

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, Temp Sensor, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f082apj020ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Overview
Features
Part Selection Guide
Block Diagram
CPU and Peripheral Overview
eZ8 CPU Features 5
10-Bit Analog-to-Digital Converter 5
Low-Power Operational Amplifier
Internal Precision Oscillator
Temperature Sensor 6 Analog Comparator 6
External Crystal Oscillator
Low Voltage Detector
On-Chip Debugger
Universal Asynchronous Receiver/Transmitter
Timers
General-Purpose Input/Output
Direct LED Drive
Non-Volatile Data Storage
Interrupt Controller
Reset Controller
Pin Description
Available Packages
Pin Configurations
Signal Descriptions
Pin Characteristics
Address Space
Register File
Program Memory
Data Memory
Flash Information Area 17
Register Map

Address Space

The eZ8 CPU can access the following three distinct address spaces:

- 1. The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- 2. The Program Memory contains addresses for all memory locations having executable code and/or data.
- 3. The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following subsections. For more information on eZ8 CPU and its address space, refer to eZ8 CPU Core User Manual (UM0128) available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore![®] MCU is 4 KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4 KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8 Encore! XP[®] F082A Series devices contain 256 B to 1 KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. The Z8 Encore! XP F082A Series devices contain 1 KB to 8 KB of on-chip Flash memory in the Program Memory address space, depending on the device. Reading from Program Memory

Reset Sources

Table 9 lists the possible sources of a system reset.

Operating Mode	Reset Source	Special Conditions	
NORMAL or HALT modes	Power-On Reset/Voltage Brownout	Reset delay begins after supply voltage exceeds POR level.	
	Watchdog Timer time-out when configured for Reset	None.	
	RESET pin assertion	All reset pulses less than three system clocks in width are ignored.	
	On-Chip Debugger initiated Reset (OCDCTL[0] set to 1)	System Reset, except the On-Chip Debugger is unaffected by the reset.	
STOP mode	Power-On Reset/Voltage Brownout	Reset delay begins after supply voltage exceeds POR level.	
	RESET pin assertion	All reset pulses less than the specified analog delay are ignored. See Table 131 on page 229.	
	DBG pin driven Low	None.	

Table 9. Reset Sources and Resulting Reset Type

Power-On Reset

Z8 Encore! XP F082A Series devices contain an internal Power-On Reset circuit. The POR circuit monitors the supply voltage and holds the device in the Reset state until the supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the device is held in the Reset state until the POR Counter has timed out. If the crystal oscillator is enabled by the option bits, this timeout is longer.

After the Z8 Encore! XP F082A Series device exits the Power-On Reset state, the eZ8 CPU fetches the Reset vector. Following Power-On Reset, the POR status bit in the Reset Status (RSTSTAT) register is set to 1.

Figure 5 displays Power-On Reset operation. See Electrical Characteristics on page 221 for the POR threshold voltage (V_{POR}).

<mark>z</mark>ilog[°]

44

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Select Register AFS1	Alternate Function Select Register AFS2
Port A	PA0	TOIN	Timer 0 Input	AFS1[0]: 0	AFS2[0]: 0
		Reserved		AFS1[0]: 0	AFS2[0]: 1
		Reserved		AFS1[0]: 1	AFS2[0]: 0
		TOOUT	Timer 0 Output Complement	AFS1[0]: 1	AFS2[0]: 1
	PA1	TOOUT	Timer 0 Output	AFS1[1]: 0	AFS2[1]: 0
		Reserved		AFS1[1]: 0	AFS2[1]: 1
		CLKIN	External Clock Input	AFS1[1]: 1	AFS2[1]: 0
		Analog Functions*	ADC Analog Input/VREF	AFS1[1]: 1	AFS2[1]: 1
	PA2	DE0	UART 0 Driver Enable	AFS1[2]: 0	AFS2[2]: 0
		RESET	External Reset	AFS1[2]: 0	AFS2[2]: 1
		T1OUT	Timer 1 Output	AFS1[2]: 1	AFS2[2]: 0
		Reserved		AFS1[2]: 1	AFS2[2]: 1
	PA3	CTS0	UART 0 Clear to Send	AFS1[3]: 0	AFS2[3]: 0
		COUT	Comparator Output	AFS1[3]: 0	AFS2[3]: 1
		T1IN	Timer 1 Input	AFS1[3]: 1	AFS2[3]: 0
		Analog Functions*	ADC Analog Input/LPO Input (P)	AFS1[3]: 1	AFS2[3]: 1
	PA4	RXD0	UART 0 Receive Data	AFS1[4]: 0	AFS2[4]: 0
		Reserved		AFS1[4]: 0	AFS2[4]: 1
		Reserved		AFS1[4]: 1	AFS2[4]: 0
		Analog Functions*	ADC/Comparator Input (N)/LPO Input (N)	AFS1[4]: 1	AFS2[4]: 1
	PA5	TXD0	UART 0 Transmit Data	AFS1[5]: 0	AFS2[5]: 0
		T10UT	Timer 1 Output Complement	AFS1[5]: 0	AFS2[5]: 1
		Reserved		AFS1[5]: 1	AFS2[5]: 0
		Analog Functions*	ADC/Comparator Input (P) LPO Output	AFS1[5]: 1	AFS2[5]: 1

Table 15. Port Alternate Function Mapping (8-Pin Parts)

*Analog Functions include ADC inputs, ADC reference, comparator inputs and LPO ports.

Note: Also, alternate function selection as described in Port A–D Alternate Function Sub-Registers on page 47 must be enabled.

Table 18. Port A–D Control Registers (PxCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	PCTL							
RESET	00H							
R/W	R/W R/W R/W R/W R/W R/W R/W							R/W
ADDR		FD1H, FD5H, FD9H, FDDH						

PCTL[7:0]—Port Control

The Port Control register provides access to all sub-registers that configure the GPIO Port operation.

Port A–D Data Direction Sub-Registers

The Port A–D Data Direction sub-register is accessed through the Port A–D Control register by writing 01H to the Port A–D Address register (Table 19).

BITS	7	6	5	4	3	2	1	0
FIELD	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
ADDR	If 01H in Port A–D Address Register, accessible through the Port A–D Control Register							

Table 19. Port A–D Data Direction Sub-Registers (PxDD)

DD[7:0]—Data Direction

These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction register setting.

0 = Output. Data in the Port A–D Output Data register is driven onto the port pin.

1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register. The output driver is tristated.

Port A–D Alternate Function Sub-Registers

The Port A–D Alternate Function sub-register (Table 20) is accessed through the Port A–D Control register by writing 02H to the Port A–D Address register. The Port A–D Alternate Function sub-registers enable the alternate function selection on pins. If disabled, pins functions as GPIO. If enabled, select one of four alternate functions using alternate function set subregisters 1 and 2 as described in the Port A–D Alternate Function

WDT Reset in Normal Operation

If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the device into the System Reset state. The WDT status bit in the Reset Status (RSTSTAT) register is set to 1. For more information on system reset, see Reset, Stop Mode Recovery, and Low Voltage Detection on page 23.

WDT Reset in STOP Mode

If configured to generate a Reset when a time-out occurs and the device is in STOP mode, the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the STOP bit in the Reset Status (RSTSTAT) register are set to 1 following WDT time-out in STOP mode.

Watchdog Timer Reload Unlock Sequence

Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control register address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. Follow the steps below to unlock the Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.

- 1. Write 55H to the Watchdog Timer Control register (WDTCTL).
- 2. Write AAH to the Watchdog Timer Control register (WDTCTL).
- 3. Write the Watchdog Timer Reload Upper Byte register (WDTU) with the desired time-out value.
- 4. Write the Watchdog Timer Reload High Byte register (WDTH) with the desired time-out value.
- 5. Write the Watchdog Timer Reload Low Byte register (WDTL) with the desired time-out value.

All three Watchdog Timer Reload registers must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

Watchdog Timer Calibration

Due to its extremely low operating current, the Watchdog Timer oscillator is somewhat inaccurate. This variation can be corrected using the calibration data stored in the Flash Information Page (see Table 97 and Table 98 on page 165). Loading these values into the

zilog

Universal Asynchronous Receiver/Transmitter

The universal asynchronous receiver/transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. Features of the UART include:

- 8-bit asynchronous data transfer.
- Selectable even- and odd-parity generation and checking.
- Option of one or two STOP bits.
- Separate transmit and receive interrupts.
- Framing, parity, overrun and break detection.
- Separate transmit and receive enables.
- 16-bit baud rate generator (BRG).
- Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt schemes.
- Baud rate generator (BRG) can be configured and used as a basic 16-bit timer.
- Driver enable (DE) output for external bus transceivers.

Architecture

The UART consists of three primary functional blocks: transmitter, receiver, and baud rate generator. The UART's transmitter and receiver function independently, but employ the same baud rate and data format. Figure 10 on page 98 displays the UART architecture.

Analog-to-Digital Converter

The analog-to-digital converter (ADC) converts an analog input signal to its digital representation. The features of this sigma-delta ADC include:

- 11-bit resolution in DIFFERENTIAL mode.
- 10-bit resolution in SINGLE-ENDED mode.
- Eight single-ended analog input sources are multiplexed with general-purpose I/O ports.
- 9th analog input obtained from temperature sensor peripheral.
- 11 pairs of differential inputs also multiplexed with general-purpose I/O ports.
- Low-power operational amplifier (LPO).
- Interrupt on conversion complete.
- Bandgap generated internal voltage reference with two selectable levels.
- Manual in-circuit calibration is possible employing user code (offset calibration).
- Factory calibrated for in-circuit error compensation.

Architecture

Figure 19 displays the major functional blocks of the ADC. An analog multiplexer network selects the ADC input from the available analog pins, ANA0 through ANA7.

The input stage of the ADC allows both differential gain and buffering. The following input options are available:

- Unbuffered input (SINGLE-ENDED and DIFFERENTIAL modes).
- Buffered input with unity gain (SINGLE-ENDED and DIFFERENTIAL modes).
- LPO output with full pin access to the feedback path.

Flash Memory

The products in the Z8 Encore! XP[®] F082A Series feature a non-volatile Flash memory of 8 KB (8192), 4 KB (4096), 2 KB (2048 bytes), or 1 KB (1024) with read/write/ erase capability. The Flash Memory can be programmed and erased in-circuit by user code or through the On-Chip Debugger. The features include:

- User controlled read and write protect capability
- Sector-based write protection scheme
- Additional protection schemes against accidental program and erasure

Architecture

The Flash memory array is arranged in pages with 512 bytes per page. The 512 byte page is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64 bytes.

For program or data protection, the Flash memory is also divided into sectors. In the Z8 Encore! XP F082A Series, these sectors are either 1024 bytes (in the 8 KB devices) or 512 bytes (all other memory sizes) in size. Page and sector sizes are not generally equal.

The first 2 bytes of the Flash Program memory are used as Flash Option Bits. For more information about their operation, see Flash Option Bits on page 153.

Table 76 describes the Flash memory configuration for each device in the Z8 Encore! XPF082A Series. Figure 21 displays the Flash memory arrangement.

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash Sector Size (Bytes)
Z8F08xA	8 (8192)	16	0000H–1FFFH	1024
Z8F04xA	4 (4096)	8	0000H-0FFFH	512
Z8F02xA	2 (2048)	4	0000H–07FFH	512
Z8F01xA	1 (1024)	2	0000H-03FFH	512

Table 76. Z8 Encore! XP F082A Series Flash Memory Configurations

Z8 Encore! XP[®] F082A Series Product Specification

zilog[°]

Option Bit Types

User Option Bits

The user option bits are contained in the first two bytes of program memory. User access to these bits has been provided because these locations contain application-specific device configurations. The information contained here is lost when page 0 of the program memory is erased.

Trim Option Bits

The trim option bits are contained in the information page of the Flash memory. These bits are factory programmed values required to optimize the operation of onboard analog circuitry and cannot be permanently altered. Program Memory may be erased without endangering these values. It is possible to alter working values of these bits by accessing the Trim Bit Address and Data Registers, but these working values are lost after a power loss or any other reset event.

There are 32 bytes of trim data. To modify one of these values the user code must first write a value between 00H and 1FH into the Trim Bit Address Register. The next write to the Trim Bit Data register changes the working value of the target trim data byte.

Reading the trim data requires the user code to write a value between 00H and 1FH into the Trim Bit Address Register. The next read from the Trim Bit Data register returns the working value of the target trim data byte.

The trim address range is from information address 20-3F only. The remainder of the information page is not accessible through the trim bit address and data registers.

Calibration Option Bits

The calibration option bits are also contained in the information page. These bits are factory programmed values intended for use in software correcting the device's analog performance. To read these values, the user code must employ the LDC instruction to access the information area of the address space as defined in See Flash Information Area on page 17.

Serialization Bits

As an optional feature, Zilog[®] is able to provide factory-programmed serialization. For serialized products, the individual devices are programmed with unique serial numbers. These serial numbers are binary values, four bytes in length. The numbers increase in size with each device, but gaps in the serial sequence may exist.

These serial numbers are stored in the Flash information page (see Reading the Flash Information Page on page 155 and Serialization Data on page 165 for more details) and are unaffected by mass erasure of the device's Flash memory.

Note:

zilog ₁₇₂

Table 104. NVDS Read Time (Continued)

Operation	Minimum Latency	Maximum Latency
Read (128 byte array)	883	7609
Write (16 byte array)	4973	5009
Write (64 byte array)	4971	5013
Write (128 byte array)	4984	5023
Illegal Read	43	43
Illegal Write	31	31

If NVDS read performance is critical to your software architecture, there are some things you can do to optimize your code for speed, listed in order from most helpful to least helpful:

- Periodically refresh all addresses that are used. The optimal use of NVDS in terms of speed is to rotate the writes evenly among all addresses planned to use, bringing all reads closer to the minimum read time. Because the minimum read time is much less than the write time, however, actual speed benefits are not always realized.
- Use as few unique addresses as possible: this helps to optimize the impact of refreshing as well as minimize the requirement for it.

zilog ₁

 If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/ DBG pin, the DBG feature is unlocked. After releasing PA2/RESET, it is pulled High. At this point, the PA0/DBG pin may be used to autobaud and cause the device to enter DEBUG mode. See OCD Unlock Sequence (8-Pin Devices Only) on page 178.

Exiting DEBUG Mode

The device exits DEBUG mode following any of these operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0
- Power-On Reset
- Voltage Brownout reset
- Watchdog Timer reset
- Asserting the RESET pin Low to initiate a Reset
- Driving the DBG pin Low while the device is in STOP mode initiates a System Reset

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character transmitted and received by the OCD consists of 1 Start bit, 8 data bits (least-significant bit first), and 1 Stop bit as displayed in Figure 26.

		START	D0	D1	D2	D3	D4	D5	D6	D7	STOP
--	--	-------	----	----	----	----	----	----	----	----	------

Figure 26. OCD Data Format

Note: When responding to a request for data, the OCD may commence transmitting immediately after receiving the stop bit of an incoming frame. Therefore, when sending the stop bit, the host must not actively drive the DBG pin High for more than 0.5 bit times. It is recommended that, if possible, the host drives the DBG pin using an open drain output to avoid this issue.

OCD Auto-Baud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the On-Chip Debugger contains an Auto-Baud Detector/Generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7 data bits), framed between High bits. The Auto-Baud Detector measures this period and sets the OCD Baud Rate Generator accordingly.

zilog

- **-** 18
- **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

```
DBG \leftarrow 0AH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

• **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH
DBG \leftarrow Program Memory Address[15:8]
DBG \leftarrow Program Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

```
DBG \leftarrow 0CH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
```


Oscillator Control

The Z8 Encore! $XP^{\mathbb{R}}$ F082A Series devices uses five possible clocking schemes, each user-selectable:

- Internal precision trimmed RC oscillator (IPO).
- On-chip oscillator using off-chip crystal or resonator.
- On-chip oscillator using external RC network.
- External clock drive.
- On-chip low power Watchdog Timer oscillator.
- Clock failure detection circuitry.

In addition, Z8 Encore! XP F082A Series devices contain clock failure detection and recovery circuitry, allowing continued operation despite a failure of the system clock oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures.

System Clock Selection

The oscillator control block selects from the available clocks. Table 108 details each clock source and its usage.

zilog

189

When selecting a new clock source, the system clock oscillator failure detection circuitry and the Watchdog Timer oscillator failure circuitry must be disabled. If SOFEN and WOFEN are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a failure of either oscillator. The Failure detection circuitry can be enabled anytime after a successful write of OSCSEL in the OSCCTL register.

The internal precision oscillator is enabled by default. If the user code changes to a different oscillator, it may be appropriate to disable the IPO for power savings. Disabling the IPO does not occur automatically.

Clock Failure Detection and Recovery

System Clock Oscillator Failure

The Z8F04xA family devices can generate non-maskable interrupt-like events when the primary oscillator fails. To maintain system function in this situation, the clock failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the system clock. The Watchdog Timer oscillator must be enabled to allow the recovery. Although this oscillator runs at a much slower speed than the original system clock, the CPU continues to operate, allowing execution of a clock failure vector and software routines that either remedy the oscillator failure or issue a failure alert. This automatic switch-over is not available if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the Watchdog Timer reset function (see Watchdog Timer on page 91).

The primary oscillator failure detection circuitry asserts if the system clock frequency drops below 1 kHz \pm 50%. If an external signal is selected as the system oscillator, it is possible that a very slow but non-failing clock can generate a failure condition. Under these conditions, do not enable the clock failure circuitry (SOFEN must be deasserted in the OSCCTL register).

Watchdog Timer Failure

In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the system clock oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while looking for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

Z8 Encore! XP[®] F082A Series Product Specification

200

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed if manual program coding is preferred or if you intend to implement your own assembler.

Example 1: If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 112. Assembly Language Syntax Example 1

Assembly Language Code	ADD	43H,	08H	(ADD dst, src)
Object Code	04	08	43	(OPC src, dst)

Example 2: In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0–255 or, using Escaped Mode Addressing, a Working Register R0–R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 113. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in Table 114.

zilog ₂₀₁

Table 114. Notational Shorthand

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B)
СС	Condition Code	_	Refer to Condition Codes section in the <i>eZ8 CPU Core User Manual (UM0128)</i> .
DA	Direct Address	Addrs	Addrs. represents a number in the range of 0000H to FFFFH
ER	Extended Addressing Register	Reg	Reg. represents a number in the range of 000H to FFFH
IM	Immediate Data	#Data	Data is a number between 00H to FFH
lr	Indirect Working Register	@Rn	n = 0–15
IR	Indirect Register	@Reg	Reg. represents a number in the range of 00H to FFH
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
IRR	Indirect Register Pair	@Reg	Reg. represents an even number in the range 00H to FEH
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0 – 15
R	Register	Reg	Reg. represents a number in the range of 00H to FFH
RA	Relative Address	Х	X represents an index in the range of +127 to – 128 which is an offset relative to the address of the next instruction
rr	Working Register Pair	RRp	p = 0, 2, 4, 6, 8, 10, 12, or 14
RR	Register Pair	Reg	Reg. represents an even number in the range of 00H to FEH
Vector	Vector Address	Vector	Vector represents a number in the range of 00H to FFH
X	Indexed	#Index	The register or register pair to be indexed is offset by the signed Index value (#Index) in a +127 to -128 range.

Table 115 lists additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

zilog[°]

2	n	٥
4	υ	3

Assembly	Symbolic Operation	Addres	Address Mode Opcode(Flags					Fetch	Instr.	
Mnemonic		dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	
COM dst	$dst \gets \simdst$	R		60	-	*	*	0	-	-	2	2
		IR		61							2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	-	-	2	3
		r	lr	A3	-						2	4
		R	R	A4	-						3	3
		R	IR	A5	-						3	4
		R	IM	A6	-						3	3
		IR	IM	A7	-						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	-	-	3	3
		r	lr	1F A3	-						3	4
		R	R	1F A4	-						4	3
		R	IR	1F A5	-						4	4
		R	IM	1F A6	-						4	3
		IR	IM	1F A7	-						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	_	_	5	3
		ER	IM	1F A9	-						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	_	_	4	3
		ER	IM	A9	-						4	3
DA dst	$dst \gets DA(dst)$	R		40	*	*	*	Х	_	_	2	2
		IR		41	-						2	3
DEC dst	$dst \gets dst \text{ - } 1$	R		30	_	*	*	*	_	_	2	2
		IR		31	-						2	3
DECW dst	$dst \gets dst \text{ - } 1$	RR		80	_	*	*	*	_	_	2	5
		IRR		81	-						2	6
DI	$IRQCTL[7] \leftarrow 0$			8F	_	_	_	_	_	_	1	2
DJNZ dst, RA	$\begin{array}{l} dst \leftarrow dst - 1 \\ if \ dst \neq 0 \\ PC \leftarrow PC + X \end{array}$	r		0A-FA	_	_	_	_	_	_	2	3
EI	$IRQCTL[7] \leftarrow 1$			9F	_	-	_	_	-	-	1	2
Flags Notation:	* = Value is a function – = Unaffected X = Undefined	of the result	of the o	peration.		Re Se)			

Table 124. eZ8 CPU Instruction Summary (Continued)

zilog[°]

229

On-Chip Peripheral AC and DC Electrical Characteristics

Table 131. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing

	Parameter	T _A = -	40 °C to +	105 °C	Units	
Symbol		Minimum	Typical ¹	Maximum		Conditions
V _{POR}	Power-On Reset Voltage Threshold	2.20	2.45	2.70	V	V _{DD} = V _{POR}
V _{VBO}	Voltage Brownout Reset Voltage Threshold	2.15	2.40	2.65	V	$V_{DD} = V_{VBO}$
	V_{POR} to V_{VBO} hysteresis		50	75	mV	
	Starting V _{DD} voltage to ensure valid Power-On Reset.	-	V_{SS}	-	V	
T _{ANA}	Power-On Reset Analog Delay	-	70	-	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}
T _{POR}	Power-On Reset Digital Delay		16		μs	66 Internal Precision Oscillator cycles + IPO startup time (T _{IPOST})
T _{POR}	Power-On Reset Digital Delay		1		ms	5000 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator disabled		16		μs	66 Internal Precision Oscillator cycles
T _{SMR}	Stop Mode Recovery with crystal oscillator enabled		1		ms	5000 Internal Precision Oscillator cycles
T _{VBO}	Voltage Brownout Pulse Rejection Period	_	10	-	μs	Period of time in which V _{DD} < V _{VBO} without generating a Reset.
T _{RAMP}	Time for V _{DD} to transition from V _{SS} to V _{POR} to ensure valid Reset	0.10	-	100	ms	
T _{SMP}	Stop Mode Recovery pin pulse rejection period		20		ns	For any SMR pin or for the Reset pin when it is asserted in STOP mode.

only and are not tested in production.

231

Table 134. Non-Volatile Data Storage

V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C						
Parameter	Minimum	Typical	Maximum	Units	Notes	
NVDS Byte Read Time	34	-	519	μs	With system clock at 20 MHz	
NVDS Byte Program Time	0.171	-	39.7	ms	With system clock at 20 MHz	
Data Retention	100	_	-	years	25 °C	
Endurance	160,000	_	-	cycles	Cumulative write cycles for entire memory	

Table 135. Analog-to-Digital Converter Electrical Characteristics and Timing

		$T_A =$	= 3.0 V to 0 °C to + otherwis	70 °C		
Symbol	Parameter	Minimum Typical Maximum		Units	Conditions	
	Resolution	10		_	bits	
	Differential Nonlinearity (DNL)	-1.0	-	1.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω
	Integral Nonlinearity (INL)	-3.0	-	3.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω
	Offset Error with Calibration		<u>+</u> 1		LSB ³	
	Absolute Accuracy with Calibration		<u>+</u> 3		LSB ³	
V _{REF}	Internal Reference Voltage	1.0 2.0	1.1 2.2	1.2 2.4	V	REFSEL=01 REFSEL=10
V _{REF}	Internal Reference Variation with Temperature		<u>+</u> 1.0		%	Temperature variation with V_{DD} = 3.0
V _{REF}	Internal Reference Voltage Variation with V_{DD}		<u>+</u> 0.5		%	Supply voltage variation with $T_A = 30 \ ^\circ C$
R _{REFOUT}	Reference Buffer Output Impedance		850		Ω	When the internal reference is buffered and driven out to the VREF pin (REFOUT = 1)