
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	508
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pt8avlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Orde	ering par	ts4
	1.1	Determ	ining valid orderable parts4
2	Part	identific	ation
	2.1	Descrip	tion4
	2.2	Format.	
	2.3	Fields	
	2.4	Exampl	e5
3	Para	meter Cl	assification5
4	Rati	ngs	
	4.1	Therma	l handling ratings6
	4.2	Moistu	e handling ratings
	4.3	ESD ha	ndling ratings6
	4.4	Voltage	and current operating ratings
5	Gen	eral	
	5.1	Nonswi	tching electrical specifications7
		5.1.1	DC characteristics
		5.1.2	Supply current characteristics
		5.1.3	EMC performance
	5.2	Switchi	ng specifications
		5.2.1	Control timing

		5.2.2	Debug trace timing specifications17	
		5.2.3	FTM module timing18	
	5.3	Therma	l specifications19	
		5.3.1	Thermal characteristics	
6	Perij	pheral op	erating requirements and behaviors19	
	6.1	Externa	l oscillator (XOSC) and ICS characteristics19	
	6.2	NVM sj	pecifications21	
	6.3	Analog.		
		6.3.1	ADC characteristics	
		6.3.2	Analog comparator (ACMP) electricals25	
	6.4	Commu	nication interfaces	
		6.4.1	SPI switching specifications	
	6.5	Human-	machine interfaces (HMI)29	
		6.5.1	TSI electrical specifications	
7	Dim	ensions		
	7.1	Obtaini	ng package dimensions29	
8	Pino	ut		
	8.1	Signal r	nultiplexing and pin assignments	
	8.2	Device	pin assignment	
9	Revi	sion hist	ory34	

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PT16 and PT8.

2 Part identification

2.1 Description

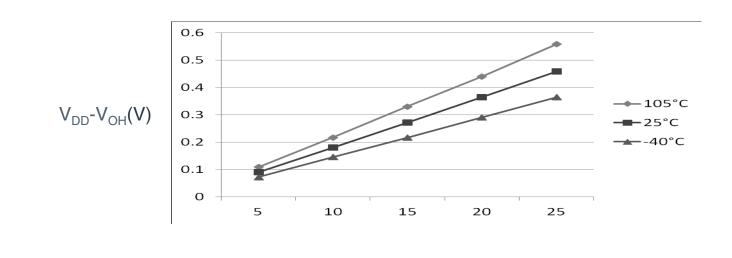
Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

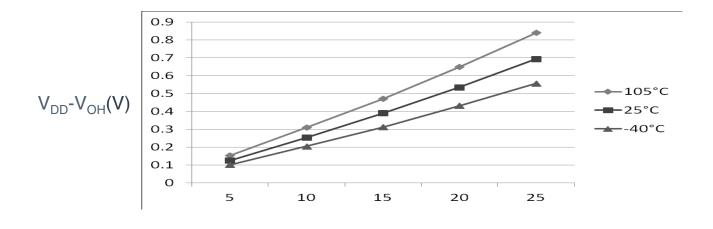
MC 9 S08 PT AA (V) B CC

2.3 Fields


This table lists the possible values for each field in the part number (not all combinations are valid):

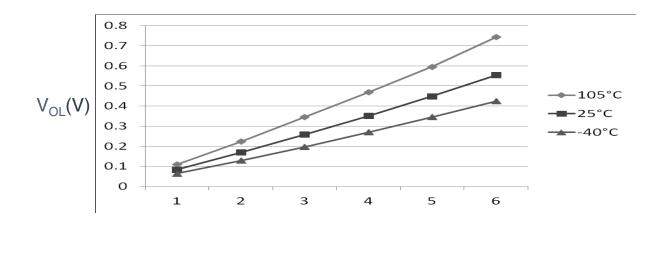
Field	Description	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	• 9 = flash based
S08	Core	• S08 = 8-bit CPU
PT	Device family	• PT
AA	Approximate flash size in KB	 16 = 16 KB 8 = 8 KB
(V)	Mask set version	 (blank) = Any version A = Rev. 2 or later version, this is recommended for new design

Table continues on the next page ...


MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

I_{OH}(mA)

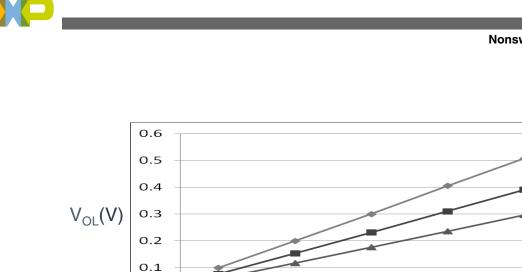
Figure 3. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) (V_{DD} = 5 V)


 $I_{OH}(mA)$ Figure 4. Typical I_{OH} Vs. V_{DD}-V_{OH} (high drive strength) (V_{DD} = 3 V)

I_{OL}(mA)

Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 5 V)

I_{OL}(mA)


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 3 V)

105°C

25°C

-40°C

10

0

5

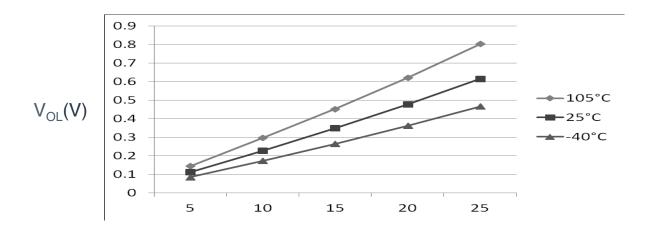

I_{OL}(mA)

Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) (V_{DD} = 5 V)

15

20

25

I_{OL}(mA)

Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) (V_{DD} = 3 V)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	7.60	—	mA	-40 to 105 °C
	С	mode, all modules on; run from flash		10 MHz		4.65	—		
		nom nasn		1 MHz		1.90	—		
	С			20 MHz	3	7.05	—		
	С			10 MHz		4.40	—		
				1 MHz		1.85	—		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	5.88	—	mA	-40 to 105 °C
	С	mode, all modules off & gated; run from flash		10 MHz		3.70	—		
		gated, full north hash		1 MHz		1.85	_		
	С			20 MHz	3	5.35	_		
	С			10 MHz		3.42	—	1	
				1 MHz		1.80	_		
3	Р	Run supply current FBE	RI _{DD}	20 MHz	5	10.9	14.0	mA	-40 to 105 °C
	С	mode, all modules on; run from RAM		10 MHz		6.10	—		
				1 MHz		1.69	_	_	
	С			20 MHz	3	8.18	_		
				10 MHz		5.14	—		
				1 MHz		1.44	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 105 °C
	С	mode, all modules off & gated; run from RAM		10 MHz		5.07	—		
		gated, full non fixin		1 MHz		1.59	_		
	С			20 MHz	3	6.11	_		
				10 MHz		4.10	—		
				1 MHz		1.34	_		
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95	—	mA	-40 to 105 °C
		mode, all modules on		10 MHz		3.50	_		
				1 MHz		1.24	_		
	С			20 MHz	3	5.45	_		
				10 MHz		3.25	_		
				1 MHz		1.20	_		
6	С	Stop3 mode supply	S3I _{DD}	—	5	4.6	_	μA	-40 to 105 °C
	С	current no clocks active (except 1kHz LPO clock) ^{2, 3}			3	4.5	—		-40 to 105 °C
7	С	ADC adder to stop3		_	5	40		μA	-40 to 105 °C

Table 4. Supply current characteristics

Table continues on the next page ...

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop3 ⁴	—	_	5	121	—	μA	-40 to 105 °C
	С	PS = 010B			3	120	—		
		NSCN = 0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	—	_	5	128		μA	-40 to 105 °C
	С				3	124			

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1kHz LPO clock.

3. ACMP adder cause <10 μ A I_{DD} increase typically.

4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.

5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP

 Table 5. EMC radiated emissions operating behaviors for 44-pin L0 package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	8	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	8	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V_{RE_IEC}	IEC level	0.15–1000	Ν	—	2, 3

switching specifications

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 5.0 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 20 MHz, f_{BUS} = 20 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Num	С	Rating]	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus}))	f _{Bus}	DC	—	20	MHz
2	С	Internal low power oscillato	nternal low power oscillator frequency		—	1.0	_	KHz
3	D	External reset pulse width ²	t pulse width ²		1.5 ×	—	—	ns
					t _{cyc}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	—	_	ns
5	D		BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes		500	_	_	ns
6	D	BKGD/MS hold time after is debug force reset to enter u		t _{MSH}	100	_	—	ns
7	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ⁴	t _{IHIL}	$1.5 \times t_{cyc}$	—	—	ns
8	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	1.5 × t _{cyc}	—	_	ns
9	С	Port rise and fall time -	—	t _{Rise}	—	10.2	—	ns
	С	standard drive strength (load = 50 pF) ⁵		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	—	5.4	—	ns
	С	high drive strength (load = 50 pF) ⁵		t _{Fall}	—	4.6	—	ns

Table 6. Control timing

1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

Switching specifications

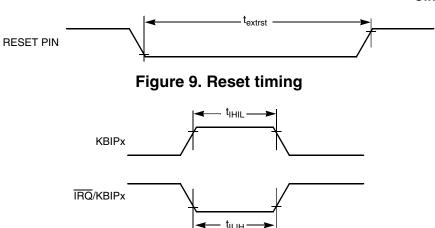


Figure 10. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications Table 7. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	dependent	MHz
t _{wl}	Low pulse width	2		ns
t _{wh}	High pulse width	2		ns
t _r	Clock and data rise time	—	3	ns
t _f	Clock and data fall time	—	3	ns
t _s	Data setup	3	—	ns
t _h	Data hold	2	—	ns

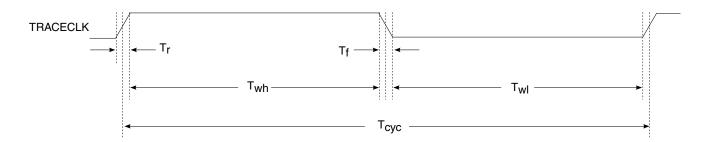


Figure 11. TRACE_CLKOUT specifications

rempheral operating requirements and behaviors

6.1 External oscillator (XOSC) and ICS characteristics

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient)

Num	С	C	characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ²	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4		20	MHz
2	D	Lo	bad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ⁴	R _F	—	_	—	MΩ
			Low Frequency, High-Gain Mode		_	10	_	MΩ
			High Frequency, Low- Power Mode		_	1	_	MΩ
			High Frequency, High-Gain Mode		_	1	_	MΩ
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	_	_	kΩ
		Low Frequency	High-Gain Mode	-	_	200		kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R _S	_	—	_	kΩ
	D	Series resistor -	4 MHz	-	_	0		kΩ
	D	High Frequency,	8 MHz	-	_	0	_	kΩ
	D	High-Gain Mode	16 MHz	-		0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000		ms
	С	time Low range = 32.768 kHz	Low range, high power	-	_	800		ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3		ms
	С	range = 20 MHz crystal ⁵ , ⁶	High range, high power		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	—	20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125		5	MHz
	D	input clock frequency	FBELP mode		0		20	MHz
9	Р	Average inter	nal reference frequency - trimmed	f _{int_t}	_	31.25	_	kHz
10	Р	DCO output fi	requency range - trimmed	f _{dco_t}	16	—	20	MHz
11	Р	Total deviation of DCO output	Over full voltage and temperature range	Δf_{dco_t}	—	_	±2.0	%f _{dco}
	С	from trimmed frequency ⁵	Over fixed voltage and temperature range of 0 to 70 °C				±1.0	
12	С	FLL a	cquisition time ⁵ , ⁷	t _{Acquire}	_		2	ms

Table continues on the next page...

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

N	um	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	3	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

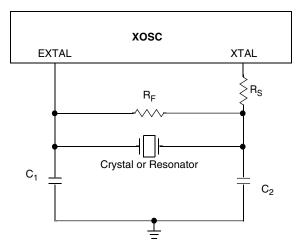


Figure 15. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

C	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 105 °C	V _{prog/erase}	2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V

Table 11. Flash characteristics

Table continues on the next page...

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	—	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	—	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	—	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	—	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 105 °C	n _{FLPE}	10 k	100 k		Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C	N _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100		years

Table 11. Flash characteristics (continued)

1. Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

rempheral operating requirements and behaviors

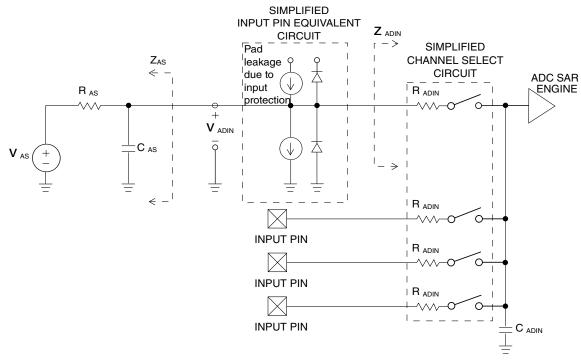


Figure 16. ADC input impedance equivalency diagram

Table 13.	12-bit ADC C	Characteristics	(V _{REFH} =	V _{DDA} , V _{REFL}	= V _{SSA})
-----------	--------------	-----------------	----------------------	--------------------------------------	----------------------

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	—	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	—	327	—	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	-	0.011	1	μA
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

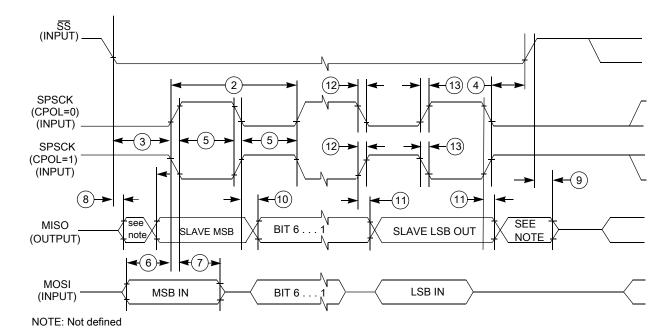
Table continues on the next page...

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			—	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	—	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			—	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	—	±5.0	—	LSB ³
Error ²	10-bit mode	Р		_	±1.5	±2.0]
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	—	±1.0	—	LSB ³
Linearity	10-bit mode ⁴	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р			±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL		±1.0		LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т			±0.15	±0.25	
Zero-scale error ⁵	12-bit mode	С	E _{ZS}		±2.0	_	LSB ³
	10-bit mode	Р			±0.25	±1.0]
	8-bit mode	Р			±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}		±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т			±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ		—	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	—	mV/°C
	25°C– 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}		1.396	_	V

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.


- 3. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5. $V_{ADIN} = V_{SSA}$
- 6. $V_{ADIN} = V_{DDA}$
- 7. I_{In} = leakage current (refer to DC characteristics)

rempheral operating requirements and behaviors

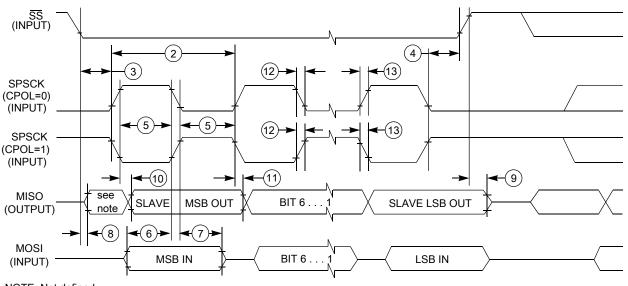

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	—
8	t _a	Slave access time	—	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	—	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)		25	ns	_
11	t _{HO}	Data hold time (outputs)	0	—	ns	_
12	t _{RI}	Rise time input		t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	—
	t _{FO}	Fall time output				

Table 16. SPI slave mode timing

NOTE: Not defined

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 17. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	—	100	—	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μΑ
TSI_EN	Power consumption in enable mode	_	100		μA
TSI_DIS	Power consumption in disable mode	—	1.2		μA
TSI_TEN	TSI analog enable time	—	66	_	μs
TSI_CREF	REF TSI reference capacitor		1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	-10		10	%

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

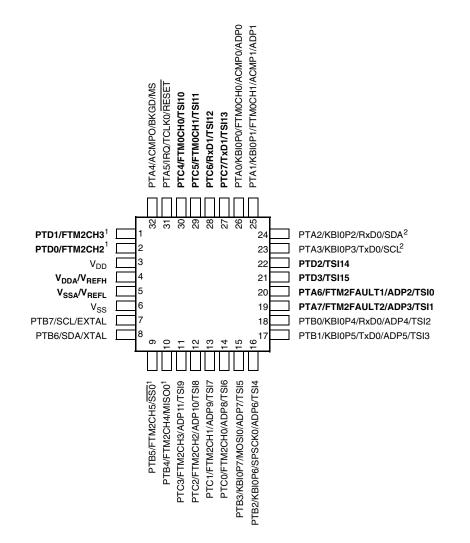
MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin TSSOP	98ASH70247A
20-pin SOIC	98ASB42343B
20-pin TSSOP	98ASH70169A
32-pin LQFP	98ASH70029A
44-pin LQFP	98ASS23225W

8 Pinout

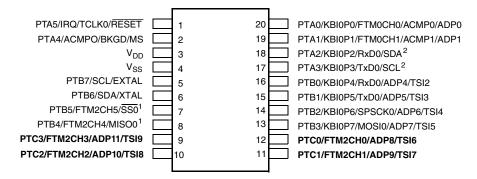
8.1 Signal multiplexing and pin assignments


The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

	Pin	Number			Lowes	st Priority <> H	lighest	
44-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	_	—	PTD1 ¹	_	FTM2CH3	—	—
2	2	_	_	PTD0 ¹	_	FTM2CH2	_	—
3	—	—	_	PTE4	_	TCLK2	—	—
4	—	—	—	PTE3	_	BUSOUT	—	—
5	3	3	3	_	_	_	—	V _{DD}
6	4		_	_		—	V _{DDA}	V _{REFH}
7	5	_		_	—	—	V _{SSA}	V _{REFL}
8	6	4	4	—	_	_	—	V _{SS}
9	7	5	5	PTB7	—	—	SCL	EXTAL
10	8	6	6	PTB6	_	_	SDA	XTAL
11	—	_	_	—	_	_	—	Vss
12	9	7	7	PTB5 ¹	—	FTM2CH5	SS0	_
13	10	8	8	PTB4 ¹	—	FTM2CH4	MISO0	_
14	11	9	_	PTC3	_	FTM2CH3	ADP11	TSI9
15	12	10	_	PTC2	_	FTM2CH2	ADP10	TSI8
16				PTD7			_	
17		_		PTD6				

Table 18. Pin availability by package pin-count

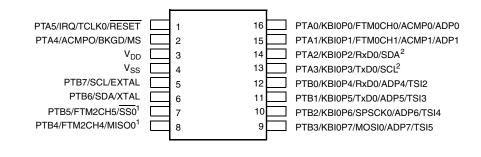
Table continues on the next page...



Pins in **bold** are not available on less pin-count packages.

High source/sink current pins
 True open drain pins

Figure 22. MC9S08PT16 32-pin LQFP package


Pins in **bold** are not available on less pin-count packages.

1. High source/sink current pins

2. True open drain pins

Figure 23. MC9S08PT16 20-pin SOIC and TSSOP package

Pins in **bold** are not available on less pin-count packages. 1. High source/sink current pins

2. True open drain pins

Figure 24. MC9S08PT16 16-pin TSSOP package

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	7/2012	Initial public release
2	09/2014	 Updated V_{OH} and V_{OL} in DC characteristics Added footnote on the S3I_{DD} in Supply current characteristics Added EMC radiated emissions operating behaviors Updated the typical of f_{int_t} to 31.25 kHz and updated footnote to t_{Acquire} in External oscillator (XOSC) and ICS characteristics Updated the assumption for all the timing values in SPI switching specifications Updated the rating descriptions for t_{Rise} and t_{Fall} in Control timing Updated the part number format to add new field for new part numbers in Fields
3	06/2015	 Corrected the Min. of the t_{extrst} in Control timing Updated Thermal characteristics to add footnote to the T_A and removed redundant information.Updated the symbol of θ_{JA} to R_{θJA}.

Table 19. Revision history

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved.

© 2011-2015 Freescale Semiconductor, Inc.

Document Number MC9S08PT16 Revision 3, 06/2015

