. When the first data byte in the frame is read, the NEWFRM bit of the UART Status 1 Register is asserted. All successive data bytes have NEWFRM=0. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continues and the NEWFRM bit is set for the first byte of the new frame. If there is no match, the UART ignores all incoming bytes until the next address match.

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART's address into the UART Address Compare Register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame remains accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

0 = No framing error occurred. 1 = A framing error occurred.

BRKD—Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit. 0 = No break occurred.

1 = A break occurred.

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register.

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted.

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting.

1 = Transmission is complete.

 $CTS - \overline{CTS}$ signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal. This signal is active Low.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Table 64. UART Status 1 Register (U0STAT1)

BITS	7	6	5	4	3	2	1	0
FIELD		NEWFRM	MPRX					
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/W	R/W	R	R
ADDR				F4	4H			

Reserved—Must be 0.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame.

1 = The current byte is the first data byte of a new frame.

Flash Memory

The products in the Z8 Encore! XP[®] F082A Series feature a non-volatile Flash memory of 8 KB (8192), 4 KB (4096), 2 KB (2048 bytes), or 1 KB (1024) with read/write/ erase capability. The Flash Memory can be programmed and erased in-circuit by user code or through the On-Chip Debugger. The features include:

- User controlled read and write protect capability
- Sector-based write protection scheme
- Additional protection schemes against accidental program and erasure

Architecture

The Flash memory array is arranged in pages with 512 bytes per page. The 512 byte page is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64 bytes.

For program or data protection, the Flash memory is also divided into sectors. In the Z8 Encore! XP F082A Series, these sectors are either 1024 bytes (in the 8 KB devices) or 512 bytes (all other memory sizes) in size. Page and sector sizes are not generally equal.

The first 2 bytes of the Flash Program memory are used as Flash Option Bits. For more information about their operation, see Flash Option Bits on page 153.

Table 76 describes the Flash memory configuration for each device in the Z8 Encore! XPF082A Series. Figure 21 displays the Flash memory arrangement.

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash Sector Size (Bytes)
Z8F08xA	8 (8192)	16	0000H–1FFFH	1024
Z8F04xA	4 (4096)	8	0000H-0FFFH	512
Z8F02xA	2 (2048)	4	0000H–07FFH	512
Z8F01xA	1 (1024)	2	0000H-03FFH	512

Table 76. Z8 Encore! XP F082A Series Flash Memory Configurations

Flash Option Bits

Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore! XP[®] F082A Series operation. The feature configuration data is stored in the Flash program memory and loaded into holding registers during Reset. The features available for control through the Flash Option Bits include:

- Watchdog Timer time-out response selection-interrupt or system reset
- Watchdog Timer always on (enabled at Reset)
- The ability to prevent unwanted read access to user code in Program Memory
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory
- Voltage Brownout configuration-always enabled or disabled during STOP mode to reduce STOP mode power consumption
- Oscillator mode selection-for high, medium, and low power crystal oscillators, or external RC oscillator
- Factory trimming information for the internal precision oscillator and low voltage detection
- Factory calibration values for ADC, temperature sensor, and Watchdog Timer compensation
- Factory serialization and randomized lot identifier (optional)

Operation

Option Bit Configuration By Reset

Each time the Flash Option Bits are programmed or erased, the device must be Reset for the change to take effect. During any reset operation (System Reset, Power-On Reset, or Stop Mode Recovery), the Flash Option Bits are automatically read from the Flash Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the Z8 Encore! XP F082A Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

zilog

160

Reserved—Must be 1.

LVD TRIM-Low Voltage Detect Trim

This trimming affects the low voltage detection threshold. Each LSB represents a 50 mV change in the threshold level. Alternatively, the low voltage threshold may be computed from the options bit value by the following equation:

LVD_LVL = $3.6 \text{ V} - \text{LVD} \text{TRIM} \times 0.05 \text{ V}$

LV	/D Threshold ((V)
LVD_TRIM	Typical	Description
00000	3.60	Maximum LVD threshold
00001	3.55	
00010	3.50	
00011	3.45	
00100	3.40	
00101	3.35	
00110	3.30	
00111	3.25	
01000	3.20	
01001	3.15	
01010	3.10	Default on Reset
01011	3.05	
01100	3.00	
01101	2.95	
01110	2.90	
01111	2.85	
10000	2.80	
10001	2.75	
10010	2.70	
10011	2.70	
to 11111	to 1.65	Minimum LVD threshold

191

WDFEN-Watchdog Timer Oscillator Failure Detection Enable

1 = Failure detection of Watchdog Timer oscillator is enabled

0 = Failure detection of Watchdog Timer oscillator is disabled

SCKSEL—System Clock Oscillator Select

000 = Internal precision oscillator functions as system clock at 5.53 MHz

001 = Internal precision oscillator functions as system clock at 32 kHz

010 = Crystal oscillator or external RC oscillator functions as system clock

011 = Watchdog Timer oscillator functions as system

100 = External clock signal on PB3 functions as system clock

101 = Reserved

110 = Reserved

111 = Reserved

zilog[®]

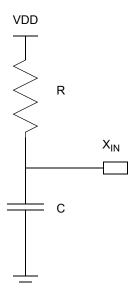

Mode	Crystal Frequency Range	Function	Use	sconduo (mA/V) this ran alculatio	ge for
Low Gain*	32 kHz–1 MHz	Low Power/Frequency Applications	0.02	0.04	0.09
Medium Gain*	0.5 MHz–10 MHz	Medium Power/Frequency Applications	0.84	1.7	3.1
High Gain*	8 MHz–20 MHz	High Power/Frequency Applications	1.1	2.3	4.2

Table 111. Transconductance Values for Low, Medium, and High Gain Operating Modes

Note: *Printed circuit board layout must not add more than 4 pF of stray capacitance to either XIN or XOUT pins. if no Oscillation occurs, reduce the values of the capacitors C1 and C2 to decrease the loading.

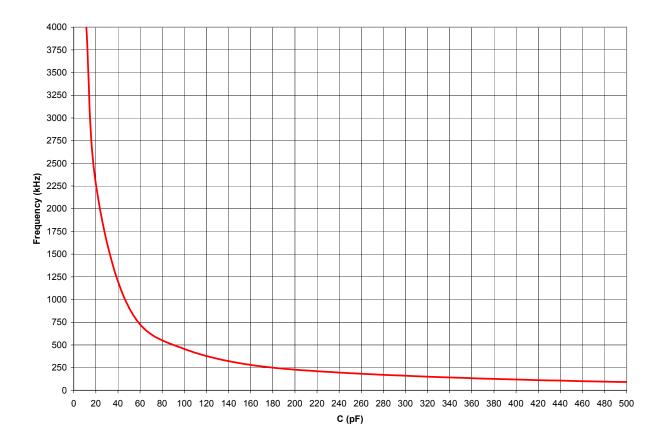
Oscillator Operation with an External RC Network

Figure 28 displays a recommended configuration for connection with an external resistor-capacitor (RC) network.

Figure 28. Connecting the On-Chip Oscillator to an External RC Network

An external resistance value of 45 k Ω is recommended for oscillator operation with an external RC network. The minimum resistance value to ensure operation is 40 k Ω . The typical oscillator frequency can be estimated from the values of the resistor (*R* in k Ω) and capacitor (*C* in pF) elements using the following equation:

Oscillator Frequency (kHz) =
$$\frac{1 \times 10^{6}}{(0.4 \times R \times C) + (4 \times C)}$$


195

zilog

196

Figure 29 displays the typical (3.3 V and 25 °C) oscillator frequency as a function of the capacitor (C in pF) employed in the RC network assuming a 45 K Ω external resistor. For very small values of C, the parasitic capacitance of the oscillator XIN pin and the printed circuit board must be included in the estimation of the oscillator frequency.

It is possible to operate the RC oscillator using only the parasitic capacitance of the package and printed circuit board. To minimize sensitivity to external parasitics, external capacitance values in excess of 20 pF are recommended.

Figure 29. Typical RC Oscillator Frequency as a Function of the External Capacitance with a 45 k Ω Resistor

Caution:

When using the external RC oscillator mode, the oscillator can stop oscillating if the power supply drops below 2.7 V, but before the power supply drops to the Voltage Brownout threshold. The oscillator resumes oscillation when the supply voltage exceeds 2.7 V.

zilog[°]

208

Assembly	Symbolic	Addres	s Mode	Opcode(s)			Fla	ags			Fetch	Instr.
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
AND dst, src	$dst \gets dst \; AND \; src$	r	r	52	-	*	*	0	_	-	2	3
		r	Ir	53	-						2	4
		R	R	54	-						3	3
		R	IR	55	-						3	4
		R	IM	56	-						3	3
		IR	IM	57	-						3	4
ANDX dst, src	$dst \gets dst \ AND \ src$	ER	ER	58	-	*	*	0	_	-	4	3
		ER	IM	59	-						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	-	_	_	_	_	_	1	2
BCLR bit, dst	$dst[bit] \leftarrow 0$	r		E2	-	-	_	_	_	-	2	2
BIT p, bit, dst	$dst[bit] \leftarrow p$	r		E2	-	-	-	_	_	-	2	2
BRK	Debugger Break			00	-	-	-	-	-	-	1	1
BSET bit, dst	$dst[bit] \leftarrow 1$	r		E2	-	-	_	_	-	-	2	2
BSWAP dst	$dst[7:0] \leftarrow dst[0:7]$	R		D5	Х	*	*	0	_	-	2	2
BTJ p, bit, src, dst			r	F6	-	-	-	-	-	-	3	3
	$PC \gets PC + X$		lr	F7	-						3	4
BTJNZ bit, src, dst			r	F6	-	-	_	_	_	-	3	3
	$PC \gets PC + X$		lr	F7	-						3	4
BTJZ bit, src, dst	if src[bit] = 0		r	F6	-	-	-	-	-	-	3	3
	$PC \gets PC + X$		lr	F7	-						3	4
CALL dst	$SP \leftarrow SP - 2$	IRR		D4	-	_	_	_	_	-	2	6
	$\begin{array}{l} @SP \leftarrow PC \\ PC \leftarrow dst \end{array}$	DA		D6	-						3	3
CCF	$C \leftarrow \sim C$			EF	*	_	_	_	_		1	2
CLR dst	$dst \gets 00H$	R		B0	-	-	_	_	-	-	2	2
		IR		B1	-						2	3
Flags Notation:	* = Value is a function of – = Unaffected X = Undefined	the result	of the o	peration.		Re Se		to (1)			

Table 124. eZ8 CPU Instruction Summary (Continued)

Table 128. Power Consumption (Continued)

		V _{DI}	_o = 2.7 V to 3			
			Maximum ²	Maximum ³		
Symbol	Parameter	Typical 1	Std Temp	Ext Temp	Units	Conditions
I _{DD} LPO	Low-Power Operational Amplifier Supply Current	3	5	5	μΑ	Driving a high- impedance load
I _{DD} TS	Temperature Sensor Supply Current	60			μA	See Notes 4
I _{DD} BG	Band Gap Supply	320	480	500	μA	For 20-/28-pin devices
	Current					For 8-pin devices

Notes

1. Typical conditions are defined as V_{DD} = 3.3 V and +30 °C.

2. Standard temperature is defined as $T_A = 0$ °C to +70 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

3. Extended temperature is defined as T_A = -40 °C to +105 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current. This bandgap current is only added once, regardless of how many peripherals are using it.

zilog

		V _{DD}	= 2.7 V to	3.6 V		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
T _{AERR}	Temperature Error		<u>+</u> 0.5	<u>+</u> 2	°C	Over the range +20 °C to +30 °C (as measured by ADC) ¹
			<u>+</u> 1	<u>+</u> 5	°C	Over the range +0 °C to +70 °C (as measured by ADC)
			<u>+</u> 2	<u>+</u> 7	°C	Over the range +0 °C to +105 °C (as measured by ADC)
			<u>+</u> 7		°C	Over the range -40 °C to +105 °C (as measured by ADC)
T _{AERR}	Temperature Error		TBD		°C	Over the range -40 °C to +105 °C (as measured by comparator)
t _{WAKE}	Wakeup Time		80	100	μs	Time required for Temperature Sensor to stabilize after enabling

Table 138. Temperature Sensor Electrical Characteristics

¹Devices are factory calibrated at for maximal accuracy between +20 °C and +30 °C, so the sensor is maximally accurate in that range. User re-calibration for a different temperature range is possible and increases accuracy near the new calibration point.

General Purpose I/O Port Input Data Sample Timing

Figure 34 displays timing of the GPIO Port input sampling. The input value on a GPIO Port pin is sampled on the rising edge of the system clock. The Port value is available to the eZ8 CPU on the second rising clock edge following the change of the Port value.

ג ש ק ע ק ע ק ע ק ע ק ע ק ע ק ע ק ע ק ע ק	Flash Serie	S Devel	SQ NND	t Kit	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description		
Z8F08A28100KITG	Cono	Z8 Encore! XP F082A Series 28-Pin Development Kit											
Z8F04A28100KITG		Z8 Encore! XP F042A Series 28-Pin Development Kit											
Z8F04A08100KITG		Z8 Encore! XP F042A Series 8-Pin Development Kit											
ZUSBSC00100ZACG		USB Smart Cable Accessory Kit											
ZUSBOPTSC01ZACG		USB Opto-Isolated Smart Cable Accessory Kit											
ZENETSC0100ZACG		Ethernet Smart Cable Accessory Kit											

269

electrical characteristics and timing 230, 233 interrupt in normal operation 92 interrupt in STOP mode 92 operation 135 refresh 92, 205 reload unlock sequence 93 reload upper, high and low registers 94 reset 27 reset in normal operation 93 reset in STOP mode 93 time-out response 92 WDTCTL register 31, 94, 136, 190 WDTH register 95 WDTL register 95 working register 201 working register pair 201 WTDU register 95

Х

X 201 XOR 206 XORX 206

Ζ

Z8 Encore! block diagram 4 features 1 part selection guide 2