
E·XFL

Zilog - Z8F042ASJ020SC00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f042asj020sc00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Watchdog Timer Time-Out Response 92 Watchdog Timer Reload Unlock Sequence 93 Watchdog Timer Calibration 93 Watchdog Timer Calibration 93	3 3
Watchdog Timer Control Register Definitions 94 Watchdog Timer Control Register 94 Watchdog Timer Reload Upper, High and Low Byte Registers 94	4
Universal Asynchronous Receiver/Transmitter	7
Architecture 97 Operation 98 Data Format 98 Transmitting Data using the Polled Method 98	8 8
Transmitting Data using the Interrupt-Driven Method 100 Receiving Data using the Polled Method 100	0 1
Receiving Data using the Interrupt-Driven Method 102 Clear To Send (CTS) Operation 103 MULTIPROCESSOR (9-bit) Mode 103 External Driver Enable 104 UART Interrupts 104 UART Baud Rate Generator 105	3 3 4 5
UART Control Register Definitions108UART Control 0 and Control 1 Registers108UART Status 0 Register112UART Status 1 Register112UART Transmit Data Register113UART Receive Data Register113UART Address Compare Register114UART Baud Rate High and Low Byte Registers114	8 8 1 2 3 3 4
Infrared Encoder/Decoder 112	7
Architecture 117 Operation 117 Transmitting IrDA Data 118 Receiving IrDA Data 119 Infrared Encoder Control Decistor Definitions 120	7 8 9
Infrared Encoder/Decoder Control Register Definitions	
Analog-to-Digital Converter	
Architecture 12 Operation 122 Data Format 122	2

vii

Block Diagram

Figure 1 displays the block diagram of the architecture of the Z8 Encore! XP[®] F082A Series devices.

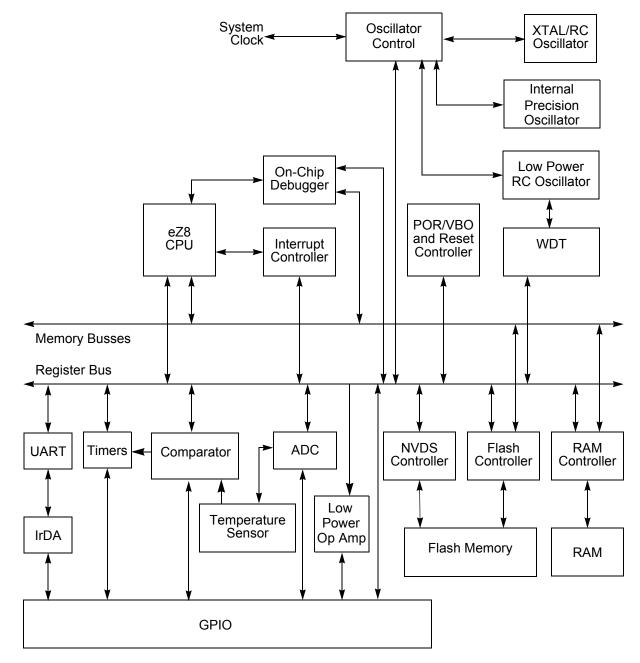


Figure 1. Z8 Encore! XP F082A Series Block Diagram

zilog[°]

Table 7. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
FDF	Port D Output Data	PDOUT	00	47
FE0–FEF	Reserved	_	XX	
Watchdog Time	er (WDT)			
FF0	Reset Status (Read-only)	RSTSTAT	X0	30
	Watchdog Timer Control (Write-only)	WDTCTL	N/A	94
FF1	Watchdog Timer Reload Upper Byte	WDTU	00	95
FF2	Watchdog Timer Reload High Byte	WDTH	04	95
FF3	Watchdog Timer Reload Low Byte	WDTL	00	95
FF4–FF5	Reserved	—	XX	
Trim Bit Contro	bl			
FF6	Trim Bit Address	TRMADR	00	155
FF7	Trim Bit Data	TRMDR	00	156
Flash Memory	Controller			
FF8	Flash Control	FCTL	00	149
FF8	Flash Status	FSTAT	00	150
FF9	Flash Page Select	FPS	00	151
	Flash Sector Protect	FPROT	00	151
FFA	Flash Programming Frequency High Byte	FFREQH	00	152
FFB	Flash Programming Frequency Low Byte	FFREQL	00	152
eZ8 CPU				
FFC	Flags		XX	Refer to eZ8
FFD	Register Pointer	RP	XX	CPU Core
FFE	Stack Pointer High Byte	SPH	XX	—User Manual (UM0128)
FFF	Stack Pointer Low Byte	SPL	XX	_(010120)
XX=Undefined				

22

BITS	7	6	5	4	3	0			
FIELD	POR	STOP	WDT	EXT		LVD			
RESET	See d	lescriptions	below	0	0 0 0 0			0	
R/W	R	R	R	R	R R R R				
ADDR				FF	0H				

Table 11. Reset Status Register (RSTSTAT)

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using Watchdog Timer time-out	0	0	1	0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using Watchdog Timer time-out	0	1	1	0

POR—Power-On Reset Indicator

If this bit is set to 1, a Power-On Reset event occurs. This bit is reset to 0 if a WDT time-out or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.

STOP—Stop Mode Recovery Indicator

If this bit is set to 1, a Stop Mode Recovery occurs. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurs because of a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP mode. Reading this register also resets this bit.

WDT—Watchdog Timer Time-Out Indicator

If this bit is set to 1, a WDT time-out occurs. A POR resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit. This read must occur before clearing the WDT interrupt.

EXT-External Reset Indicator

If this bit is set to 1, a Reset initiated by the external $\overline{\text{RESET}}$ pin occurs. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.

Reserved—Must be 0.

LVD—Low Voltage Detection Indicator

If this bit is set to 1 the current state of the supply voltage is below the low voltage detection threshold. This value is not latched but is a real-time indicator of the supply voltage level.

Zilog ₄₂

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B	PB0	Reserved	AFS1[0]: 0	
		ANA0/AMPOUT	ADC Analog Input/LPO Output	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1/AMPINN	ADC Analog Input/LPO Input (N)	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
-		ANA2/AMPINP	ADC Analog Input/LPO Input (P)	AFS1[2]: 1
	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		VREF*	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Table 14. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Note: Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is not used to select the function. Also, alternate function selection as described in Port A-D Alternate Function Sub-Registers on page 47 must also be enabled.

* VREF is available on PB5 in 28-pin products only.

Table 39. IRQ1 Enable and Priority Encoding

IRQ1ENH[x]	IRQ1ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Medium
1	1	Level 3	High

where x indicates the register bits from 0–7.

Table 40. IRQ1 Enable High Bit Register (IRQ1ENH)

BITS	7	6	5	4	3	2	1	0			
FIELD	PA7VENH	PA6CENH	PA5ENH	PA4ENH	PA3ENH	PA2ENH	PA1ENH	PA0ENH			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W									
ADDR				FC	4H						

PA7VENH—Port A Bit[7] or LVD Interrupt Request Enable High Bit PA6CENH—Port A Bit[7] or Comparator Interrupt Request Enable High Bit PAxENH—Port A Bit[x] Interrupt Request Enable High Bit

See Shared Interrupt Select (IRQSS) register for selection of either the LVD or the comparator as the interrupt source.

Table 41. IRQ1 Enable Low Bit Register (IRQ1ENL)

BITS	7 6 5 4 3 2 1 0										
FIELD	PA7VENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL			
RESET	0 0 0 0 0 0 0 0 0										
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W									
ADDR				FC	5H						

PA7VENL—Port A Bit[7] or LVD Interrupt Request Enable Low Bit PA6CENL—Port A Bit[6] or Comparator Interrupt Request Enable Low Bit PAxENL—Port A Bit[x] Interrupt Request Enable Low Bit

Timers

These Z8 Encore! XP[®] F082A Series products contain two 16-bit reloadable timers that can be used for timing, event counting, or generation of pulse-width modulated (PWM) signals. The timers' feature include:

- 16-bit reload counter.
- Programmable prescaler with prescale values from 1 to 128.
- PWM output generation.
- Capture and compare capability.
- External input pin for timer input, clock gating, or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency.
- Timer output pin.
- Timer interrupt.

In addition to the timers described in this chapter, the Baud Rate Generator of the UART (if unused) may also provide basic timing functionality. For information on using the Baud Rate Generator as an additional timer, see Universal Asynchronous Receiver/Transmitter on page 97.

Architecture

Figure 9 on page 70 displays the architecture of the timers.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COUNTER mode.
 - Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

COUNTER Mode Timer Input Transitions = Current Count Value-Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPAR-ATOR COUNTER mode, the prescaler is disabled.

Caution: The frequency of the comparator output signal must not exceed one-fourth the system clock frequency. Further, the high or low state of the comparator output signal pulse must be no less than twice the system clock period. A shorter pulse may not be captured.

After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

85

PWM SINGLE OUTPUT mode

0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

CAPTURE mode

0 = Count is captured on the rising edge of the Timer Input signal.

1 = Count is captured on the falling edge of the Timer Input signal.

COMPARE mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

GATED mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.

1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

CAPTURE/COMPARE mode

0 = Counting is started on the first rising edge of the Timer Input signal. The current count is captured on subsequent rising edges of the Timer Input signal.

1 = Counting is started on the first falling edge of the Timer Input signal. The current count is captured on subsequent falling edges of the Timer Input signal.

PWM DUAL OUTPUT mode

0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload. When enabled, the Timer Output Complement is forced Low (0) upon PWM count match and forced High (1) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to High (1).

1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload. When enabled, the Timer Output Complement is forced High (1) upon PWM count match and forced Low (0) upon Reload. The PWMD field in TxCTL0 register is a programmable delay to control the number of cycles time delay before the Timer Output and the Timer Output Complement is forced to Low (0).

WDT Reset in Normal Operation

If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the device into the System Reset state. The WDT status bit in the Reset Status (RSTSTAT) register is set to 1. For more information on system reset, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

WDT Reset in STOP Mode

If configured to generate a Reset when a time-out occurs and the device is in STOP mode, the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the STOP bit in the Reset Status (RSTSTAT) register are set to 1 following WDT time-out in STOP mode.

Watchdog Timer Reload Unlock Sequence

Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. Follow the steps below to unlock the Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

- 1. Write 55H to the Watchdog Timer Control register (WDTCTL).
- 2. Write AAH to the Watchdog Timer Control register (WDTCTL).
- 3. Write the Watchdog Timer Reload Upper Byte register (WDTU) with the desired time-out value.
- 4. Write the Watchdog Timer Reload High Byte register (WDTH) with the desired time-out value.
- 5. Write the Watchdog Timer Reload Low Byte register (WDTL) with the desired time-out value.

All three Watchdog Timer Reload registers must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

Watchdog Timer Calibration

Due to its extremely low operating current, the Watchdog Timer oscillator is somewhat inaccurate. This variation can be corrected using the calibration data stored in the Flash Information Page (see Table 97 and Table 98 on page 165). Loading these values into the

zilog

Universal Asynchronous Receiver/Transmitter

The universal asynchronous receiver/transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. Features of the UART include:

- 8-bit asynchronous data transfer.
- Selectable even- and odd-parity generation and checking.
- Option of one or two STOP bits.
- Separate transmit and receive interrupts.
- Framing, parity, overrun and break detection.
- Separate transmit and receive enables.
- 16-bit baud rate generator (BRG).
- Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt schemes.
- Baud rate generator (BRG) can be configured and used as a basic 16-bit timer.
- Driver enable (DE) output for external bus transceivers.

Architecture

The UART consists of three primary functional blocks: transmitter, receiver, and baud rate generator. The UART's transmitter and receiver function independently, but employ the same baud rate and data format. Figure 10 on page 98 displays the UART architecture.

zilog[°]

configuration bits. In general, the address compare feature reduces the load on the CPU, because it does not require access to the UART when it receives data directed to other devices on the multi-node network. The following three MULTIPROCESSOR modes are available in hardware:

- 1. Interrupt on all address bytes.
- 2. Interrupt on matched address bytes and correctly framed data bytes.
- 3. Interrupt only on correctly framed data bytes.

These modes are selected with MPMD [1:0] in the UART Control 1 Register. For all multiprocessor modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. Each new incoming byte interrupts the CPU. The software is responsible for determining the end of the frame. It checks for the end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, MPMD[0] must be set to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme requires the following: set MPMD[1:0] to 10B and write the UART's address into the UART Address Compare Register. This mode introduces additional hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. When the first data byte in the frame is read, the NEWFRM bit of the UART Status 1 Register is asserted. All successive data bytes have NEWFRM=0. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continues and the NEWFRM bit is set for the first byte of the new frame. If there is no match, the UART ignores all incoming bytes until the next address match.

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART's address into the UART Address Compare Register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame remains accompanied by a NEWFRM assertion.

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

zilog

send. This action provides 7 bit periods of latency to load the Transmit Data register before the Transmit shift register completes shifting the current character. Writing to the UART Transmit Data register clears the TDRE bit to 0.

Receiver Interrupts

The receiver generates an interrupt when any of the following occurs:

- A data byte is received and is available in the UART Receive Data register. This interrupt can be disabled independently of the other receiver interrupt sources. The received data interrupt occurs after the receive character has been received and placed in the Receive Data register. To avoid an overrun error, software must respond to this received data available condition before the next character is completely received.

Note: In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on the multiprocessor configuration and the most recent address byte.

- A break is received.
- An overrun is detected.
- A data framing error is detected.

UART Overrun Errors

When an overrun error condition occurs the UART prevents overwriting of the valid data currently in the Receive Data register. The Break Detect and Overrun status bits are not displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 register is updated to indicate the overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that the Receive Data register contains a data byte. However, because the overrun error occurred, this byte may not contain valid data and must be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status byte indicating an overrun error, the Receive Data register must be read again to clear the error bits is the UART Status 0 register. Updates to the Receive Data register occur only when the next data word is received.

UART Data and Error Handling Procedure

Figure 15 displays the recommended procedure for use in UART receiver interrupt service routines.

zilog[°]

ANAIN[3:0]—Analog Input Select

These bits select the analog input for conversion. Not all Port pins in this list are available in all packages for the Z8 Encore! XP[®] F082A Series. For information on port pins available with each package style, see Pin Description on page 9. Do not enable unavailable analog inputs. Usage of these bits changes depending on the buffer mode selected in ADC Control/Status Register 1.

For the reserved values, all input switches are disabled to avoid leakage or other undesirable operation. ADC samples taken with reserved bit settings are undefined.

SINGLE-ENDED:

- 0000 = ANA0 (transimpedance amp output when enabled)
- 0001 = ANA1 (transimpedance amp inverting input)
- 0010 = ANA2 (transimpedance amp non-inverting input)
- 0011 = ANA3
- 0100 = ANA4
- 0101 = ANA5
- 0110 = ANA6
- 0111 = ANA7
- 1000 = Reserved
- 1001 = Reserved
- 1010 = Reserved
- 1011 = Reserved
- 1100 = Hold transimpedance input nodes (ANA1 and ANA2) to ground.
- 1101 = Reserved
- 1110 = Temperature Sensor.
- 1111 = Reserved.

DIFFERENTIAL (non-inverting input and inverting input respectively):

- 0000 = ANA0 and ANA10001 = ANA2 and ANA30010 = ANA4 and ANA50011 = ANA1 and ANA00100 = ANA3 and ANA20101 = ANA5 and ANA40110 = ANA6 and ANA50111 = ANA0 and ANA50111 = ANA0 and ANA21000 = ANA0 and ANA31001 = ANA0 and ANA41010 = ANA0 and ANA51011 = Reserved1100 = Reserved1101 = Reserved1101 = Reserved1110 = Reserved
- 1111 = Manual Offset Calibration Mode

zilog ₁₄₂

8 KB Flash Program Memor	Addresses (hex)	4 KB Flash Program Memory	/ Addresses (hex) 1 0FFF	2 KB Flash Program Memory Address	/ es (hex)
Sector 7	1FFF 1C00	Sector 7	0E00	Sector 3	07FF 0600
Sector 6	1BFF	Sector 6	0DFF	Sector 2	05FF 0400 03FF
Castar 5	1800 17FF	Sector 5	0C00 0BFF	Sector 1	0200 01FF
Sector 5	1400 13FF		0A00 09FF	Sector 0	0000
Sector 4	1000	Sector 4	0800		
Sector 3	0FFF 0C00	Sector 3	07FF 0600	1 KB Flash Program Memory	y ses (hex)
Sector 2	0BFF 0800	Sector 2	05FF 0400	Sector 1	03FF
Sector 1	07FF 0400	Sector 1	03FF 0200	Sector 0	01FF
Sector 0	03FF 0000	Sector 0	01FF 0000		

Figure 21. Flash Memory Arrangement

Flash Information Area

The Flash information area is separate from Program Memory and is mapped to the address range FE00H to FFFFH. This area is readable but cannot be erased or overwritten. Factory trim values for the analog peripherals are stored here. Factory calibration data for the ADC is also stored here.

zilog ₁

 If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/ DBG pin, the DBG feature is unlocked. After releasing PA2/RESET, it is pulled High. At this point, the PA0/DBG pin may be used to autobaud and cause the device to enter DEBUG mode. See OCD Unlock Sequence (8-Pin Devices Only) on page 178.

Exiting DEBUG Mode

The device exits DEBUG mode following any of these operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0
- Power-On Reset
- Voltage Brownout reset
- Watchdog Timer reset
- Asserting the RESET pin Low to initiate a Reset
- Driving the DBG pin Low while the device is in STOP mode initiates a System Reset

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character transmitted and received by the OCD consists of 1 Start bit, 8 data bits (least-significant bit first), and 1 Stop bit as displayed in Figure 26.

		START	D0	D1	D2	D3	D4	D5	D6	D7	STOP
--	--	-------	----	----	----	----	----	----	----	----	------

Figure 26. OCD Data Format

Note: When responding to a request for data, the OCD may commence transmitting immediately after receiving the stop bit of an incoming frame. Therefore, when sending the stop bit, the host must not actively drive the DBG pin High for more than 0.5 bit times. It is recommended that, if possible, the host drives the DBG pin using an open drain output to avoid this issue.

OCD Auto-Baud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger contains an Auto-Baud Detector/Generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7 data bits), framed between High bits. The Auto-Baud Detector measures this period and sets the OCD Baud Rate Generator accordingly.

191

WDFEN-Watchdog Timer Oscillator Failure Detection Enable

1 = Failure detection of Watchdog Timer oscillator is enabled

0 = Failure detection of Watchdog Timer oscillator is disabled

SCKSEL—System Clock Oscillator Select

000 = Internal precision oscillator functions as system clock at 5.53 MHz

001 = Internal precision oscillator functions as system clock at 32 kHz

010 = Crystal oscillator or external RC oscillator functions as system clock

011 = Watchdog Timer oscillator functions as system

100 = External clock signal on PB3 functions as system clock

101 = Reserved

110 = Reserved

111 = Reserved

INCH

MAX

0.068

0.010

0.061

0.019

0.010

0.196

0.157

0.242

0.016

0.032

.050 BSC

MIN

0.061

0.004

0.055

0.014

0.007

0.189

0.150

0.230

0.010

0.018

MAX

1.73

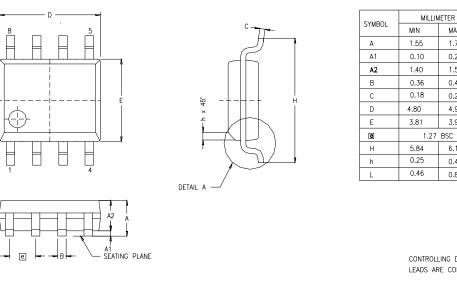
0.25

1.55

0.48

0.25

4.98


3.99

6.15

0.40

0.81

zilog 242

Figure 40 displays the 8-pin Small Outline Integrated Circuit package (SOIC) available for the Z8 Encore! XP[®] F082A Series devices.

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 40. 8-Pin Small Outline Integrated Circuit Package (SOIC)

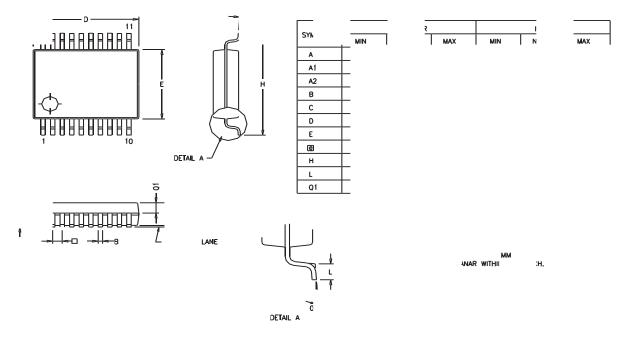


Figure 44 displays the 20-pin Small Shrink Outline Package (SSOP) available for the Z8 Encore! XP F082A Series devices.

Figure 44. 20-Pin Small Shrink Outline Package (SSOP)

zilog[°]

255

Part Number	Flash	RAM	SOVN	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Comparator	Temperature Sensor	Description
Z8 Encore! XP [®] F082A Series with 2 KB Flash, 10-Bit Analog-to-Digital Converter											
Standard Temperature											
Z8F022APB020SC		512 B	64 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F022AQB020SC	2 KB	512 B	64 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F022ASB020SC	2 KB	512 B	64 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F022ASH020SC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F022AHH020SC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F022APH020SC	2 KB	512 B	64 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F022ASJ020SC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F022AHJ020SC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F022APJ020SC	2 KB	512 B	64 B	23	20	2	8	1	1	1	PDIP 28-pin package
Extended Temperatur	'e: -40 °	C to 10	5 °C								
Z8F022APB020EC	2 KB	512 B	64 B	6	14	2	4	1	1	1	PDIP 8-pin package
Z8F022AQB020EC	2 KB	512 B	64 B	6	14	2	4	1	1	1	QFN 8-pin package
Z8F022ASB020EC	2 KB	512 B	64 B	6	14	2	4	1	1	1	SOIC 8-pin package
Z8F022ASH020EC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SOIC 20-pin package
Z8F022AHH020EC	2 KB	512 B	64 B	17	20	2	7	1	1	1	SSOP 20-pin package
Z8F022APH020EC	2 KB	512 B	64 B	17	20	2	7	1	1	1	PDIP 20-pin package
Z8F022ASJ020EC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SOIC 28-pin package
Z8F022AHJ020EC	2 KB	512 B	64 B	23	20	2	8	1	1	1	SSOP 28-pin package
Z8F022APJ020EC	2 KB	512 B	64 B	23	20	2	8	1	1	1	PDIP 28-pin package
Replace C with G for Lead	d-Free F	ackaging									