

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Discontinued at Digi-Key
Core Processor	RXv2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	60
Program Memory Size	256КВ (256К × 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 17x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f524taadff-30

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

1.1 Outline of Specifications

 Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages.

Table 1.1 shows the outline of maximum specifications, and the numbers of peripheral modules and of channels of the modules differ depending on chip version and the pin number on the package. For details, see Table 1.2, Comparison of Functions for Different Packages.

Table 1.1	Outline of Specifications	(1/4)
-----------	---------------------------	-------

Classification	Module/Function	Description
CPU	CPU	 Maximum operating frequency: 80 MHz 32-bit RX CPU (RX v2) Minimum instruction execution time: One instruction per clock cycle Address space: 4-Gbyte linear Register set General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers Basic instructions: 75 Variable-length instruction format Floating-point instructions: 11 DSP instructions: 23 Addressing modes: 11 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit * 32-bit * 32-bit → 64-bit On-chip divider: 32-bit * 32-bit → 32-bit Barrel shifter: 32 bits
	FPU	 Single precision (32-bit) floating point Data types and floating-point exceptions in conformance with the IEEE754 standard
Memory	ROM	 Capacity: 128 K/256 K/384 K/512 Kbytes Up to 32 MHz, no-wait memory access 32 to 80 MHz: wait states Off-board programming Programming/erasing method: Serial programming (asynchronous serial communication), self-programming
	RAM	Capacity: 16 K/32 Kbytes80 MHz, no-wait memory access
	E2 DataFlash	Capacity: 8 KbytesNumber of erase/write cycles: 1,000,000 (typ)
MCU operating mo	ode	Single-chip mode
Clock	Clock generation circuit	 Main clock oscillator, low- and high-speed on-chip oscillators, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 80 MHz (at max.) The MTU3 and GPT modules run in synchronization with the PCLKA: 80 MHz (at max.) The peripheral modules other than MTU3 and GPT run in synchronization with the PCLKB: 40 MHz (at max.) ADCLK operated in S12AD runs in synchronization with the PCLKD: 40 MHz (at max.) The flash memory peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.)
Resets		RES# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer reset, and software reset
Voltage detection	Voltage detection circuit (LVDAb)	When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 0 is capable of selecting the detection voltage from 3 levels Voltage detection circuit 1 is capable of selecting the detection voltage from 9 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels
Low power consumption	Low power consumption functions	 Module stop function Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode
	Function for lower operating power consumption	Operating power control modes High-speed operating mode and middle-speed operating mode

1.4 Pin Functions

 Table 1.4 lists the pin functions.

Table 1.4Pin Functions (1/4)

Classifications	Pin Name	I/O	Description
Power supply	VCC	_	Power supply pin. Connect it to the system power supply.
	VCL	_	Connect this pin to the VSS pin via the 4.7 μ F smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	_	Ground pin. Connect it to the system power supply (0 V).
Clock	XTAL	Output	Pins for connecting a crystal. An external clock can be input through the
	EXTAL	Input	EXTAL pin.
Operating mode control	MD	Input	Pin for setting the operating mode. The signal levels on this pin must not be changed during operation.
System control	RES#	Input	Reset pin. This MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Input pin for the clock frequency accuracy measurement circuit.
On-chip emulator	FINED	I/O	FINE interface pin.
Interrupts	NMI	Input	Non-maskable interrupt request pin.
	IRQ0 to IRQ7	Input	Interrupt request pins.
Multi-function timer pulse unit 3	MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D	I/O	The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins.
(MTU3d)	MTIOC0A#, MTIOC0B#, MTIOC0C#, MTIOC0D#	I/O	The TGRA0 to TGRD0 input capture inverted input/output compare inverted output/PWM inverted output pins.
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.
	MTIOC1A#, MTIOC1B#	I/O	The TGRA1 and TGRB1 input capture inverted input/output compare inverted output/PWM inverted output pins.
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.
	MTIOC2A#, MTIOC2B#	I/O	The TGRA2 and TGRB2 input capture inverted input/output compare inverted output/PWM inverted output pins.
	MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.
	MTIOC3A#, MTIOC3B#, MTIOC3C#, MTIOC3D#	I/O	The TGRA3 to TGRD3 input capture inverted input/output compare inverted output/PWM inverted output pins.
	MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins.
	MTIOC4A#, MTIOC4B#, MTIOC4C#, MTIOC4D#	I/O	The TGRA4 to TGRD4 input capture inverted input/output compare inverted output/PWM inverted output pins.
	MTIC5U, MTIC5V, MTIC5W	Input	The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins.
	MTIC5U#, MTIC5V#, MTIC5W#	Input	The TGRU5, TGRV5, and TGRW5 input capture inverted input/external pulse inverted input pins.
	MTIOC6A, MTIOC6B, MTIOC6C, MTIOC6D	I/O	The TGRA6 to TGRD6 input capture input/output compare output/PWM output pins.
	MTIOC6A#, MTIOC6B#, MTIOC6C#, MTIOC6D#	I/O	The TGRA6 to TGRD6 input capture inverted input/output compare inverted output/PWM inverted output pins.
	MTIOC7A, MTIOC7B, MTIOC7C, MTIOC7D	I/O	The TGRA7 to TGRD7 input capture input/output compare output/PWM output pins.
	MTIOC7A#, MTIOC7B#, MTIOC7C#, MTIOC7D#	I/O	The TGRA7 to TGRD7 input capture inverted input/output compare inverted output/PWM inverted output pins.
	MTIOC9A, MTIOC9B, MTIOC9C, MTIOC9D	I/O	The TGRA9 to TGRD9 input capture input/output compare output/PWM output pins.

Dia	Power Supply,		Timera	0	
No.	Clock, System Control	I/O Port	(MTU, TMR, POE, CAC)	OE, CAC) (SCI, RSPI, RIIC)	
1		DE5	((IROO
- -		PL3	MTIOCOD		
2	1/00	FUZ	MITOCOD	0131#, K131#, 331#	IRQ5, AD510
3	V55	D 00			
4		P00			IRQ2, ADS11
5	VCL				
6	MD				FINED
7		P01	POE12#		IRQ4, ADST2
8		PE4	MTCLKC, POE10#		IRQ1
9		PE3	MTCLKD, POE11#		IRQ2
10	RES#				
11	XTAL	P37			
12	VSS				
13	EXTAL	P36			
14	VCC				
15		PE2	POE10#		NMI
16		PE1	MTIOC9D, TMO5	CTS5#, RTS5#, SS5#, SSLA3	
17		PE0	MTIOC9B, TMCI1, TMCI5	SSLA2	
18		PD7	MTIOC9A, TMRI1, TMRI5	SSLA1	
19		PD6	MTIOC9C, TMO1	CTS1#, RTS1#, SS1#, SSLA0	IRQ5, ADST0
20		PD5	TMRI0. TMRI6	RXD1, SMISO1, SSCL1	IRQ3
21		PD4		SCK1	IRQ2
22		PD3	TMO0	TXD1_SMOSI1_SSDA1	
23		PD2			
20				MISOA	
24				RSDCKA	
20		PD0	1.00		
20					IDOS
21		PB6		RXD5, SMISO5, SSCL5	
28	1/00	PB5		TXD5, SMOSI5, SSDA5	
29	VCC				
30		PB4	POE8#	CTS5#, RTS5#, SS5#	IRQ3
31	VSS				
32		PB3	MTIOC0A, CACREF	SCK6, RSPCKA	
33		PB2	MTIOC0B, TMRI0, ADSM0	TXD6, SMOSI6, SSDA6, SDA0	
34		PB1	MTIOC0C, TMCI0, ADSM1	RXD6, SMISO6, SSCL6, SCL0	
35		PB0	MTIOC0D, TMO0	TXD6, SMOSI6, SSDA6, MOSIA	ADTRG2#
36		PA5	MTIOC1A, TMCI3	RXD6, SMISO6, SSCL6, MISOA	IRQ1, ADTRG1#
37		PA4	MTIOC1B, TMCI7	SCK6, RSPCKA	ADTRG0#
38		PA3	MTIOC2A, TMRI7	SSLA0	
39		PA2	MTIOC2B, TMO7	CTS6#, RTS6#, SS6#, SSLA1	
40		PA1	MTIOC6A, TMO4	SSLA2	ADTRG0#
41		PA0	MTIOC6C, TMO2	SSLA3	
42	VCC				
43		P96	POE4#		IRQ4
44	VSS				
45		P95	MTIOC6B		
46		P94	MTIOC7A		
47		P93	МТІОС7В		
48		P92	MTIOC6D		
49		PQ1	MTIOCZC		
50		PQN	MTIOCZD		
51		P76	MTIOCAD		
51		F70 D75			
52		P73			
53		P74			
54		P/3	MTIOC4B		1

Table 1.6 List of Pins and Pin Functions (100-Pin LFQFP, Chip Version A) (1/2)

2. CPU

Figure 2.1 shows register set of the CPU.

	General-purpose register	Control register
	b31	b0 b31 b
	R0 (SP) ^{*1}	ISP (Interrupt stack pointer)
	R1	USP (User stack pointer)
	R2	
	R3	
	R4	PC (Program counter)
	R5	
	R6	PSW (Processor status word)
	R7	BPC (Backup PC)
	R8	
	R9	BPSW (Backup PSW)
	R10	FINTV (Fast interrupt vector register)
	R11	
	R12	FPSW (Floating-point status word)
	R13	EXTB (Exception table register)
	R14	
	R15	
SP inst	ruction register	
71		ł
	ACC	ንዕ (Accumulator 0)
	AC	C1 (Accumulator 1)

Figure 2.1 Register Set of the CPU

2.1 General-Purpose Registers (R0 to R15)

This CPU has sixteen 32-bit general-purpose registers (R0 to R15). R0 to R15 can be used as data registers or address registers.

R0, a general-purpose register, also functions as the stack pointer (SP).

The stack pointer is switched to operate as the interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor status word (PSW).

2.2 Control Registers

(1) Interrupt stack pointer (ISP) and user stack pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP). Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the processor status word (PSW).

Set the ISP or USP to a multiple of 4 to reduce the number of cycles required to execute interrupt sequences and instructions entailing stack manipulation.

(2) Exception table register (EXTB)

The exception table register (EXTB) specifies the address where the exception vector table starts. Set the EXTB to a multiple of 4 to reduce the number of cycles required to execute interrupt sequences and instructions entailing stack manipulation.

(3) Interrupt table register (INTB)

The interrupt table register (INTB) specifies the address where the interrupt vector table starts. Set the INTB to a multiple of 4 to reduce the number of cycles required to execute interrupt sequences and instructions entailing stack manipulation.

(4) Program counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

(5) Processor status word (PSW)

The processor status word (PSW) indicates the results of instruction execution or the state of the CPU.

(6) Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC register.

(7) Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts.

After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to that in the PSW.

(8) Fast interrupt vector register (FINTV)

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a branch destination address when a fast interrupt has been generated.

4. I/O Registers

This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to registers are also given below.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to module symbols.
- Numbers of cycles for access indicate numbers of cycles of the given base clock.
- Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.

(2) Notes on writing to I/O registers

When writing to an I/O register, the CPU starts executing the subsequent instruction before completing I/O register write. This may cause the subsequent instruction to be executed before the post-update I/O register value is reflected on the operation.

As described in the following examples, special care is required for the cases in which the subsequent instruction must be executed after the post-update I/O register value is actually reflected.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) cleared to 0.
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.

- (a) Write to an I/O register.
- (b) Read the value from the I/O register to a general register.
- (c) Execute the operation using the value read.
- (d) Execute the subsequent instruction.

[Instruction examples]

• Byte-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.B #SFR_DATA, [R1] CMP [R1].UB, R1 ;; Next process

• Word-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.W #SFR_DATA, [R1] CMP [R1].W, R1 ;; Next process

Table 4.1 List of I/O Registers (Address Order) (32/37)

	- Module Benister Nu		Number of		Number of Access Cycles	
Address	Symbol	Register Name	Symbol	Bits	Access Size	$\textbf{ICLK} \geq \textbf{PCLK}$
000C 1A4Dh	MTU7	Timer Control Register 2	TCR2	8	8	4 or 5 PCLKA
000C 1A50h	MTU6	Timer Synchronous Clear Register	TSYCR	8	8	4 or 5 PCLKA
000C 1A60h	MTU	Timer Waveform Control Register B	TWCRB	8	8	4 or 5 PCLKA
000C 1A70h	MTU	Timer Mode Register 2B	TMDR2B	8	8	4 or 5 PCLKA
000C 1A72h	MTU6	Timer General Register E	TGRE	16	16	4 or 5 PCLKA
000C 1A74h	MTU7	Timer General Register E	TGRE	16	16	4 or 5 PCLKA
000C 1A76h	MTU7	Timer General Register F	TGRF	16	16	4 or 5 PCLKA
000C 1A80h	MTU	Timer Start Register B	TSTRB	8	8, 16	4 or 5 PCLKA
000C 1A81h	MTU	Timer Synchronous Register B	TSYRB	8	8	4 or 5 PCLKA
000C 1A84h	MTU	Timer Read/Write Enable Register B	TRWERB	8	8	4 or 5 PCLKA
000C 1A93h	MTU6	Noise Filter Control Register 6	NFCR6	8	8	4 or 5 PCLKA
000C 1A94h	MTU7	Noise Filter Control Register 7	NFCR7	8	8	4 or 5 PCLKA
000C 1A95h	MTU5	Noise Filter Control Register 5	NFCR5	8	8	4 or 5 PCLKA
000C 1C80h	MTU5	Timer Counter U	TCNTU	16	16, 32	4 or 5 PCLKA
000C 1C82h	MTU5	Timer General Register U	TGRU	16	16	4 or 5 PCLKA
000C 1C84h	MTU5	Timer Control Register U	TCRU	8	8	4 or 5 PCLKA
000C 1C85h	MTU5	Timer Control Register 2U	TCR2U	8	8	4 or 5 PCLKA
000C 1C86h	MTU5	Timer I/O Control Register U	TIORU	8	8	4 or 5 PCLKA
000C 1C90h	MTU5	Timer Counter V	TCNTV	16	16, 32	4 or 5 PCLKA
000C 1C92h	MTU5	Timer General Register V	TGRV	16	16	4 or 5 PCLKA
000C 1C94h	MTU5	Timer Control Register V	TCRV	8	8	4 or 5 PCLKA
000C 1C95h	MTU5	Timer Control Register 2V	TCR2V	8	8	4 or 5 PCLKA
000C 1C96h	MTU5	Timer I/O Control Register V	TIORV	8	8	4 or 5 PCLKA
000C 1CA0h	MTU5	Timer Counter W	TCNTW	16	16, 32	4 or 5 PCLKA
000C 1CA2h	MTU5	Timer General Register W	TGRW	16	16	4 or 5 PCLKA
000C 1CA4h	MTU5	Timer Control Register W	TCRW	8	8	4 or 5 PCLKA
000C 1CA5h	MTU5	Timer Control Register 2W	TCR2W	8	8	4 or 5 PCLKA
000C 1CA6h	MTU5	Timer I/O Control Register W	TIORW	8	8	4 or 5 PCLKA
000C 1CB2h	MTU5	Timer Interrupt Enable Register	TIER	8	8	4 or 5 PCLKA
000C 1CB4h	MTU5	Timer Start Register	TSTR	8	8	4 or 5 PCLKA
000C 1CB6h	MTU5	Timer Compare Match Clear Register	TCNTCMPCLR	8	8	4 or 5 PCLKA
000C 1D30h	MTU	A/D Conversion Start Request Select Register 0	TADSTRGR0	8	8	4 or 5 PCLKA
000C 1D32h	MTU	A/D Conversion Start Request Select Register 1	TADSTRGR1	8	8	4 or 5 PCLKA
000C 2000h	GPT	General PWM Timer Software Start Register*2	GTSTR	16	8, 16, 32	4 or 5 PCLKA
000C 2002h	GPT	Noise Filter Control Register*2	NFCR	16	16, 32	4 or 5 PCLKA
000C 2004h	GPT	General PWM Timer Hardware Source Start/Stop Control	GTHSCR	16	8, 16, 32	4 or 5 PCLKA
000C 2006h	GPT	General PWM Timer Hardware Source Clear Control Register*2	GTHCCR	16	8, 16, 32	4 or 5 PCLKA
000C 2008h	GPT	General PWM Timer Hardware Start Source Select Register* ²	GTHSSR	16	8, 16, 32	4 or 5 PCLKA
000C 200Ah	GPT	General PWM Timer Hardware Stop/Clear Source Select Register*2	GTHPSR	16	8, 16, 32	4 or 5 PCLKA
000C 200Ch	GPT	General PWM Timer Write-Protection Register*2	GTWP	16	8, 16, 32	4 or 5 PCLKA
000C 200Eh	GPT	General PWM Timer Sync Register*2	GTSYNC	16	8, 16, 32	4 or 5 PCLKA
000C 2010h	GPT	General PWM Timer External Trigger Input Interrupt Register* ²	GTETINT	16	8, 16, 32	4 or 5 PCLKA
000C 2014h	GPT	General PWM Timer Buffer Operation Disable Register*2	GTBDR	16	8, 16, 32	4 or 5 PCLKA
000C 2018h	GPT	General PWM Timer Start Write-Protection Register*2	GTSWP	16	8, 16, 32	4 or 5 PCLKA
000C 201Ch	GPT	General PWM Timer Clearing Write-Protection Register*2	GTCWP	16	8, 16, 32	4 or 5 PCLKA
000C 2020h	GPT	General PWM Timer Common Register Write-Protection Register*2	GTCMNWP	16	8, 16, 32	4 or 5 PCLKA
000C 2024h	GPT	General PWM Timer Mode Register*2	GTMDR	16	8, 16, 32	4 or 5 PCLKA
000C 2028h	GPT	General PWM Timer External Clock Noise Filter Control Register* ²	GTECNFCR	32	8, 16, 32	4 or 5 PCLKA

	Module Register		Number of		Number of Access Cycles	
Address	Symbol	Register Name	Symbol	Bits	Access Size	$\textbf{ICLK} \geq \textbf{PCLK}$
000C 21A0h	GPT1	General PWM Timer Period Setting Double Buffer Register*2	GTPDBR	16	16, 32	4 or 5 PCLKA
000C 21A4h	GPT1	A/D Converter Start Request Timing Register A*2	GTADTRA	16	16, 32	4 or 5 PCLKA
000C 21A6h	GPT1	A/D Converter Start Request Timing Buffer Register A*2	GTADTBRA	16	16, 32	4 or 5 PCLKA
000C 21A8h	GPT1	A/D Converter Start Request Timing Double Buffer Register $A^{\star 2}$	GTADTDBRA	16	16, 32	4 or 5 PCLKA
000C 21ACh	GPT1	A/D Converter Start Request Timing Register B*2	GTADTRB	16	16, 32	4 or 5 PCLKA
000C 21AEh	GPT1	A/D Converter Start Request Timing Buffer Register B*2	GTADTBRB	16	16, 32	4 or 5 PCLKA
000C 21B0h	GPT1	A/D Converter Start Request Timing Double Buffer Register B^{*2}	GTADTDBRB	16	16, 32	4 or 5 PCLKA
000C 21B4h	GPT1	General PWM Timer Output Negate Control Register*2	GTONCR	16	16, 32	4 or 5 PCLKA
000C 21B6h	GPT1	General PWM Timer Dead Time Control Register*2	GTDTCR	16	16, 32	4 or 5 PCLKA
000C 21B8h	GPT1	General PWM Timer Dead Time Value Register U*2	GTDVU	16	16, 32	4 or 5 PCLKA
000C 21BAh	GPT1	General PWM Timer Dead Time Value Register D*2	GTDVD	16	16, 32	4 or 5 PCLKA
000C 21BCh	GPT1	General PWM Timer Dead Time Buffer Register U*2	GTDBU	16	16, 32	4 or 5 PCLKA
000C 21BEh	GPT1	General PWM Timer Dead Time Buffer Register D*2	GTDBD	16	16, 32	4 or 5 PCLKA
000C 21C0h	GPT1	General PWM Timer Output Protection Function Status Register*2	GTSOS	16	16, 32	4 or 5 PCLKA
000C 21C2h	GPT1	General PWM Timer Output Protection Function Temporary Release Register*2	GTSOTR	16	16, 32	4 or 5 PCLKA
000C 2200h	GPT2	General PWM Timer I/O Control Register*2	GTIOR	16	8, 16, 32	4 or 5 PCLKA
000C 2202h	GPT2	General PWM Timer Interrupt Output Setting Register*2	GTINTAD	16	8, 16, 32	4 or 5 PCLKA
000C 2204h	GPT2	General PWM Timer Control Register*2	GTCR	16	8, 16, 32	4 or 5 PCLKA
000C 2206h	GPT2	General PWM Timer Buffer Enable Register*2	GTBER	16	8, 16, 32	4 or 5 PCLKA
000C 2208h	GPT2	General PWM Timer Count Direction Register*2	GTUDC	16	8, 16, 32	4 or 5 PCLKA
000C 220Ah	GPT2	General PWM Timer Interrupt and A/D Converter Start Request Skipping Setting Register*2	GTITC	16	8, 16, 32	4 or 5 PCLKA
000C 220Ch	GPT2	General PWM Timer Status Register*2	GTST	16	8, 16, 32	4 or 5 PCLKA
000C 220Eh	GPT2	General PWM Timer Counter*2	GTCNT	16	16	4 or 5 PCLKA
000C 2210h	GPT2	General PWM Timer Compare Capture Register A*2	GTCCRA	16	16, 32	4 or 5 PCLKA
000C 2212h	GPT2	General PWM Timer Compare Capture Register B*2	GTCCRB	16	16, 32	4 or 5 PCLKA
000C 2214h	GPT2	General PWM Timer Compare Capture Register C*2	GTCCRC	16	16, 32	4 or 5 PCLKA
000C 2216h	GPT2	General PWM Timer Compare Capture Register D*2	GTCCRD	16	16, 32	4 or 5 PCLKA
000C 2218h	GPT2	General PWM Timer Compare Capture Register E*2	GTCCRE	16	16, 32	4 or 5 PCLKA
000C 221Ah	GPT2	General PWM Timer Compare Capture Register F*2	GTCCRF	16	16, 32	4 or 5 PCLKA
000C 221Ch	GPT2	General PWM Timer Period Setting Register*2	GTPR	16	16, 32	4 or 5 PCLKA
000C 221Eh	GPT2	General PWM Timer Period Setting Buffer Register*2	GTPBR	16	16, 32	4 or 5 PCLKA
000C 2220h	GPT2	General PWM Timer Period Setting Double Buffer Register*2	GTPDBR	16	16, 32	4 or 5 PCLKA
000C 2224h	GPT2	A/D Converter Start Request Timing Register A*2	GTADTRA	16	16, 32	4 or 5 PCLKA
000C 2226h	GPT2	A/D Converter Start Request Timing Buffer Register A*2	GTADTBRA	16	16, 32	4 or 5 PCLKA
000C 2228h	GPT2	A/D Converter Start Request Timing Double Buffer Register A^{*2}	GTADTDBRA	16	16, 32	4 or 5 PCLKA
000C 222Ch	GPT2	A/D Converter Start Request Timing Register B*2	GTADTRB	16	16, 32	4 or 5 PCLKA
000C 222Eh	GPT2	A/D Converter Start Request Timing Buffer Register B*2	GTADTBRB	16	16, 32	4 or 5 PCLKA
000C 2230h	GPT2	A/D Converter Start Request Timing Double Buffer Register $B^{\star 2}$	GTADTDBRB	16	16, 32	4 or 5 PCLKA
000C 2234h	GPT2	General PWM Timer Output Negate Control Register*2	GTONCR	16	16, 32	4 or 5 PCLKA
000C 2236h	GPT2	General PWM Timer Dead Time Control Register*2	GTDTCR	16	16, 32	4 or 5 PCLKA
000C 2238h	GPT2	General PWM Timer Dead Time Value Register U*2	GTDVU	16	16, 32	4 or 5 PCLKA
000C 223Ah	GPT2	General PWM Timer Dead Time Value Register D*2	GTDVD	16	16, 32	4 or 5 PCLKA
000C 223Ch	GPT2	General PWM Timer Dead Time Buffer Register U*2	GTDBU	16	16, 32	4 or 5 PCLKA
000C 223Eh	GPT2	General PWM Timer Dead Time Buffer Register D*2	GTDBD	16	16, 32	4 or 5 PCLKA
000C 2240h	GPT2	General PWM Timer Output Protection Function Status Register*2	GTSOS	16	16, 32	4 or 5 PCLKA
000C 2242h	GPT2	General PWM Timer Output Protection Function Temporary Release Register*2	GTSOTR	16	16, 32	4 or 5 PCLKA

Table 4.1 List of I/O Registers (Address Order) (34/37)

Table 5.4 DC Characteristics (2)

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = $0 \text{ V}, \text{ T}_{a} = -40 \text{ to } +85^{\circ}\text{C}$

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Input leakage current	RES#, MD, port E2	I _{in}	_	_	1.0	μΑ	V _{in} = 0 V, VCC
Three-state leakage	Port 4, port 5, port 6	I _{TSI}	_	_	1.0	μΑ	V _{in} = 0 V, VREF
current (off-state)	Ports except for 5-V tolerant ports and port 4, port 5, port 6		_	_	0.2		V _{in} = 0 V, VCC
	Ports for 5 V tolerant		_	_	1.0		V _{in} = 0 V, 5.8 V
Input capacitance	All input pins	C _{in}	_	4	15	pF	$V_{in} = 0 \text{ mV},$ f = 1 MHz, T _a = 25°C
Input pull-up resistor	All ports (except for port E2)	R _U	10	20	50	kΩ	V _{in} = 0 V

Table 5.5 DC Characteristics (3)

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, $T_a = -40$ to +85°C

	Symbol	Chip Version A		Cl Vers	hip ion B	Linit	Test						
item				Symbol	Typ. *7	Max.	Typ. *7	Max.	Unit	Conditions			
Supply	High-speed	Normal	No peripheral	ICLK = 80 MHz	I _{CC}	26.0	—	26.0	—	mA			
current *1	operating mode	operating mode	operation*2	ICLK = 64 MHz		20.7	—	20.7	—				
		inicae		ICLK = 32 MHz		11.8	—	11.8	—				
				ICLK = 16 MHz		7.0	—	7.0	—				
				ICLK = 8 MHz		4.7		4.7					
			All peripheral	ICLK = 80 MHz*3		35.0	—	40.5	—				
			operation: Normal	ICLK = 64 MHz*4		28.5	—	32.5	—				
		Normai		ICLK = 32 MHz*5		18.5	—	20.9	—				
				ICLK = 16 MHz*5		10.5		11.7					
				ICLK = 8 MHz*5		6.4	—	7.0	—				
			All peripheral	ICLK = 80 MHz*3			70.0	_	80.0				
			operation: Max	ICLK = 64 MHz*4		_	60.0		70.0				
			max.	ICLK = 32 MHz*5			40.0	—	45.0				
		Sleep	No peripheral	ICLK = 80 MHz		7.2	—	7.2	—				
		mode	operation*2	ICLK = 64 MHz		6.1	—	6.1	—				
				ICLK = 32 MHz	4.4	4.4	—	4.4	—				
				ICLK = 16 MHz		3.4	—	3.4	—				
				ICLK = 8 MHz		2.9	—	2.9	—				
			All peripheral	ICLK = 80 MHz*3		22.4	—	26.9	—				
			operation: Normal	ICLK = 64 MHz*4		18	18.4	18.4	—	21.9	_		
			Normai	ICLK = 32 MHz*5			13.5	—	15.5	_			
				ICLK = 16 MHz*5		8.0	—	9.0	_				
				ICLK = 8 MHz*5		5.2	—	5.7	_				

Table 5.6 **DC Characteristics (4)**

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, $T_a = -40$ to +85°C

ltem		Symbol	Chip Ve	ersion A	Chip Ve	ersion B	Unit	Test Conditions	
		Cymbol	Typ.* ³	Max.	Typ.* ³	Max.	One		
Supply	Software standby	T _a = 25°C	I _{CC}	1.0	55.0	1.5	15.0	μA	
current*1	mode*2	T _a = 55°C		1.5	60.0	3.0	38.0		
		T _a = 85°C		5.5	260.0	13.0	135.0		

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.

Note 2. The IWDT and LVD are stopped. Note 3. VCC = 5 V.

Voltage Dependency in Software Standby Mode (Chip Version A) (Reference Data) Figure 5.1

Table 5.10DC Characteristics (8)

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = $0 \text{ V}, \text{ T}_a = -40 \text{ to } +85^{\circ}\text{C}$

The ripple voltage must meet the allowable ripple frequency $f_{r (VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (2.7 V). When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
Allowable ripple frequency	f _{r (VCC)}	—	—	10	kHz	Figure 5.5 $V_{r (VCC)} \le VCC \times 0.2$			
		_	_	1	MHz	Figure 5.5 $V_{r (VCC)} \le VCC \times 0.08$			
		_	_	10	MHz	Figure 5.5 $V_{r (VCC)} \leq VCC \times 0.06$			
Allowable voltage change rising/falling gradient	dt/dVCC	1.0	_	—	ms/V	When VCC change exceeds VCC ±10%			

Figure 5.5 Ripple Waveform

Table 5.11DC Characteristics (9)

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, $T_a = -40$ to +85°C

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible error of VCL pin external capacitance	C _{VCL}	3.3	4.7	6.1	μF	

Note: The recommended capacitance is 4.7 µF. Variations in connected capacitors should be within the above range.

Figure 5.16 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Large Current Ports at VCC = 5.0 V (Reference Data)

Figure 5.17 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Large Current Ports at VCC = 5.5 V (Reference Data)

Table 5.16Clock Timing

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, $T_a = -40$ to $+85^{\circ}$ C

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
EXTAL external clock input cycle time	t _{Xcyc}	50	_	_	ns	Figure 5.22
EXTAL external clock input high pulse width	t _{XH}	20	_	—	ns	
EXTAL external clock input low pulse width	t _{XL}	20	_	_	ns	
EXTAL external clock rise time	t _{Xr}	_	—	5	ns	
EXTAL external clock fall time	t _{Xf}	_	_	5	ns	
EXTAL external clock input wait time*1	t _{XWT}	0.5	—	—	μs	
Main clock oscillator oscillation frequency	f _{MAIN}	1	_	20	MHz	
Main clock oscillation stabilization time (crystal)*2	t _{MAINOSC}	_	3	—	ms	Figure 5.23
Main clock oscillation stabilization time (ceramic resonator)* ²	t _{MAINOSC}	_	50	—	μs	
LOCO clock oscillation frequency	f _{LOCO}	3.44	4.0	4.56	MHz	
LOCO clock oscillation stabilization time	t _{LOCO}	_	_	0.5	μs	Figure 5.24
HOCO clock oscillation frequency	f _{HOCO}	31.52	32	32.48	MHz	$T_a = -40$ to $-20^{\circ}C$
	(32MHz)	31.68	32	32.32	MHz	$T_a = -20 \text{ to } +75^{\circ}\text{C}$
		31.52	32	32.48	MHz	T _a = +75 to +85°C
	f _{HOCO}	63.04	64	64.96	MHz	$T_a = -40$ to $-20^{\circ}C$
	(64MHz)	63.36	64	64.64	MHz	$T_a = -20 \text{ to } +75^{\circ}\text{C}$
		63.04	64	64.96	MHz	T _a = +75 to +85°C
HOCO clock oscillation stabilization time	t _{HOCO} (32MHz)	_	—	37.1	μs	Figure 5.26
	t _{HOCO} (64MHz)	_	—	80.6	μs	Figure 5.26
IWDT-dedicated clock oscillation frequency	f _{ILOCO}	12.75	15	17.25	kHz	
IWDT-dedicated clock oscillation stabilization time	t _{ILOCO}	_	_	50	μs	Figure 5.27
PLL circuit oscillation frequency	f _{PLL}	40	_	80	MHz	
PLL clock oscillation stabilization time	t _{PLL}	—	—	50	μs	Figure 5.28
PLL free-running oscillation frequency	f _{PLLFR}	—	8	—	MHz	

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.

Note 2. Reference values when an 8-MHz resonator is used.

When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the resonator-manufacturer-recommended value.

After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the OSCOVFSR.MOOVF flag to confirm that is has become 1, and then start using the main clock.

Figure 5.22 EXTAL External Clock Input Timing

Table 5.20 Timing of Recovery from Low Power Consumption Modes (3)

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, $T_a = -40$ to +85°C

Ite	em	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep	High-speed mode*2	t _{DSLP}	—	2	3.5	μs	Figure 5.33
sleep mode*1	Middle-speed mode*3	t _{DSLP}	—	3	4	μs	

Note 1. Oscillators continue oscillating in deep sleep mode.

Note 2. When the frequencies of ICLK, FCLK, PCLKA, PCLKB, and PCLKD are 32 MHz.

Note 3. When the frequencies of ICLK, FCLK, PCLKA, PCLKB, and PCLKD are 12 MHz.

Figure 5.33 Deep Sleep Mode Recovery Timing

Table 5.21 Operating Mode Transition Time

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, $T_a = -40$ to +85°C

Mode before Transition	Mode after Transition		Tra	ansition Tir	ne	Linit
		ICENTIequency	Min.	Тур.	Max.	Onit
High-speed operating mode	Middle-speed operating modes	8 MHz	_	10	—	μs
Middle-speed operating modes	High-speed operating mode	8 MHz	_	37.5	_	μs

Note: Values when the frequencies of PCLKA, PCLKB, PCLKD, and FCLK are not divided.

Table 5.26 **Timing of On-Chip Peripheral Modules (4)**

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, $T_a = -40$ to +85°C

	Item	Symbol	Min.*1, *2	Max.	Unit	Test Conditions
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	—	ns	Figure 5.52
(Standard mode_SMBus)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
mode, embde)	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL, SDA rise time	t _{Sr}	—	1000	ns	
	SCL, SDA fall time	t _{Sf}	—	300	ns	
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300		ns	
	START condition hold time	t _{STAH}	t _{IICcyc} + 300		ns	
	Repeated START condition setup time	t _{STAS}	1000		ns	
	STOP condition setup time	t _{STOS}	1000	_	ns	
	Data setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	Cb	—	400	pF	
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	_	ns	Figure 5.52
(Fast mode)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL, SDA rise time	t _{Sr}	—	300	ns	
	SCL, SDA fall time	t _{Sf}	—	300	ns	
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns	
	Repeated START condition setup time	t _{STAS}	300	_	ns	
	STOP condition setup time	t _{STOS}	300	_	ns	
	Data setup time	t _{SDAS}	t _{IICcyc} + 50	—	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	Cb	—	400	pF	

Note 1. t_{IICcyc} : RIIC internal reference count clock (IIC ϕ) cycle Note 2. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE bit = 1.

- Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.
- Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

Figure 5.55 Voltage Detection Reset Timing

Figure 5.56 Power-On Reset Timing

Table 5.41ROM (Flash Memory for Code Storage) Characteristics (3): Middle-Speed Operating ModeConditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V

Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

ltem		Symbol	F	FCLK = 1 MHz			FCLK = 8 MHz		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Onic
Programming time	8-byte	t _{P8}	_	152.0	1367.0		97.9	936.0	μs
Erasure time	2-Kbyte	t _{E2K}	—	8.8	279.7		5.9	220.8	ms
	256-Kbyte (when block erase command used)	t _{E256K}	_	469.2	9816.9		100.5	2260.1	ms
	256-Kbyte (when all- block erase command used)	t _{EA256K}	_	464.0	9610.7	_	95.3	2053.7	ms
	512-Kbyte (when block erase command used)	t _{E512K}	_	928.0	19221.2	_	190.6	4107.3	ms
	512-Kbyte (when all- block erase command used)	t _{EA512K}	_	922.7	19015.0	_	185.4	3901.0	ms
Blank check time	8-byte	t _{BC8}	_		85.0			50.9	μs
	2-Kbyte	t _{BC2K}	—	—	1870.0		—	401.5	μs
Erase operation forcible	stop time	t _{SED}	—	—	28.0		—	21.3	μs
Start-up area switching s	setting time	t _{SAS}	—	13.0	573.3		7.7	450.1	ms
Access window time		t _{AWS}	—	13.0	573.3	_	7.7	450.1	ms
ROM mode transition wa	ait time 1	t _{DIS}	2.0	—	—	2.0	—	—	μs
ROM mode transition wa	ait time 2	t _{MS}	3.0	_		3.0	_	_	μs

Note:Does not include the time until each operation of the flash memory is started after instructions are executed by software.Note:The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK should be ±3.5%.

5.11 E2 DataFlash Characteristics

Table 5.42 EZ DataFlash Gharacteristics (1	Table 5.42	E2 DataFlash	Characteristics	(1)
--	------------	--------------	-----------------	-----

	Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/er	asure cycle* ¹	N _{DPEC}	100000	1000000	_	Times	
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20* ^{2, *3}	—	_	Year	T _a = +85°C
	After 100000 times of N _{DPEC}		5*2, *3	—	_	Year	
	After 1000000 times of N _{DPEC}	Ī	—	1* ^{2, *3}	_	Year	T _a = +25°C

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/ erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different addresses in 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 5.43 E2 DataFlash Characteristics (2): High-Speed Operating Mode

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, Temperature range for the programming/erasure operation: $T_a = -40$ to $+85^{\circ}$ C

ltem		Symbol	FCLK = 1 MHz			FC	Linit		
item		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Programming time	1-byte	t _{Dp1}	_	95.0	797.0	_	40.8	375.5	μs
Erasure time	1-Kbyte	t _{DE1K}	_	19.5	498.5	_	6.2	229.4	ms
	8-Kbyte	t _{DE8K}	_	119.8	2555.7	_	12.9	367.2	ms
Blank check time	1-byte	t _{DBC1}	_	_	55.0	_	_	16.1	μs
	1-Kbyte	t _{DBC1K}			7216.0			495.7	μs
Erase operation forcible stop time		t _{DSED}			16.0			10.7	μs
Data flash-module stop r	elease time	t _{DSTOP}	5.0	_	_	5.0	_	_	μs

Note:Does not include the time until each operation of the flash memory is started after instructions are executed by software.Note:The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK should be ±3.5%.

Table 5.44 E2 DataFlash Characteristics (3): Middle-Speed Operating Mode

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREF = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = 0 V, Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

ltem		Symbol	FCLK = 1 MHz			F	Linit		
item		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Programming time	1-byte	t _{Dp1}	_	135.0	1197.0	_	86.5	822.5	μs
Erasure time	1-Kbyte	t _{DE1K}	_	19.6	500.1	_	8.0	264.1	ms
	8-Kbyte	t _{DE8K}	-	119.9	2557.4	_	27.7	668.2	ms
Blank check time	1-byte	t _{DBC1}	_	—	85.0	_	_	50.9	μs
	1-Kbyte	t _{DBC1K}		—	7246.0			1457.5	μs
Erase operation forcible stop time		t _{DSED}		—	28.0			21.3	μs
Data flash-module stop	release time	t _{DSTOP}	0.72	_		0.72		_	μs

Note:Does not include the time until each operation of the flash memory is started after instructions are executed by software.Note:The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK should be ±3.5%.

5.12 Usage Notes

5.12.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU to adjust automatically to the optimum level. A 4.7- μ F capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and VSS pin. Figure 5.61 to Figure 5.63 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor to the MCU power supply pins as close as possible. Use a recommended value of 0.1 μ F as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 31, 12-Bit A/D Converter (S12ADF) in the User's Manual: Hardware.

For notes on designing the printed circuit board, see the descriptions of the application note "Hardware Design Guide" (R01AN1411EJ). The latest version can be downloaded from Renesas Electronics Website.

Figure 5.61 Connecting Capacitors (100 Pins)

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

 Renesas Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tel: +86-12-2226-0888, Fax: +865-204999

 Renesas Electronics Hong Kong Limited

 Unit 1601-1611, 161F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +86-2256-6688, Fax: +852-2886-9022

 Renesas Electronics Taiwan Co., Ltd.

 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

 Tel: +86-2-8175-9600, Fax: +868 2-8175-9670

 Renesas Electronics Singapore Pte. Ltd.

 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

 Tel: +65-6213-0200, Fax: +656-213-0300

 Renesas Electronics Malaysia Sdn.Bhd.

 Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 Tel: +67-755-9390, Fax: +665-213-0300

 Renesas Electronics India Pvt. Ltd.

 No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India

 Tel: +67-208700, Fax: +804-7305-9510

 Renesas Electronics Korea Co., Ltd.

 No.777C, 100 Feet Road, HAL II Stage, Indiranagar, B