

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pt8avtj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PT16 and PT8.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PT AA (V) B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Qualification status Memory Core Device family	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	• 9 = flash based
S08	Core	• S08 = 8-bit CPU
PT	Device family	• PT
AA	Approximate flash size in KB	 16 = 16 KB 8 = 8 KB
(V)	Mask set version	 (blank) = Any version A = Rev. 2 or later version, this is recommended for new design

Table continues on the next page ...

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

Parameter Classification

Field	Description	Values
В	Operating temperature range (°C)	• V = -40 to 105
СС	Package designator	 LD = 44-LQFP LC = 32-LQFP TJ = 20-TSSOP WJ = 20-SOIC TG = 16-TSSOP

2.4 Example

This is an example part number:

MC9S08PT16VLD

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

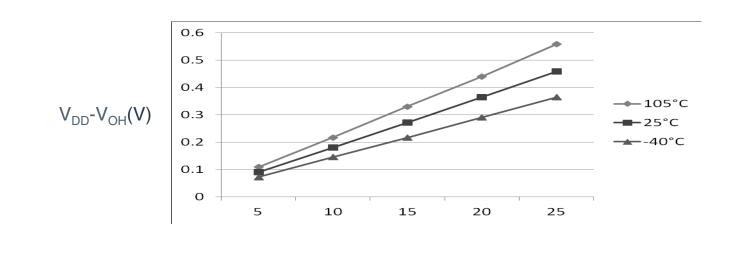
4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

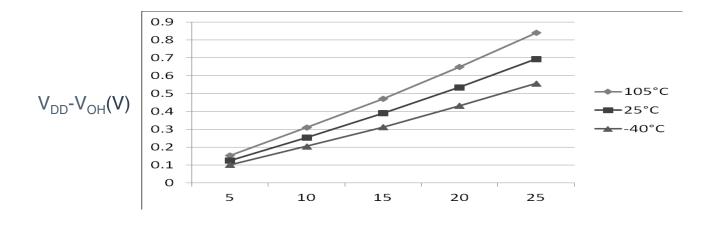
4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	


1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

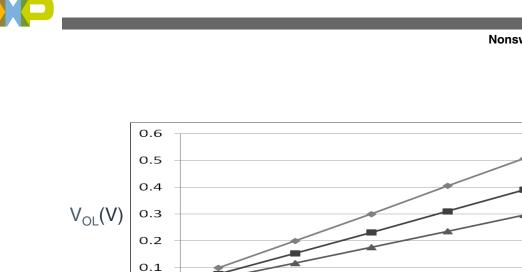
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings


Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

I_{OH}(mA)

Figure 3. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) (V_{DD} = 5 V)


 $I_{OH}(mA)$ Figure 4. Typical I_{OH} Vs. V_{DD}-V_{OH} (high drive strength) (V_{DD} = 3 V)

105°C

25°C

-40°C

10

0

5

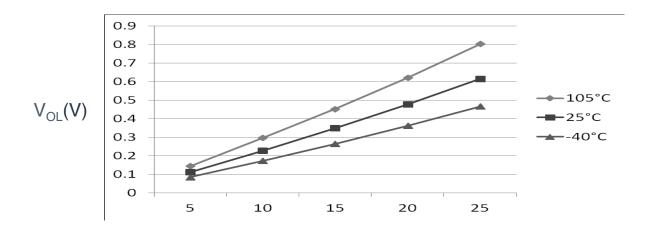

I_{OL}(mA)

Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) (V_{DD} = 5 V)

15

20

25

I_{OL}(mA)

Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) (V_{DD} = 3 V)

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop3 ⁴	—	_	5	121	—	μA	-40 to 105 °C
	С	PS = 010B			3	120	—		
		NSCN = 0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	—	_	5	128		μA	-40 to 105 °C
	С				3	124			

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1kHz LPO clock.

3. ACMP adder cause <10 μ A I_{DD} increase typically.

4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.

5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP

 Table 5. EMC radiated emissions operating behaviors for 44-pin L0 package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	8	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	8	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	5	dBµV	
V _{RE_IEC} IEC level		0.15–1000	Ν	—	2, 3

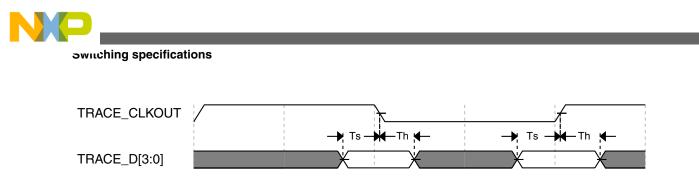


Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4		t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

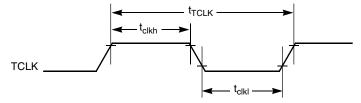


Figure 13. Timer external clock

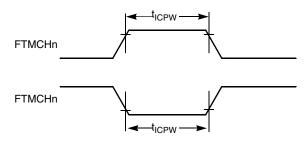


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A ¹	T_L to T_H -40 to 105	°C
Junction temperature range	TJ	-40 to 150	°C
	Thermal resistance	e single-layer board	
44-pin LQFP	R _{θJA}	76	°C/W
32-pin LQFP	R _{0JA}	88	°C/W
20-pin SOIC	R _{0JA}	82	°C/W
20-pin TSSOP	R _{θJA}	116	°C/W
16-pin TSSOP	R _{0JA}	130	°C/W
	Thermal resistance	e four-layer board	
44-pin LQFP	R _{0JA}	54	°C/W
32-pin LQFP	R _{θJA}	59	°C/W
20-pin SOIC	R _{0JA}	54	°C/W
20-pin TSSOP	R _{0JA}	76	°C/W
16-pin TSSOP	R _{θJA}	87	°C/W

Table 9. Thermal characteristics

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} x$ chip power dissipation.

6 Peripheral operating requirements and behaviors

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

N	um	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	3	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

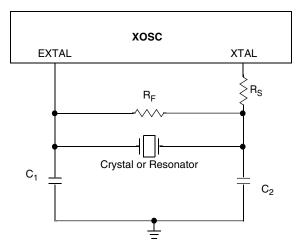


Figure 15. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

C	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	upply voltage for program/erase -40 °C V _{prog/erase} to 105 °C		2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V

Table 11. Flash characteristics

Table continues on the next page...

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	—	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	—	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	—	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	—	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	—	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 105 °C	n _{FLPE}	10 k	100 k		Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C	N _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100		years

Table 11. Flash characteristics (continued)

1. Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 12. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	—	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV _{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	-	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	-
Analog source	 12-bit mode f_{ADCK} > 4 MHz 	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		—	—	5		
	 10-bit mode f_{ADCK} > 4 MHz 		_	-	5		
	• f _{ADCK} < 4 MHz		—	_	10		
	8-bit mode		_	-	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	-	4.0		

1. Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

rempheral operating requirements and behaviors

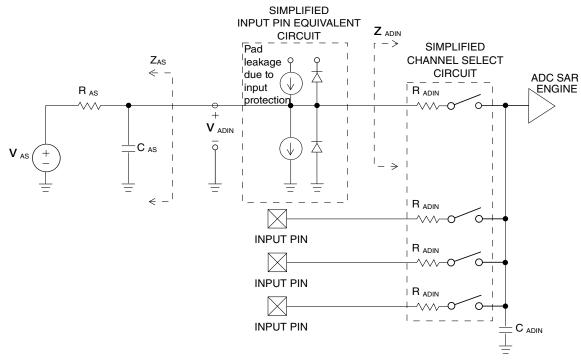


Figure 16. ADC input impedance equivalency diagram

Table 13.	12-bit ADC C	Characteristics	(V _{REFH} =	V _{DDA} , V _{REFL}	= V _{SSA})
-----------	--------------	-----------------	----------------------	--------------------------------------	----------------------

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	—	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	—	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	-	0.011	1	μA
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

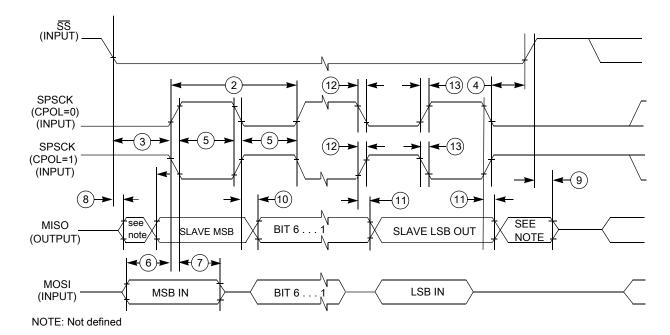
Table continues on the next page...

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			—	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	—	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			—	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	—	±5.0	—	LSB ³
Error ²	10-bit mode	Р		_	±1.5	±2.0	1
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	—	±1.0	—	LSB ³
Linearity	10-bit mode ⁴	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р			±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL		±1.0		LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т			±0.15	±0.25	
Zero-scale error ⁵	12-bit mode	С	E _{ZS}		±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Р			±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}		±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т			±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ		—	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	—	mV/°C
	25°C– 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}		1.396	_	V

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.


- 3. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 5. $V_{ADIN} = V_{SSA}$
- 6. $V_{ADIN} = V_{DDA}$
- 7. I_{In} = leakage current (refer to DC characteristics)

rempheral operating requirements and behaviors

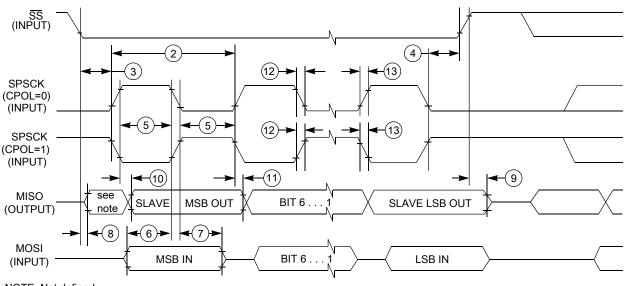

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	—
8	t _a	Slave access time	—	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	—	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)		25	ns	_
11	t _{HO}	Data hold time (outputs)	0	—	ns	_
12	t _{RI}	Rise time input		t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	—
	t _{FO}	Fall time output				

Table 16. SPI slave mode timing

NOTE: Not defined

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 17. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	—	100	—	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0		128	μΑ
TSI_EN	Power consumption in enable mode	_	100		μA
TSI_DIS	Power consumption in disable mode	_	1.2		μA
TSI_TEN	TSI analog enable time	—	66	_	μs
TSI_CREF	TSI reference capacitor	—	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	-10		10	%

7 Dimensions

7.1 Obtaining package dimensions

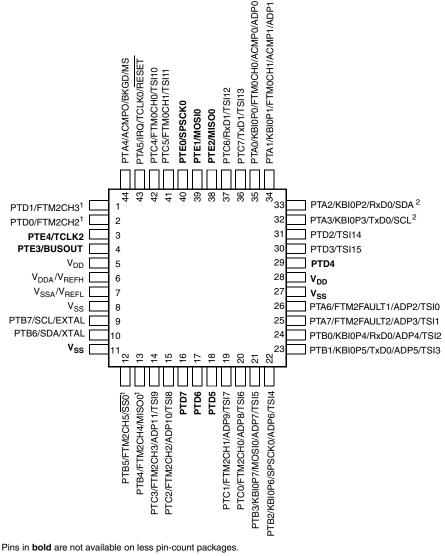
Package dimensions are provided in package drawings.

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015

							-		
	Pin	Number		Lowest Priority <> Highest					
44-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
18	_	_	—	PTD5	_	—	_	—	
19	13	11	—	PTC1	_	FTM2CH1	ADP9	TSI7	
20	14	12		PTC0		FTM2CH0	ADP8	TSI6	
21	15	13	9	PTB3	KBI0P7	MOSI0	ADP7	TSI5	
22	16	14	10	PTB2	KBI0P6	SPSCK0	ADP6	TSI4	
23	17	15	11	PTB1	KBI0P5	TXD0	ADP5	TSI3	
24	18	16	12	PTB0	KBI0P4	RXD0	ADP4	TSI2	
25	19		_	PTA7	_	FTM2FAULT2	ADP3	TSI1	
26	20			PTA6		FTM2FAULT1	ADP2	TSI0	
27	_	_	—	_	_	—	_	Vss	
28	—	_	—		—	—	—	V _{DD}	
29	_		—	PTD4	_	—	_	_	
30	21	_	—	PTD3	_	—	_	TSI15	
31	22	_	—	PTD2	—	—	—	TSI14	
32	23	17	13	PTA3 ²	KBI0P3	TXD0	SCL	—	
33	24	18	14	PTA2 ²	KBI0P2	RXD0	SDA	_	
34	25	19	15	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1	
35	26	20	16	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0	
36	27	_	—	PTC7	_	TxD1	_	TSI13	
37	28		_	PTC6	_	RxD1	_	TSI12	
38	_		_	PTE2	_	MISO0	_	_	
39	_	_	—	PTE1		MOSI0	_	—	
40	—	—	—	PTE0	_	SPSCK0	_	—	
41	29	_	—	PTC5	—	FTM0CH1	_	TSI11	
42	30	_	—	PTC4	_	FTM0CH0	_	TSI10	
43	31	1	1	PTA5	IRQ	TCLK0	—	RESET	
44	32	2	2	PTA4	—	ACMPO	BKGD	MS	

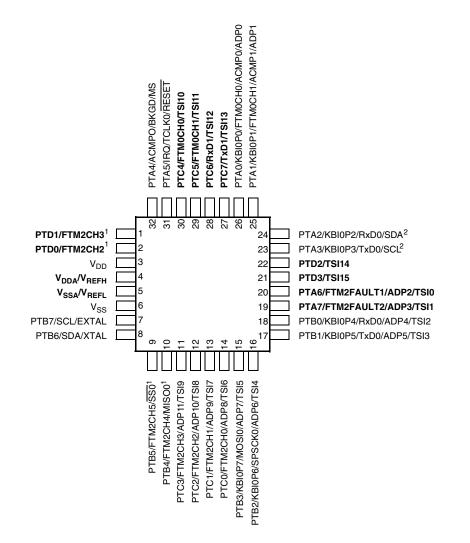
1. This is a high current drive pin when operated as output.

2. This is a true open-drain pin when operated as output.


Note

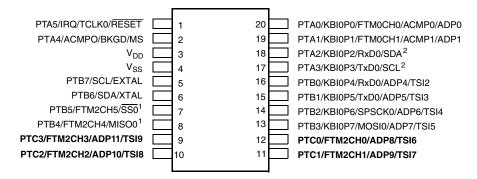
When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function

already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.


8.2 Device pin assignment

- 1. High source/sink current pins
- 2. True open drain pins

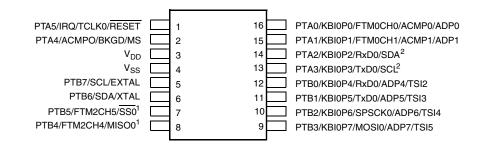
Figure 21. MC9S08PT16 44-pin LQFP package



Pins in **bold** are not available on less pin-count packages.

High source/sink current pins
 True open drain pins

Figure 22. MC9S08PT16 32-pin LQFP package


Pins in **bold** are not available on less pin-count packages.

1. High source/sink current pins

2. True open drain pins

Figure 23. MC9S08PT16 20-pin SOIC and TSSOP package

Pins in **bold** are not available on less pin-count packages. 1. High source/sink current pins

2. True open drain pins

Figure 24. MC9S08PT16 16-pin TSSOP package

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	7/2012	Initial public release
2	09/2014	 Updated V_{OH} and V_{OL} in DC characteristics Added footnote on the S3I_{DD} in Supply current characteristics Added EMC radiated emissions operating behaviors Updated the typical of f_{int_t} to 31.25 kHz and updated footnote to t_{Acquire} in External oscillator (XOSC) and ICS characteristics Updated the assumption for all the timing values in SPI switching specifications Updated the rating descriptions for t_{Rise} and t_{Fall} in Control timing Updated the part number format to add new field for new part numbers in Fields
3	06/2015	 Corrected the Min. of the t_{extrst} in Control timing Updated Thermal characteristics to add footnote to the T_A and removed redundant information.Updated the symbol of θ_{JA} to R_{θJA}.

Table 19. Revision history

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved.

© 2011-2015 Freescale Semiconductor, Inc.

Document Number MC9S08PT16 Revision 3, 06/2015

