NXP USA Inc. - MC9S08PT16AVLC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pt16avlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter Classification

Field	Description	Values
В	Operating temperature range (°C)	• V = -40 to 105
CC	Package designator	 LD = 44-LQFP LC = 32-LQFP TJ = 20-TSSOP WJ = 20-SOIC TG = 16-TSSOP

2.4 Example

This is an example part number:

MC9S08PT16VLD

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
ILAT	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}		120	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 is only clamped to V_{SS}.

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol	С		Descriptions	Min	Typical ¹	Мах	Unit	
—	—	Operating voltage		—	2.7	—	5.5	V
V _{OH}	V _{OH} C Output high voltage All I/O pins, standard- drive strength		5 V, I _{load} = -5 mA	V _{DD} - 0.8			V	
	С			3 V, I _{load} = -2.5 mA	V _{DD} - 0.8	_		V
	С		High current drive pins, high-drive	5 V, I _{load} = -20 mA	V _{DD} - 0.8			V
	C strength ²	3 V, I _{load} = -10 mA	V _{DD} - 0.8			V		

Table 2. DC characteristics

Table continues on the next page...

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

Symbol	С	Descriptions			Min	Typical ¹	Max	Unit
I _{ОНТ}	D	Output high	Max total I _{OH} for all	5 V	_	_	-100	mA
		current	ports	3 V	_	_	-50	
V _{OL}	С	Output low voltage	All I/O pins, standard- drive strength	5 V, I _{load} = 5 mA		_	0.8	V
	С			3 V, I _{load} = 2.5 mA	—	—	0.8	V
	С		High current drive pins, high-drive	5 V, I _{load} =20 mA	_	—	0.8	V
	С		strength ²	3 V, I _{load} = 10 mA	—	—	0.8	V
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	1
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$		—	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	—	
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	V
	С	voltage	voltage		_		$0.35 \times V_{DD}$	1
V _{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	—	—	mV
I _{In}	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	—	0.1	1	μA
ll _{oz} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA
ll _{oztot} l	С	Total leakage combined for all inputs and Hi-Z pins		$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μA
R _{PU}	Р	Pullup resistors Pullup resistors Pullup when enabled (all I/O pins other than PTA2 and PTA3)		_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0		60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{\rm IN} < V_{\rm SS},$	-0.2	—	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	V _{IN} > V _{DD}	-5	_	25	
C _{In}	С	Input cap	bacitance, all pins		_	—	7	pF
V _{RAM}	С	RAM re	etention voltage	_	2.0	_	_	V

Table 2. DC characteristics (continued)

1. Typical values are measured at 25 °C. Characterized, not tested.

2. Only PTB4, PTB5, PTD0, PTD1 support ultra high current output.

- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}.
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

Nonswitching electrical specifications

6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Symbol	С	Desc	ription	Min	Тур	Мах	Unit
V _{POR}	D	POR re-arr	n voltage ^{1, 2}	1.5	1.75	2.0	V
V _{LVDH}	С	Falling low-v threshold - hig =	oltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold -	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С	High range detect/warni	low-voltage ng hysteresis	—	100	—	mV
V _{LVDL}	С	Falling low-v threshold - low	Falling low-voltage detect threshold - low range (LVDV = 0)		2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold -	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	Low range low hyste	Low range low-voltage detect hysteresis		40	—	mV
V _{HYSWL}	С	Low range warning	low-voltage nysteresis		80		mV
V _{BG}	Р	Buffered ban	dgap output ⁴	1.14	1.16	1.18	V

Table 3. LVD and POR Specification

1. Maximum is highest voltage that POR is guaranteed.

2. POR ramp time must be longer than 20us/V to get a stable startup.

- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

I_{OH}(mA)

Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

 $I_{OH}(mA)$ Figure 2. Typical I_{OH} Vs. V_{DD}-V_{OH} (standard drive strength) (V_{DD} = 3 V)

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop3 ⁴	_	_	5	121	_	μA	-40 to 105 °C
	С	PS = 010B			3	120	-		
		NSCN = 0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	128	_	μA	-40 to 105 °C
	С				3	124			

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1kHz LPO clock.

3. ACMP adder cause <10 μ A I_{DD} increase typically.

4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.

5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP

 Table 5. EMC radiated emissions operating behaviors for 44-pin L0 package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	8	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	8	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	Ν	_	2, 3

switching specifications

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 5.0 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 20 MHz, f_{BUS} = 20 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Num	С	Rating	l	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus}))	f _{Bus}	DC	—	20	MHz
2	С	Internal low power oscillato	r frequency	f _{LPO}	—	1.0	—	KHz
3	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
4	D	Reset low drive		t _{rstdrv}	$34 imes t_{cyc}$	—	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u	t _{MSSU}	500	—	_	ns	
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	—	—	ns	
7	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	—	_	ns
	D		Synchronous path ⁴	t _{IHIL}	1.5 × t _{cyc}	_	—	ns
8	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	1.5 × t _{cyc}	_	—	ns
9	С	Port rise and fall time -	—	t _{Rise}	_	10.2	_	ns
	С	standard drive strength (load = 50 pF) ⁵		t _{Fall}	_	9.5	—	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁵		t _{Fall}		4.6	_	ns

Table 6. Control timing

1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

Switching specifications

Figure 10. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications Table 7. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2		ns
t _{wh}	High pulse width	2		ns
t _r	Clock and data rise time	—	3	ns
t _f	Clock and data fall time		3	ns
t _s	Data setup	3	—	ns
t _h	Data hold	2	—	ns

Figure 11. TRACE_CLKOUT specifications

Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

Figure 13. Timer external clock

Figure 14. Timer input capture pulse

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Мах	Unit
13	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Figure 15. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 105 °C	V _{prog/erase}	2.7	—	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V

Table 11. Flash characteristics

Table continues on the next page...

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

6.3 Analog

6.3.1 ADC characteristics

Table 12. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	—	5.5	V	—
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV _{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz			—	5		
	10-bit mode • face > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		—	_	10		
	8-bit mode		—	—	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	—	8.0	MHz	—
conversion clock frequency	Low power (ADLPC=1)		0.4	—	4.0		

1. Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

rempheral operating requirements and behaviors

Figure 16. ADC input impedance equivalency diagram

Table 13.	12-bit ADC	Characteristics	(V _{REFH} =	V _{DDA} ,	V _{REFL} =	V _{SSA})
-----------	------------	-----------------	----------------------	--------------------	---------------------	--------------------

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	—	133	—	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	—	218	—	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	—	327	—	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	—	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μA
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

Table continues on the next page...

rempheral operating requirements and behaviors

6.3.2 Analog comparator (ACMP) electricals Table 14. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{DDA}	2.7	—	5.5	V
Т	Supply current (Operation mode)	I _{DDA}		10	20	μA
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V _{DDA}	V
Р	Analog input offset voltage	V _{AIO}		—	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H		20	30	mV
Т	Supply current (Off mode)	IDDAOFF		60		nA
С	Propagation Delay	t _D		0.4	1	μs

6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes high drive strength is enabled for SPI output pins.

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	
4	t _{Lag}	Enable lag time	1/2		t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	
6	t _{SU}	Data setup time (inputs)	15		ns	
7	t _{HI}	Data hold time (inputs)	0		ns	_
8	t _v	Data valid (after SPSCK edge)		25	ns	_
9	t _{HO}	Data hold time (outputs)	0		ns	_
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_

Table 15. SPI master mode timing

Table continues on the next page...

rempheral operating requirements and behaviors

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	t _{Bus} = 1/f _{Bus}
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	—
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	—
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	—	25	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	—	t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output]			

Table 16. SPI slave mode timing

NOTE: Not defined

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 17. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	—	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μA
TSI_EN	Power consumption in enable mode	_	100		μA
TSI_DIS	Power consumption in disable mode	_	1.2		μA
TSI_TEN	TSI analog enable time	_	66		μs
TSI_CREF	TSI reference capacitor	_	1.0		pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	-10	—	10	%

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

Pin Number				Lowest Priority <> Highest					
44-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
18	_	_		PTD5		_	_	—	
19	13	11	_	PTC1	_	FTM2CH1	ADP9	TSI7	
20	14	12	_	PTC0	_	FTM2CH0	ADP8	TSI6	
21	15	13	9	PTB3	KBI0P7	MOSI0	ADP7	TSI5	
22	16	14	10	PTB2	KBI0P6	SPSCK0	ADP6	TSI4	
23	17	15	11	PTB1	KBI0P5	TXD0	ADP5	TSI3	
24	18	16	12	PTB0	KBI0P4	RXD0	ADP4	TSI2	
25	19		_	PTA7	_	FTM2FAULT2	ADP3	TSI1	
26	20		_	PTA6	_	FTM2FAULT1	ADP2	TSI0	
27	_	_	_	_	—	—	—	Vss	
28	—	_	_	_	—	—	—	V _{DD}	
29	_		_	PTD4	_	—	_	—	
30	21		_	PTD3	_	—	_	TSI15	
31	22	_	_	PTD2	—	—	—	TSI14	
32	23	17	13	PTA3 ²	KBI0P3	TXD0	SCL	—	
33	24	18	14	PTA2 ²	KBI0P2	RXD0	SDA	—	
34	25	19	15	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1	
35	26	20	16	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0	
36	27		_	PTC7	—	TxD1	—	TSI13	
37	28	_	_	PTC6	—	RxD1	_	TSI12	
38	_	_	_	PTE2	_	MISO0	_	—	
39	—		_	PTE1	—	MOSI0	—	—	
40	_		_	PTE0	_	SPSCK0	—	—	
41	29	—	—	PTC5	—	FTM0CH1	—	TSI11	
42	30	—	—	PTC4	—	FTM0CH0	—	TSI10	
43	31	1	1	PTA5	IRQ	TCLK0	—	RESET	
44	32	2	2	PTA4	_	ACMPO	BKGD	MS	

Table 18.	Pin availability	/ b\	package	pin-count	(continued)
-----------	------------------	------	---------	-----------	-------------

1. This is a high current drive pin when operated as output.

2. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function

already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

- 1. High source/sink current pins
- 2. True open drain pins

Figure 21. MC9S08PT16 44-pin LQFP package

Pins in **bold** are not available on less pin-count packages. 1. High source/sink current pins

2. True open drain pins

Figure 24. MC9S08PT16 16-pin TSSOP package

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes		
1	7/2012	Initial public release		
2	09/2014	 Updated V_{OH} and V_{OL} in DC characteristics Added footnote on the S3I_{DD} in Supply current characteristics Added EMC radiated emissions operating behaviors Updated the typical of f_{int_t} to 31.25 kHz and updated footnote to t_{Acquire} in External oscillator (XOSC) and ICS characteristics Updated the assumption for all the timing values in SPI switching specifications Updated the rating descriptions for t_{Rise} and t_{Fall} in Control timing Updated the part number format to add new field for new part numbers in Fields 		
3	06/2015	 Corrected the Min. of the t_{extrst} in Control timing Updated Thermal characteristics to add footnote to the T_A and removed redundant information.Updated the symbol of θ_{JA} to R_{θJA}. 		

Table 19. Revision history

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved.

© 2011-2015 Freescale Semiconductor, Inc.

Document Number MC9S08PT16 Revision 3, 06/2015

