

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	71
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke04z128vlk4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1 O	dering parts	4		5.2.2	FTM module timing	17
1.	Determining valid orderable parts	4	5.3	Thermal	specifications	18
2 Pa	rt identification	4		5.3.1	Thermal operating requirements	18
2.	Description	4		5.3.2	Thermal characteristics	19
2.	2 Format	4	6 Perip	heral op	erating requirements and behaviors	20
2.	3 Fields	4	6.1	Core mo	odules	20
2.	4 Example	5		6.1.1	SWD electricals	20
3 Pa	rameter classification.	5	6.2	External	oscillator (OSC) and ICS characteristics	21
4 R	tings.	6	6.3	NVM sp	pecifications	23
4.	Thermal handling ratings	6	6.4	Analog.		24
4.	2 Moisture handling ratings	6		6.4.1	ADC characteristics	24
4.	3 ESD handling ratings	6		6.4.2	Analog comparator (ACMP) electricals	27
4.	Voltage and current operating ratings	7	6.5	Commu	nication interfaces	27
5 G	eneral	7		6.5.1	SPI switching specifications	27
5.	Nonswitching electrical specifications	7	7 Dime	nsions		30
	5.1.1 DC characteristics	7	7.1	Obtainir	ng package dimensions	30
	5.1.2 Supply current characteristics	14	8 Pinou	ıt		31
	5.1.3 EMC performance	15	8.1	Signal n	nultiplexing and pin assignments	31
5.	2 Switching specifications	16	8.2	Device 1	pin assignment	33
	5.2.1 Control timing	16	9 Revis	ion hist	ory	36

Field	Description	Values
		 QH = 64 QFP (14 mm x 14 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (14 mm x 14 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MKE06Z128VLK4

3 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

KE04 Sub-Family Data Sheet, Rev. 4, 07/2016

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol Description Min. Unit Max. ٧ V_{DD} Digital supply voltage 6.0 -0.3120 I_{DD} Maximum current into V_{DD} mΑ $V_{DD} + 0.3^{1}$ ٧ V_{IN} Input voltage except true open drain pins -0.3-0.3Input voltage of true open drain pins -25 25 I_D Instantaneous maximum current single pin limit (applies to all mΑ port pins) V_{DDA} Analog supply voltage $V_{DD} - 0.3$ $V_{DD} + 0.3$ V

Table 2. Voltage and current operating ratings

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 3. DC characteristics

Symbol	С	Descriptions	Min	Typical ¹	Max	Unit	
_	_	Operating voltage	_	2.7		5.5	٧

Table continues on the next page...

KE04 Sub-Family Data Sheet, Rev. 4, 07/2016

^{1.} Maximum rating of V_{DD} also applies to V_{IN}.

Nonswitching electrical specifications

Table 3. DC characteristics (continued)

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
V _{OH}	Р	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V
	С	high voltage	and PTA3, standard- drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
	Р		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	$V_{DD} - 0.8$	_	_	V
	С		high-drive strength ²	$3 \text{ V}, \text{ I}_{\text{load}} = -10 \text{ mA}$	$V_{DD} - 0.8$	_	_	V
I _{OHT}	D	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
		high current		3 V	_	_	-60	
V _{OL}	Р	Output	All I/O pins, standard-	5 V, I _{load} = 5 mA	_	_	8.0	V
	С	low voltage	drive strength	3 V, $I_{load} = 2.5 \text{ mA}$	_	_	8.0	V
	Р		High current drive pins,	5 V, I _{load} =20 mA	<u> </u>	_	8.0	V
	С		high-drive strength ²	$3 \text{ V}, I_{load} = 10 \text{ mA}$	_	_	8.0	V
I _{OLT}	D	Output	Max total I _{OL} for all ports	5 V	<u> </u>	_	100	mA
		low current		3 V	_	_	60	
V _{IH}	Р	Input	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	٧
		high voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V _{IL}	Р	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_	_	0.35 × V _{DD}	V
				2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	С	Input hysteresi s	All digital inputs	_	0.06 × V _{DD}	_	_	mV
II _{In} I	Р	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
II _{INTOT} I	С	Total leakage combine d for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	D	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} >$	-2	_	2	mA
		injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins	V _{DD}	-5	_	25	
C _{In}	С	Input capacitance, all pins		_	_	_	7	pF
V _{RAM}	С	· -	M retention voltage	_	2.0	_	_	V
	1		<u> </u>					

^{1.} Typical values are measured at 25 $^{\circ}\text{C}.$ Characterized, not tested.

Nonswitching electrical specifications

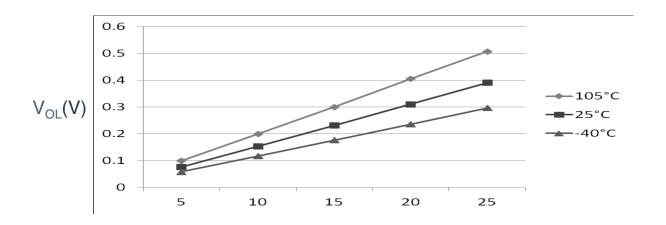
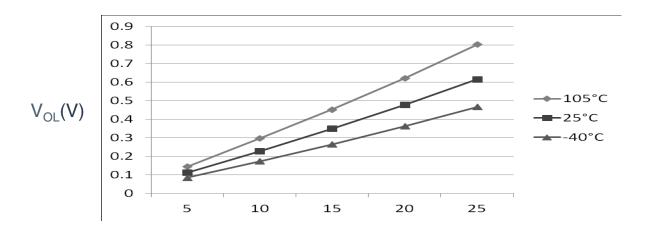

- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0 (64-pin and 80-pin packages only), and PTH1 (64-pin and 80-pin packages only) support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS} .
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 4. LVD and POR specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-ai	POR re-arm voltage ¹		1.75	2.0	V
V _{LVDH}	С	threshold—hig	roltage detect ph range (LVDV 1) ²	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	riigir ranige	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100	_	mV
V _{LVDL}	С	threshold—lov	Falling low-voltage detect threshold—low range (LVDV = 0)		2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold— low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		v-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С		low-voltage hysteresis	_	80	_	mV
V_{BG}	Р	Buffered ban	dgap output 3	1.14	1.16	1.18	V


- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

13

 $I_{OL}(mA)$

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

 $I_{OL}(mA)$

Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

Table 5.	Supply current	characteristics	(continued)
----------	----------------	-----------------	-------------

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Wait mode current FEI	WI _{DD}	48/24 MHz	5	8.4	_	mA	-40 to 105 °C
Р	mode, all modules clocks enabled		24/24 MHz		6.5	7.2		
С	enabled		12/12 MHz		4.3	_		
С			1/1 MHz		2.4	_		
С			48/24 MHz	3	8.3	_		
Р			24/24 MHz		6.4	7		
С			12/12 MHz		4.2	_		
С			1/1 MHz		2.3	_		
Р	Stop mode supply current	SI _{DD}	_	5	2	105	μA	-40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³		_	3	1.9	95		-40 to 105 °C
С	ADC adder to Stop	_	_	5	86	_	μA	-40 to 105 °C
С	ADLPC = 1			3	82	_		
	ADLSMP = 1							
	ADCO = 1							
	MODE = 10B							
	ADICLK = 11B							
С	ACMP adder to Stop	_	_	5	12	_	μΑ	-40 to 105 °C
С				3	12	_		
С	LVD adder to Stop ⁴	_	_	5	130	_	μA	-40 to 105 °C
С				3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The Max current is observed at high temperature of 105 °C.
- 3. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on nxp.com for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

KE04 Sub-Family Data Sheet, Rev. 4, 07/2016

Switching specifications

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 80-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	6	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	6	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	11	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	N ³	_	2, 4

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. V_{DD} = 5.0 V, T_A = 25 °C, f_{OSC} = 8 MHz (crystal), f_{SYS} = 40 MHz, f_{BUS} = 20 MHz
- 3. IEC/SAE Level Maximums: N≤12 dBµV, M≤18 dBµV, K≤30 dBµV, I ≤36 dBµV, H≤42 dBµV.
- 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 7. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	D	System and core clock		f _{Sys}	DC	_	48	MHz
2	Р	Bus frequency (t _{cyc} = 1/f _{Bus})		f _{Bus}	DC		24	MHz
3	Р	Internal low power oscillato	r frequency	f_{LPO}	0.67	1.0	1.25	KHz
4	D	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns	
				t _{cyc}				
5	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_		ns
	D		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns

Table continues on the next page...

KE04 Sub-Family Data Sheet, Rev. 4, 07/2016

16

17

Table 7.	Control	timing	(continued)
----------	---------	--------	-------------

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
7	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

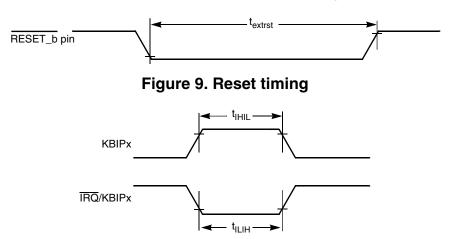


Figure 10. KBIPx timing

5.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 8. FTM input timing

С	Function	Symbol	Min	Max	Unit
D	Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
D	External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz

Table continues on the next page...

Peripheral operating requirements and behaviors

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_I + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and P_D and the obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	24	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns

Table continues on the next page...

Peripheral operating requirements and behaviors

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Max	Unit
2	D	Lo	oad capacitors	C1, C2		See Note ²		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	ΜΩ
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D High Frequency, High-Gain Mode		8 MHz		_	0	_	kΩ
			16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time low range = 32.768 kHz	Low range, high gain		_	800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	Р	Internal reference	e clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Р	Internal reference clock frequency, factory trimmed	T = 25 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	Р	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Р	Factory trimmed internal oscillator accuracy	T = 25 °C, V _{DD} = 5 V	Δf _{int_ft}	-0.5	_	0.5	%
12	С	Deviation of IRC over	Over temperature range from -40 °C to 105°C	Δf_{int_t}	-1	_	0.5	%
		temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from 0 °C to 105°C	Δf _{int_t}	-0.5	_	0.5	
13	С	Frequency Over temperature range accuracy of from -40 °C to 105°C		Δf_{dco_ft}	-1.5	_	1	%
		DCO output using factory trim value	Over temperature range from 0 °C to 105°C	Δf_{dco_ft}	-1	_	1	

Table continues on the next page...

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
14	С	FLL acquisition time ^{4,6}	t _{Acquire}			2	ms
15	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷	C _{Jitter}	ı	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- 3. Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO =
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}.
 Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

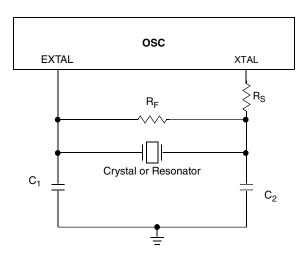


Figure 15. Typical crystal or resonator circuit

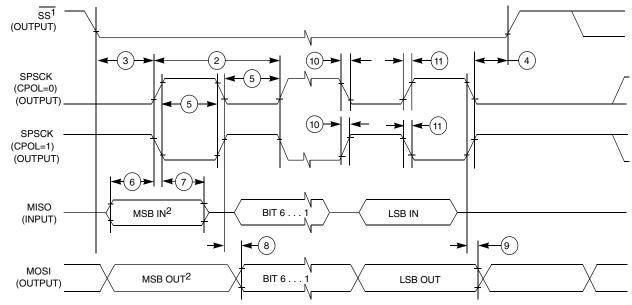
6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Table 13. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V

Table continues on the next page...


KE04 Sub-Family Data Sheet, Rev. 4, 07/2016

Peripheral operating requirements and behaviors

chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.

Table 17. SPI master m	node timing
------------------------	-------------

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} – 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	20	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} If configured as an output.

Figure 17. SPI master mode timing (CPHA=0)

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Dimensions

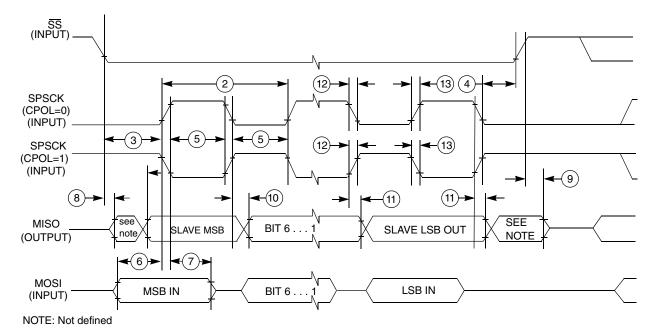


Figure 19. SPI slave mode timing (CPHA = 0)

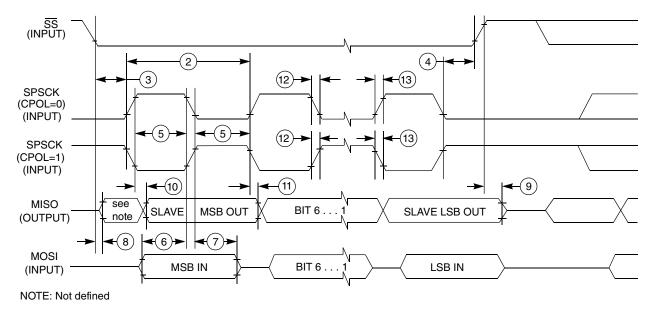


Figure 20. SPI slave mode timing (CPHA=1)

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **nxp.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ASA00473D
44-pin LQFP	98ASS23225W
64-pin QFP	98ASB42844B
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23237W

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VSS and VSSA are internally connected.

VREFH and VDDA are internally connected in 64-pin packages.

PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 are high-current drive pins when operated as output.

PTA2 and PTA3 are true open-drain pins when operated as output.

80 LQFP	64 LQFP /QFP	44 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	1	PTD1	DISABLED	PTD1	KBI0_P25	FTM2_CH3	SPI1_MOSI				
2	2	2	PTD0	DISABLED	PTD0	KBI0_P24	FTM2_CH2	SPI1_SCK				
3	3	_	PTH7	DISABLED	PTH7	KBI1_P31	PWT_IN1					
4	4	_	PTH6	DISABLED	PTH6	KBI1_P30						
5	_	1	PTH5	DISABLED	PTH5	KBI1_P29						
6	5	3	PTE7	DISABLED	PTE7	KBI1_P7	TCLK2		FTM1_CH1			
7	6	4	PTH2	DISABLED	PTH2	KBI1_P26	BUSOUT		FTM1_CH0			
8	7	5	VDD	VDD							VDD	

80 LQFP	64 LQFP /QFP	44 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
49	41	28	VDD	VDD							VDD	
50	_	_	PTG7	DISABLED	PTG7	KBI1_P23	FTM2_CH5	SPI1_PCS				
51	_	-	PTG6	DISABLED	PTG6	KBI1_P22	FTM2_CH4	SPI1_MISO				
52	_	_	PTG5	DISABLED	PTG5	KBI1_P21	FTM2_CH3	SPI1_MOSI				
53	_	_	PTG4	DISABLED	PTG4	KBI1_P20	FTM2_CH2	SPI1_SCK				
54	42	_	PTF1	DISABLED	PTF1	KBI1_P9	FTM2_CH1					
55	43	-	PTF0	DISABLED	PTF0	KBI1_P8	FTM2_CH0					
56	44	29	PTD4	DISABLED	PTD4	KBI0_P28						
57	45	30	PTD3	DISABLED	PTD3	KBI0_P27	SPI1_PCS					
58	46	31	PTD2	DISABLED	PTD2	KBI0_P26	SPI1_MISO					
59	47	32	PTA3	DISABLED	PTA3	KBI0_P3	UART0_TX	I2C0_SCL				
60	48	33	PTA2	DISABLED	PTA2	KBI0_P2	UART0_RX	I2C0_SDA				
61	49	34	PTA1	ADC0_SE1	PTA1	KBI0_P1	FTM0_CH1	I2CO_ 4WSDAOUT	ACMP0_IN1	ADC0_SE1		
62	50	35	PTA0	ADC0_SE0	PTA0	KBI0_P0	FTM0_CH0	I2C0_ 4WSCLOUT	ACMP0_IN0	ADC0_SE0		
63	51	36	PTC7	DISABLED	PTC7	KBI0_P23	UART1_TX					
64	52	37	PTC6	DISABLED	PTC6	KBI0_P22	UART1_RX					
65	-	_	PTI3	DISABLED	PTI3	IRQ						
66	_	_	PTI2	DISABLED	PTI2	IRQ						
67	53	ı	PTE3	DISABLED	PTE3	KBI1_P3	SPI0_PCS					
68	54	38	PTE2	DISABLED	PTE2	KBI1_P2	SPI0_MISO	PWT_IN0				
69	_	1	VSS	VSS							VSS	
70	_	1	VDD	VDD							VDD	
71	55	ı	PTG3	DISABLED	PTG3	KBI1_P19						
72	56	_	PTG2	DISABLED	PTG2	KBI1_P18						
73	57	-	PTG1	DISABLED	PTG1	KBI1_P17						
74	58	_	PTG0	DISABLED	PTG0	KBI1_P16						
75	59	39	PTE1	DISABLED	PTE1	KBI1_P1	SPI0_MOSI		I2C1_SCL			
76	60	40	PTE0	DISABLED	PTE0	KBI1_P0	SPI0_SCK	TCLK1	I2C1_SDA			
77	61	41	PTC5	DISABLED	PTC5	KBI0_P21		FTM1_CH1		RTC_ CLKOUT		
78	62	42	PTC4	SWD_CLK	PTC4	KBI0_P20	RTC_ CLKOUT	FTM1_CH0	ACMP0_IN2	SWD_CLK		
79	63	43	PTA5	RESET_b	PTA5	KBI0_P5	IRQ	TCLK0	RESET_b			
80	64	44	PTA4	SWD_DIO	PTA4	KBI0_P4		ACMP0_OUT	SWD_DIO			

8.2 Device pin assignment

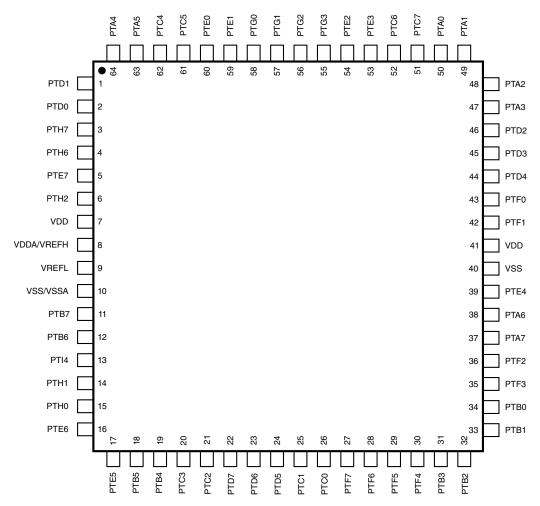


Figure 22. 64-pin QFP/LQFP packages

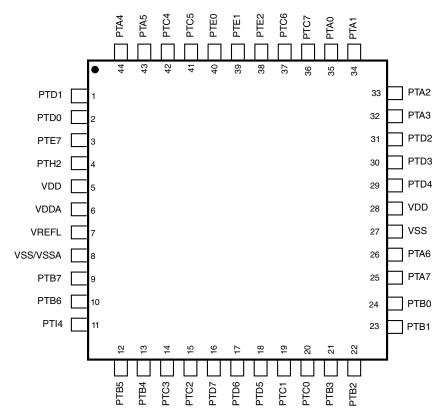


Figure 23. 44-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Table 19. Revision history

Rev. No.	Date	Substantial Changes					
1	12/2013	Initial NDA release.					
2	3/2014	Initial public release.					
3	5/2014	 Updated the Max. of SI_{DD}. Updated footnote to the V_{OH}. Corrected Unit in the FTM input timing table. 					
4	07/2016	 Added a new section of Thermal operating requirements. Corrected pinout diagram for 44-pin LQFP in the Device pin assignment. 					

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2016 NXP B.V.

Document Number MKE04P80M48SF0 Revision 4, 07/2016

