




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                           |
|----------------------------|-----------------------------------------------------------|
| Product Status             | Active                                                    |
| Core Processor             | -                                                         |
| Core Size                  | -                                                         |
| Speed                      | -                                                         |
| Connectivity               | -                                                         |
| Peripherals                | -                                                         |
| Number of I/O              | -                                                         |
| Program Memory Size        | -                                                         |
| Program Memory Type        | -                                                         |
| EEPROM Size                | -                                                         |
| RAM Size                   | -                                                         |
| Voltage - Supply (Vcc/Vdd) | -                                                         |
| Data Converters            | -                                                         |
| Oscillator Type            | -                                                         |
| Operating Temperature      | -                                                         |
| Mounting Type              | -                                                         |
| Package / Case             | -                                                         |
| Supplier Device Package    | -                                                         |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08pt8vwj |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1 Ordering parts

# 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PT16 and PT8.

### 2 Part identification

# 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

### 2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PT AA (V) B CC

### 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description                  | Values                                                                                                             |
|-------|------------------------------|--------------------------------------------------------------------------------------------------------------------|
| MC    | Qualification status         | MC = fully qualified, general market flow                                                                          |
| 9     | Memory                       | 9 = flash based                                                                                                    |
| S08   | Core                         | • S08 = 8-bit CPU                                                                                                  |
| PT    | Device family                | • PT                                                                                                               |
| AA    | Approximate flash size in KB | <ul><li>16 = 16 KB</li><li>8 = 8 KB</li></ul>                                                                      |
| (V)   | Mask set version             | <ul> <li>(blank) = Any version</li> <li>A = Rev. 2 or later version, this is recommended for new design</li> </ul> |



# 4 Ratings

# 4.1 Thermal handling ratings

| Symbol           | Description                   | Min.        | Max. | Unit | Notes |
|------------------|-------------------------------|-------------|------|------|-------|
| T <sub>STG</sub> | Storage temperature           | <b>-</b> 55 | 150  | °C   | 1     |
| T <sub>SDR</sub> | Solder temperature, lead-free | _           | 260  | °C   | 2     |

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

# 4.2 Moisture handling ratings

| Symbol | Description                | Min. | Max. | Unit | Notes |
|--------|----------------------------|------|------|------|-------|
| MSL    | Moisture sensitivity level | 1    | 3    |      | 1     |

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

# 4.3 ESD handling ratings

| Symbol           | Description                                           | Min.  | Max.  | Unit | Notes |
|------------------|-------------------------------------------------------|-------|-------|------|-------|
| V <sub>HBM</sub> | Electrostatic discharge voltage, human body model     | -6000 | +6000 | V    | 1     |
| V <sub>CDM</sub> | Electrostatic discharge voltage, charged-device model | -500  | +500  | V    | 2     |
| I <sub>LAT</sub> | Latch-up current at ambient temperature of 105°C      | -100  | +100  | mA   |       |

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

# 4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.



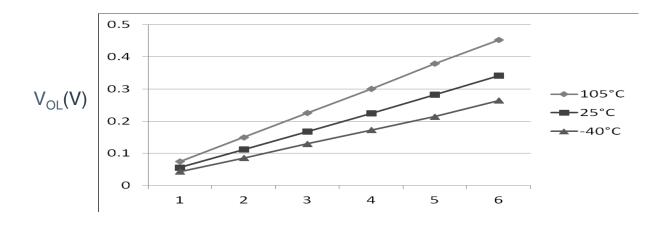
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either  $V_{SS}$  or  $V_{DD}$ ) or the programmable pullup resistor associated with the pin is enabled.

| Symbol           | Description                                                                             | Min.                  | Max.                  | Unit |
|------------------|-----------------------------------------------------------------------------------------|-----------------------|-----------------------|------|
| V <sub>DD</sub>  | Supply voltage                                                                          | -0.3                  | 6.0                   | V    |
| I <sub>DD</sub>  | Maximum current into V <sub>DD</sub>                                                    | _                     | 120                   | mA   |
| V <sub>DIO</sub> | Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3) | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
|                  | Digital input voltage (true open drain pin PTA2 and PTA3)                               | -0.3                  | 6                     | V    |
| V <sub>AIO</sub> | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage                              | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
| I <sub>D</sub>   | Instantaneous maximum current single pin limit (applies to all port pins)               | <del>-</del> 25       | 25                    | mA   |
| $V_{DDA}$        | Analog supply voltage                                                                   | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3 | V    |

<sup>1.</sup> All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to  $V_{SS}$  and  $V_{DD}$ . PTA2 and PTA3 is only clamped to  $V_{SS}$ .

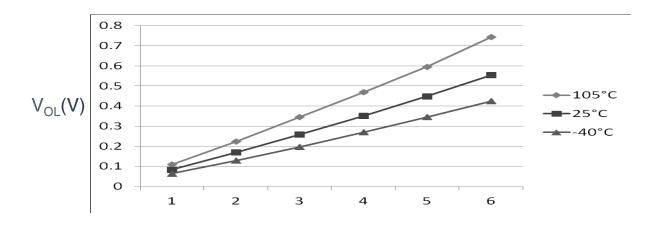
### 5 General

# 5.1 Nonswitching electrical specifications


### 5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

**Descriptions** Symbol Min Typical<sup>1</sup> Max Unit 2.7 Operating voltage 5.5  $V_{OH}$ С 5 V,  $I_{load} =$ V<sub>DD</sub> - 0.8 ٧ Output high All I/O pins, standard--5 mA voltage drive strength 3 V,  $I_{load} =$ С  $V_{DD}$  - 0.8 V -2.5 mA ٧ С High current drive 5 V,  $I_{load} =$  $V_{DD} - 0.8$ pins, high-drive -20 mA strength<sup>2</sup> С 3 V,  $I_{load} =$  $V_{DD} - 0.8$ ٧ -10 mA


Table 2. DC characteristics





 $I_{OL}(mA)$ 

Figure 5. Typical  $I_{OL}$  Vs.  $V_{OL}$  (standard drive strength) ( $V_{DD} = 5 \text{ V}$ )



 $I_{OL}(mA)$ 

Figure 6. Typical  $I_{OL}$  Vs.  $V_{OL}$  (standard drive strength) ( $V_{DD} = 3 \text{ V}$ )



# 5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

| Num | С | Parameter                                                              | Symbol            | Bus Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max  | Unit | Temp          |
|-----|---|------------------------------------------------------------------------|-------------------|----------|---------------------|----------------------|------|------|---------------|
| 1   | С | Run supply current FEI                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 7.60                 | _    | mA   | -40 to 105 °C |
|     | С | mode, all modules on; run<br>from flash                                |                   | 10 MHz   |                     | 4.65                 | _    |      |               |
|     |   | Hom hash                                                               |                   | 1 MHz    |                     | 1.90                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 7.05                 | _    |      |               |
|     | С |                                                                        |                   | 10 MHz   |                     | 4.40                 | _    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.85                 | _    |      |               |
| 2   | С | Run supply current FEI                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 5.88                 | _    | mA   | -40 to 105 °C |
|     | С | mode, all modules off & gated; run from flash                          |                   | 10 MHz   |                     | 3.70                 | _    |      |               |
|     |   | gated, run from liasn                                                  |                   | 1 MHz    |                     | 1.85                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 5.35                 | _    |      |               |
|     | С |                                                                        |                   | 10 MHz   |                     | 3.42                 | _    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.80                 | _    |      |               |
| 3   | Р | Run supply current FBE                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 10.9                 | 14.0 | mA   | -40 to 105 °C |
|     | С | mode, all modules on; run<br>from RAM                                  |                   | 10 MHz   |                     | 6.10                 | _    |      |               |
|     |   | 1 MHz                                                                  |                   | 1.69     | _                   |                      |      |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 8.18                 | _    |      |               |
|     |   |                                                                        |                   | 10 MHz   |                     | 5.14                 | _    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.44                 | _    |      |               |
| 4   | Р | Run supply current FBE                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 8.50                 | 13.0 | mA   | -40 to 105 °C |
|     | С | mode, all modules off & gated; run from RAM                            |                   | 10 MHz   |                     | 5.07                 | _    |      |               |
|     |   | gated, full from the                                                   |                   | 1 MHz    |                     | 1.59                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 6.11                 | _    |      |               |
|     |   |                                                                        |                   | 10 MHz   |                     | 4.10                 | _    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.34                 | _    |      |               |
| 5   | С | Wait mode current FEI                                                  | WI <sub>DD</sub>  | 20 MHz   | 5                   | 5.95                 | _    | mA   | -40 to 105 °C |
|     |   | mode, all modules on                                                   |                   | 10 MHz   |                     | 3.50                 | _    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.24                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 5.45                 | _    |      |               |
|     |   |                                                                        |                   | 10 MHz   |                     | 3.25                 | _    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.20                 | _    |      |               |
| 6   | С | Stop3 mode supply                                                      | S3I <sub>DD</sub> | _        | 5                   | 4.6                  | _    | μA   | -40 to 105 °C |
|     | С | current no clocks active<br>(except 1kHz LPO<br>clock) <sup>2, 3</sup> |                   | _        | 3                   | 4.5                  | _    |      | -40 to 105 °C |
| 7   | С | ADC adder to stop3                                                     | _                 | _        | 5                   | 40                   | _    | μΑ   | -40 to 105 °C |



| Num | С | Parameter                       | Symbol | Bus Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max | Unit | Temp          |
|-----|---|---------------------------------|--------|----------|---------------------|----------------------|-----|------|---------------|
|     | С | ADLPC = 1                       |        |          | 3                   | 39                   | _   |      |               |
|     |   | ADLSMP = 1                      |        |          |                     |                      |     |      |               |
|     |   | ADCO = 1                        |        |          |                     |                      |     |      |               |
|     |   | MODE = 10B                      |        |          |                     |                      |     |      |               |
|     |   | ADICLK = 11B                    |        |          |                     |                      |     |      |               |
| 8   | С | TSI adder to stop34             | _      | _        | 5                   | 121                  | _   | μΑ   | -40 to 105 °C |
|     | С | PS = 010B                       |        |          | 3                   | 120                  | _   |      |               |
|     |   | NSCN = 0x0F                     |        |          |                     |                      |     |      |               |
|     |   | EXTCHRG = 0                     |        |          |                     |                      |     |      |               |
|     |   | REFCHRG = 0                     |        |          |                     |                      |     |      |               |
|     |   | DVOLT = 01B                     |        |          |                     |                      |     |      |               |
| 9   | С | LVD adder to stop3 <sup>5</sup> | _      | _        | 5                   | 128                  |     | μΑ   | -40 to 105 °C |
|     | С |                                 |        |          | 3                   | 124                  | _   |      |               |

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1  $\mu$ A I $_{DD}$  increase typically, RTC clock source is 1kHz LPO clock.
- 3. ACMP adder cause <10  $\mu$ A I<sub>DD</sub> increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

### 5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

# 5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 44-pin LQFP package

| Symbol              | Description                        | Frequency band (MHz) | Тур. | Unit | Notes |
|---------------------|------------------------------------|----------------------|------|------|-------|
| V <sub>RE1</sub>    | Radiated emissions voltage, band 1 | 0.15–50              | 8    | dΒμV | 1, 2  |
| V <sub>RE2</sub>    | Radiated emissions voltage, band 2 | 50–150               | 8    | dΒμV |       |
| V <sub>RE3</sub>    | Radiated emissions voltage, band 3 | 150–500              | 8    | dΒμV |       |
| V <sub>RE4</sub>    | Radiated emissions voltage, band 4 | 500-1000             | 5    | dΒμV |       |
| V <sub>RE_IEC</sub> | IEC level                          | 0.15-1000            | N    | _    | 2, 3  |



#### **switching specifications**

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
  kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
  Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
  TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
  emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
  measured orientations in each frequency range.
- 2.  $V_{DD}$  = 5.0 V,  $T_A$  = 25 °C,  $f_{OSC}$  = 10 MHz (crystal),  $f_{SYS}$  = 20 MHz,  $f_{BUS}$  = 20 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

# 5.2 Switching specifications

### 5.2.1 Control timing

Table 6. Control timing

| Num | С | Rating                                                  | Symbol                         | Min                 | Typical <sup>1</sup>             | Max  | Unit |     |
|-----|---|---------------------------------------------------------|--------------------------------|---------------------|----------------------------------|------|------|-----|
| 1   | Р | Bus frequency (t <sub>cyc</sub> = 1/f <sub>Bus</sub>    | )                              | f <sub>Bus</sub>    | DC                               | _    | 20   | MHz |
| 2   | С | Internal low power oscillato                            | r frequency                    | f <sub>LPO</sub>    | _                                | 1.0  | _    | KHz |
| 3   | D | External reset pulse width <sup>2</sup>                 |                                | t <sub>extrst</sub> | 1.5 ×                            | _    | _    | ns  |
| 4   | D | Reset low drive                                         |                                | t <sub>rstdrv</sub> | $t_{\rm cyc}$ 34 × $t_{\rm cyc}$ | _    | _    | ns  |
| 5   | D | BKGD/MS setup time after debug force reset to enter u   |                                | t <sub>MSSU</sub>   | 500                              | _    | _    | ns  |
| 6   | D | BKGD/MS hold time after is debug force reset to enter u | t <sub>MSH</sub>               | 100                 | _                                | _    | ns   |     |
| 7   | D | IRQ pulse width                                         | Asynchronous path <sup>2</sup> | t <sub>ILIH</sub>   | 100                              | _    | _    | ns  |
|     | D |                                                         | Synchronous path <sup>4</sup>  | t <sub>IHIL</sub>   | $1.5 \times t_{cyc}$             | _    | _    | ns  |
| 8   | D | Keyboard interrupt pulse width                          | Asynchronous path <sup>2</sup> | t <sub>ILIH</sub>   | 100                              | _    | _    | ns  |
|     | D |                                                         | Synchronous path               | t <sub>IHIL</sub>   | $1.5 \times t_{cyc}$             | _    | _    | ns  |
| 9   | С | Port rise and fall time -                               | _                              | t <sub>Rise</sub>   | _                                | 10.2 | _    | ns  |
|     | С | standard drive strength<br>(load = 50 pF) <sup>5</sup>  |                                | t <sub>Fall</sub>   | _                                | 9.5  | _    | ns  |
|     | С | Port rise and fall time -                               | _                              | t <sub>Rise</sub>   | _                                | 5.4  | _    | ns  |
|     | С | high drive strength (load = 50 pF) <sup>5</sup>         |                                | t <sub>Fall</sub>   | _                                | 4.6  | _    | ns  |

- 1. Typical values are based on characterization data at  $V_{DD} = 5.0 \text{ V}$ , 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t<sub>MSH</sub> after V<sub>DD</sub> rises above V<sub>LVD</sub>.
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V<sub>DD</sub> and 80% V<sub>DD</sub> levels. Temperature range -40 °C to 105 °C.



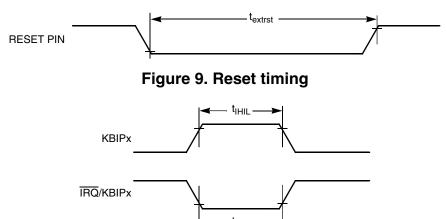



Figure 10. IRQ/KBIPx timing

# 5.2.2 Debug trace timing specifications

Table 7. Debug trace operating behaviors

| Symbol           | Description              | Min.      | Max.                | Unit |
|------------------|--------------------------|-----------|---------------------|------|
| t <sub>cyc</sub> | Clock period             | Frequency | Frequency dependent |      |
| t <sub>wl</sub>  | Low pulse width          | 2         | _                   | ns   |
| t <sub>wh</sub>  | High pulse width         | 2         | _                   | ns   |
| t <sub>r</sub>   | Clock and data rise time | _         | 3                   | ns   |
| t <sub>f</sub>   | Clock and data fall time | _         | 3                   | ns   |
| t <sub>s</sub>   | Data setup               | 3         | _                   | ns   |
| t <sub>h</sub>   | Data hold                | 2         | _                   | ns   |

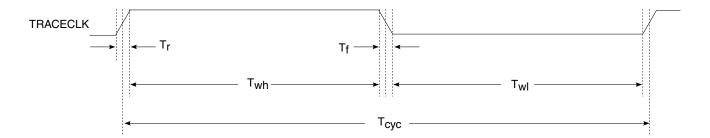



Figure 11. TRACE\_CLKOUT specifications



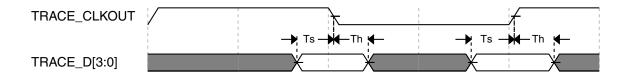



Figure 12. Trace data specifications

# 5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

| No. | С | Function                   | Symbol            | Min | Max                 | Unit             |
|-----|---|----------------------------|-------------------|-----|---------------------|------------------|
| 1   | D | External clock frequency   | f <sub>TCLK</sub> | 0   | f <sub>Bus</sub> /4 | Hz               |
| 2   | D | External clock period      | t <sub>TCLK</sub> | 4   | _                   | t <sub>cyc</sub> |
| 3   | D | External clock high time   | t <sub>clkh</sub> | 1.5 | _                   | t <sub>cyc</sub> |
| 4   | D | External clock<br>low time | t <sub>clkl</sub> | 1.5 | _                   | t <sub>cyc</sub> |
| 5   | D | Input capture pulse width  | t <sub>ICPW</sub> | 1.5 | _                   | t <sub>cyc</sub> |

Table 8. FTM input timing

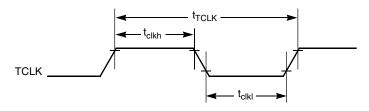



Figure 13. Timer external clock

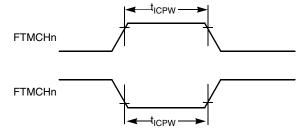


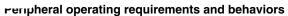

Figure 14. Timer input capture pulse

MC9S08PT16 Series Data Sheet, Rev. 3, 06/2015



# 5.3 Thermal specifications

### 5.3.1 Thermal characteristics


This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take  $P_{I/O}$  into account in power calculations, determine the difference between actual pin voltage and  $V_{SS}$  or  $V_{DD}$  and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and  $V_{SS}$  or  $V_{DD}$  will be very small.

| Rating                                 | Symbol                      | Value                                       | Unit |
|----------------------------------------|-----------------------------|---------------------------------------------|------|
| Operating temperature range (packaged) | T <sub>A</sub> <sup>1</sup> | T <sub>L</sub> to T <sub>H</sub> -40 to 105 | °C   |
| Junction temperature range             | T <sub>J</sub>              | -40 to 150                                  | °C   |
|                                        | Thermal resistance          | e single-layer board                        |      |
| 44-pin LQFP                            | $R_{\theta JA}$             | 76                                          | °C/W |
| 32-pin LQFP                            | $R_{\theta JA}$             | 88                                          | °C/W |
| 20-pin SOIC                            | $R_{\theta JA}$             | 82                                          | °C/W |
| 20-pin TSSOP                           | $R_{\theta JA}$             | 116                                         | °C/W |
| 16-pin TSSOP                           | $R_{\theta JA}$             | 130                                         | °C/W |
|                                        | Thermal resistance          | ce four-layer board                         |      |
| 44-pin LQFP                            | $R_{\theta JA}$             | 54                                          | °C/W |
| 32-pin LQFP                            | $R_{\theta JA}$             | 59                                          | °C/W |
| 20-pin SOIC                            | $R_{\theta JA}$             | 54                                          | °C/W |
| 20-pin TSSOP                           | $R_{\theta JA}$             | 76                                          | °C/W |
| 16-pin TSSOP                           | $R_{\theta JA}$             | 87                                          | °C/W |

Table 9. Thermal characteristics

# 6 Peripheral operating requirements and behaviors

<sup>1.</sup> Maximum  $T_A$  can be exceeded only if the user ensures that  $T_J$  does not exceed the maximum. The simplest method to determine  $T_J$  is:  $T_J = T_A + R_{\theta JA} x$  chip power dissipation.





# 6.1 External oscillator (XOSC) and ICS characteristics

Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient)

|     |   |                                                       |                                                               | ,                    |         |                       |         |                   |  |
|-----|---|-------------------------------------------------------|---------------------------------------------------------------|----------------------|---------|-----------------------|---------|-------------------|--|
| Num | С | C                                                     | Characteristic                                                | Symbol               | Min     | Typical <sup>1</sup>  | Max     | Unit              |  |
| 1   | С | Oscillator                                            | Low range (RANGE = 0)                                         | f <sub>lo</sub>      | 31.25   | 32.768                | 39.0625 | kHz               |  |
|     | С | crystal or<br>resonator                               | High range (RANGE = 1)<br>FEE or FBE mode <sup>2</sup>        | f <sub>hi</sub>      | 4       | _                     | 20      | MHz               |  |
|     | С |                                                       | High range (RANGE = 1),<br>high gain (HGO = 1),<br>FBELP mode | f <sub>hi</sub>      | 4       | _                     | 20      | MHz               |  |
|     | С |                                                       | High range (RANGE = 1),<br>low power (HGO = 0),<br>FBELP mode | f <sub>hi</sub>      | 4       | _                     | 20      | MHz               |  |
| 2   | D | Lo                                                    | oad capacitors                                                | C1, C2               |         | See Note <sup>3</sup> |         |                   |  |
| 3   | D | Feedback resistor                                     | Low Frequency, Low-Power Mode <sup>4</sup>                    | R <sub>F</sub>       | _       | _                     | _       | ΜΩ                |  |
|     |   |                                                       | Low Frequency, High-Gain<br>Mode                              |                      | _       | 10                    | _       | ΜΩ                |  |
|     |   |                                                       | High Frequency, Low-<br>Power Mode                            |                      | _       | 1                     | _       | ΜΩ                |  |
|     |   |                                                       | High Frequency, High-Gain<br>Mode                             |                      | _       | 1                     | _       | ΜΩ                |  |
| 4   | D | Series resistor -                                     | Low-Power Mode <sup>4</sup>                                   | R <sub>S</sub>       | _       | _                     | _       | kΩ                |  |
|     |   | Low Frequency                                         | High-Gain Mode                                                |                      | _       | 200                   | _       | kΩ                |  |
| 5   | D | Series resistor -<br>High Frequency                   | Low-Power Mode <sup>4</sup>                                   | R <sub>S</sub>       | _       | _                     | _       | kΩ                |  |
|     | D | Series resistor -                                     | 4 MHz                                                         |                      | _       | 0                     | _       | kΩ                |  |
|     | D | High<br>Frequency,                                    | 8 MHz                                                         |                      | _       | 0                     | _       | kΩ                |  |
|     | D | High-Gain Mode                                        | 16 MHz                                                        |                      | _       | 0                     | _       | kΩ                |  |
| 6   | С | Crystal start-up                                      | Low range, low power                                          | t <sub>CSTL</sub>    | _       | 1000                  | _       | ms                |  |
|     | С | time Low range<br>= 32.768 kHz                        | Low range, high power                                         |                      | _       | 800                   | _       | ms                |  |
|     | С | crystal; High                                         | High range, low power                                         | t <sub>CSTH</sub>    | _       | 3                     | _       | ms                |  |
|     | С | range = 20 MHz<br>crystal <sup>5</sup> , <sup>6</sup> | High range, high power                                        |                      | _       | 1.5                   | _       | ms                |  |
| 7   | Т | Internal re                                           | eference start-up time                                        | t <sub>IRST</sub>    | 1       | 20                    | 50      | μs                |  |
| 8   | D | Square wave                                           | FEE or FBE mode <sup>2</sup>                                  | f <sub>extal</sub>   | 0.03125 | _                     | 5       | MHz               |  |
|     | D | input clock<br>frequency                              | FBELP mode                                                    |                      | 0       | _                     | 20      | MHz               |  |
| 9   | Р | Average inter                                         | rnal reference frequency -<br>trimmed                         | f <sub>int_t</sub>   | _       | 31.25                 | _       | kHz               |  |
| 10  | Р | DCO output f                                          | requency range - trimmed                                      | f <sub>dco_t</sub>   | 16      | _                     | 20      | MHz               |  |
| 11  | Р | Total deviation of DCO output                         | Over full voltage and temperature range                       | $\Delta f_{dco_t}$   | _       | _                     | ±2.0    | %f <sub>dco</sub> |  |
|     | С | from trimmed<br>frequency <sup>5</sup>                | Over fixed voltage and temperature range of 0 to 70 °C        |                      |         |                       | ±1.0    |                   |  |
| 12  | С | FLL a                                                 | acquisition time <sup>5</sup> , <sup>7</sup>                  | t <sub>Acquire</sub> | _       | _                     | 2       | ms                |  |
|     |   |                                                       |                                                               |                      |         |                       |         |                   |  |



# Table 10. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient) (continued)

| Nur | n C | Characteristic                                                                  | Symbol              | Min | Typical <sup>1</sup> | Max | Unit              |
|-----|-----|---------------------------------------------------------------------------------|---------------------|-----|----------------------|-----|-------------------|
| 13  | С   | Long term jitter of DCO output clock (averaged over 2 ms interval) <sup>8</sup> | C <sub>Jitter</sub> | _   | 0.02                 | 0.2 | %f <sub>dco</sub> |

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C<sub>1</sub>,C<sub>2</sub>), feedback resistor (R<sub>F</sub>) and series resistor (R<sub>S</sub>) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f<sub>Bus</sub>. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V<sub>DD</sub> and V<sub>SS</sub> and variation in crystal oscillator frequency increase the C<sub>Jitter</sub> percentage for a given interval.

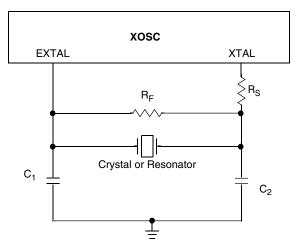



Figure 15. Typical crystal or resonator circuit

# 6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 11. Flash characteristics

| С | Characteristic                                    | Symbol                  | Min <sup>1</sup> | Typical <sup>2</sup> | Max <sup>3</sup> | Unit <sup>4</sup> |
|---|---------------------------------------------------|-------------------------|------------------|----------------------|------------------|-------------------|
| D | Supply voltage for program/erase -40 °C to 105 °C | V <sub>prog/erase</sub> | 2.7              | _                    | 5.5              | V                 |
| D | Supply voltage for read operation                 | $V_{Read}$              | 2.7              | _                    | 5.5              | V                 |



#### reripheral operating requirements and behaviors

Table 11. Flash characteristics (continued)

| С | Characteristic                                                                                                        | Symbol               | Min <sup>1</sup> | Typical <sup>2</sup> | Max <sup>3</sup> | Unit <sup>4</sup> |
|---|-----------------------------------------------------------------------------------------------------------------------|----------------------|------------------|----------------------|------------------|-------------------|
| D | NVM Bus frequency                                                                                                     | f <sub>NVMBUS</sub>  | 1                | _                    | 25               | MHz               |
| D | NVM Operating frequency                                                                                               | f <sub>NVMOP</sub>   | 0.8              | 1                    | 1.05             | MHz               |
| D | Erase Verify All Blocks                                                                                               | t <sub>VFYALL</sub>  | _                | _                    | 17338            | t <sub>cyc</sub>  |
| D | Erase Verify Flash Block                                                                                              | t <sub>RD1BLK</sub>  | _                | _                    | 16913            | t <sub>cyc</sub>  |
| D | Erase Verify EEPROM Block                                                                                             | t <sub>RD1BLK</sub>  | _                | _                    | 810              | t <sub>cyc</sub>  |
| D | Erase Verify Flash Section                                                                                            | t <sub>RD1SEC</sub>  | _                | _                    | 484              | t <sub>cyc</sub>  |
| D | Erase Verify EEPROM Section                                                                                           | t <sub>DRD1SEC</sub> | _                | _                    | 555              | t <sub>cyc</sub>  |
| D | Read Once                                                                                                             | t <sub>RDONCE</sub>  | _                | _                    | 450              | t <sub>cyc</sub>  |
| D | Program Flash (2 word)                                                                                                | t <sub>PGM2</sub>    | 0.12             | 0.12                 | 0.29             | ms                |
| D | Program Flash (4 word)                                                                                                | t <sub>PGM4</sub>    | 0.20             | 0.21                 | 0.46             | ms                |
| D | Program Once                                                                                                          | t <sub>PGMONCE</sub> | 0.20             | 0.21                 | 0.21             | ms                |
| D | Program EEPROM (1 Byte)                                                                                               | t <sub>DPGM1</sub>   | 0.10             | 0.10                 | 0.27             | ms                |
| D | Program EEPROM (2 Byte)                                                                                               | t <sub>DPGM2</sub>   | 0.17             | 0.18                 | 0.43             | ms                |
| D | Program EEPROM (3 Byte)                                                                                               | t <sub>DPGM3</sub>   | 0.25             | 0.26                 | 0.60             | ms                |
| D | Program EEPROM (4 Byte)                                                                                               | t <sub>DPGM4</sub>   | 0.32             | 0.33                 | 0.77             | ms                |
| D | Erase All Blocks                                                                                                      | t <sub>ERSALL</sub>  | 96.01            | 100.78               | 101.49           | ms                |
| D | Erase Flash Block                                                                                                     | t <sub>ERSBLK</sub>  | 95.98            | 100.75               | 101.44           | ms                |
| D | Erase Flash Sector                                                                                                    | t <sub>ERSPG</sub>   | 19.10            | 20.05                | 20.08            | ms                |
| D | Erase EEPROM Sector                                                                                                   | t <sub>DERSPG</sub>  | 4.81             | 5.05                 | 20.57            | ms                |
| D | Unsecure Flash                                                                                                        | t <sub>UNSECU</sub>  | 96.01            | 100.78               | 101.48           | ms                |
| D | Verify Backdoor Access Key                                                                                            | t <sub>VFYKEY</sub>  | _                | _                    | 464              | t <sub>cyc</sub>  |
| D | Set User Margin Level                                                                                                 | t <sub>MLOADU</sub>  | _                | _                    | 407              | t <sub>cyc</sub>  |
| С | FLASH Program/erase endurance $T_L$ to $T_H$ = -40 °C to 105 °C                                                       | n <sub>FLPE</sub>    | 10 k             | 100 k                | _                | Cycles            |
| С | EEPROM Program/erase endurance TL<br>to TH = -40 °C to 105 °C                                                         | n <sub>FLPE</sub>    | 50 k             | 500 k                | _                | Cycles            |
| С | Data retention at an average junction temperature of T <sub>Javg</sub> = 85°C after up to 10,000 program/erase cycles | t <sub>D_ret</sub>   | 15               | 100                  | _                | years             |

<sup>1.</sup> Minimum times are based on maximum  $f_{\mbox{\scriptsize NVMOP}}$  and maximum  $f_{\mbox{\scriptsize NVMBUS}}$ 

Program and erase operations do not require any special power sources other than the normal  $V_{DD}$  supply. For more detailed information about program/erase operations, see the Memory section.

<sup>2.</sup> Typical times are based on typical  $f_{\mbox{\scriptsize NVMOP}}$  and maximum  $f_{\mbox{\scriptsize NVMBUS}}$ 

<sup>3.</sup> Maximum times are based on typical  $f_{\mbox{\scriptsize NVMOP}}$  and typical  $f_{\mbox{\scriptsize NVMBUS}}$  plus aging

<sup>4.</sup>  $t_{cyc} = 1 / f_{NVMBUS}$ 



#### reripheral operating requirements and behaviors

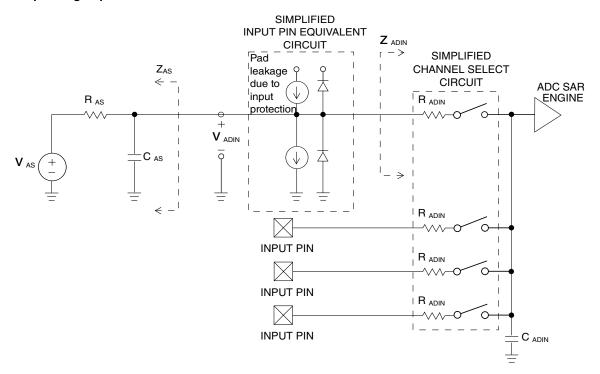



Figure 16. ADC input impedance equivalency diagram

Table 13. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDA}$ ,  $V_{REFL} = V_{SSA}$ )

| Characteristic                | Conditions              | С | Symb               | Min | Typ <sup>1</sup> | Max | Unit |
|-------------------------------|-------------------------|---|--------------------|-----|------------------|-----|------|
| Supply current                |                         | T | I <sub>DDA</sub>   | _   | 133              | _   | μA   |
| ADLPC = 1                     |                         |   |                    |     |                  |     |      |
| ADLSMP = 1                    |                         |   |                    |     |                  |     |      |
| ADCO = 1                      |                         |   |                    |     |                  |     |      |
| Supply current                |                         | Т | I <sub>DDA</sub>   | _   | 218              | _   | μΑ   |
| ADLPC = 1                     |                         |   |                    |     |                  |     |      |
| ADLSMP = 0                    |                         |   |                    |     |                  |     |      |
| ADCO = 1                      |                         |   |                    |     |                  |     |      |
| Supply current                |                         | Т | I <sub>DDA</sub>   | _   | 327              | _   | μΑ   |
| ADLPC = 0                     |                         |   |                    |     |                  |     |      |
| ADLSMP = 1                    |                         |   |                    |     |                  |     |      |
| ADCO = 1                      |                         |   |                    |     |                  |     |      |
| Supply current                |                         | Т | I <sub>DDAD</sub>  | _   | 582              | 990 | μΑ   |
| ADLPC = 0                     |                         |   |                    |     |                  |     |      |
| ADLSMP = 0                    |                         |   |                    |     |                  |     |      |
| ADCO = 1                      |                         |   |                    |     |                  |     |      |
| Supply current                | Stop, reset, module off | Т | I <sub>DDA</sub>   | _   | 0.011            | 1   | μА   |
| ADC asynchronous clock source | High speed (ADLPC = 0)  | Р | f <sub>ADACK</sub> | 2   | 3.3              | 5   | MHz  |



# Table 13. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ ) (continued)

| Characteristic                         | Conditions                  | С | Symb                | Min  | Typ <sup>1</sup>                  | Max   | Unit             |
|----------------------------------------|-----------------------------|---|---------------------|------|-----------------------------------|-------|------------------|
|                                        | Low power (ADLPC = 1)       |   |                     | 1.25 | 2                                 | 3.3   |                  |
| Conversion time (including sample      | Short sample (ADLSMP = 0)   | Т | t <sub>ADC</sub>    | _    | 20                                | _     | ADCK cycles      |
| ime)                                   | Long sample (ADLSMP = 1)    |   |                     | _    | 40                                | _     |                  |
| Sample time                            | Short sample (ADLSMP = 0)   | Т | t <sub>ADS</sub>    | _    | 3.5                               | _     | ADCK cycles      |
|                                        | Long sample<br>(ADLSMP = 1) |   |                     | _    | 23.5                              | _     |                  |
| Total unadjusted<br>Error <sup>2</sup> | 12-bit mode                 | T | E <sub>TUE</sub>    | _    | ±5.0                              | _     | LSB <sup>3</sup> |
|                                        | 10-bit mode                 | Р |                     | _    | ±1.5                              | ±2.0  |                  |
|                                        | 8-bit mode                  | Р |                     | _    | ±0.7                              | ±1.0  |                  |
| Differential Non-<br>Linearity         | 12-bit mode                 | T | DNL                 | _    | ±1.0                              | _     | LSB <sup>3</sup> |
|                                        | 10-bit mode <sup>4</sup>    | Р |                     | _    | ±0.25                             | ±0.5  |                  |
|                                        | 8-bit mode <sup>4</sup>     | Р |                     | _    | ±0.15                             | ±0.25 |                  |
| Integral Non-Linearity                 | 12-bit mode                 | T | INL                 | _    | ±1.0                              | _     | LSB <sup>3</sup> |
|                                        | 10-bit mode                 | Т |                     | _    | ±0.3                              | ±0.5  | ]                |
|                                        | 8-bit mode                  | Т |                     | _    | ±0.15                             | ±0.25 |                  |
| Zero-scale error <sup>5</sup>          | 12-bit mode                 | С | E <sub>zs</sub>     | _    | ±2.0                              | _     | LSB <sup>3</sup> |
|                                        | 10-bit mode                 | Р |                     | _    | ±0.25                             | ±1.0  |                  |
|                                        | 8-bit mode                  | Р |                     | _    | ±0.65                             | ±1.0  | 1                |
| Full-scale error <sup>6</sup>          | 12-bit mode                 | Т | E <sub>FS</sub>     | _    | ±2.5                              | _     | LSB <sup>3</sup> |
|                                        | 10-bit mode                 | Т |                     | _    | ±0.5                              | ±1.0  | ]                |
|                                        | 8-bit mode                  | Т |                     | _    | ±0.5                              | ±1.0  | 1                |
| Quantization error                     | ≤12 bit modes               | D | EQ                  | _    | _                                 | ±0.5  | LSB <sup>3</sup> |
| Input leakage error <sup>7</sup>       | all modes                   | D | E <sub>IL</sub>     |      | I <sub>In</sub> * R <sub>AS</sub> |       | mV               |
| Temp sensor slope                      | -40°C- 25°C                 | D | m                   | _    | 3.266                             | _     | mV/°C            |
|                                        | 25°C– 125°C                 |   |                     | _    | 3.638                             | _     | 1                |
| Temp sensor voltage                    | 25°C                        | D | V <sub>TEMP25</sub> | _    | 1.396                             | _     | V                |

<sup>1.</sup> Typical values assume  $V_{DDA} = 5.0 \text{ V}$ , Temp = 25°C,  $f_{ADCK} = 1.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.

<sup>2.</sup> Includes quantization.

<sup>3.</sup>  $1 LSB = (V_{REFH} - V_{REFL})/2^N$ 

<sup>4.</sup> Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

<sup>5.</sup>  $V_{ADIN} = V_{SSA}$ 

<sup>6.</sup>  $V_{ADIN} = V_{DDA}$ 

<sup>7.</sup> I<sub>In</sub> = leakage current (refer to DC characteristics)



#### rmout

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 16-pin TSSOP                             | 98ASH70247A                   |
| 20-pin SOIC                              | 98ASB42343B                   |
| 20-pin TSSOP                             | 98ASH70169A                   |
| 32-pin LQFP                              | 98ASH70029A                   |
| 44-pin LQFP                              | 98ASS23225W                   |

### 8 Pinout

# 8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 18. Pin availability by package pin-count

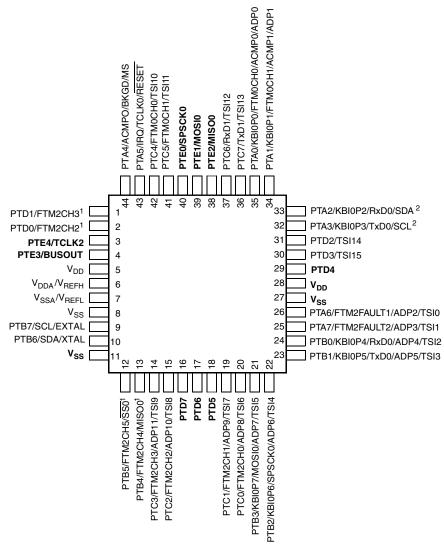
|         | Pin l   | Number   |          | Lowest Priority <> Highest |       |         |                  |                   |  |  |
|---------|---------|----------|----------|----------------------------|-------|---------|------------------|-------------------|--|--|
| 44-LQFP | 32-LQFP | 20-TSSOP | 16-TSSOP | Port Pin                   | Alt 1 | Alt 2   | Alt 3            | Alt 4             |  |  |
| 1       | 1       | _        | _        | PTD1 <sup>1</sup>          | _     | FTM2CH3 | _                | _                 |  |  |
| 2       | 2       | _        | _        | PTD0 <sup>1</sup>          | _     | FTM2CH2 | _                | _                 |  |  |
| 3       | _       | _        | _        | PTE4                       | _     | TCLK2   | _                | _                 |  |  |
| 4       | _       | _        | _        | PTE3                       | _     | BUSOUT  | _                | _                 |  |  |
| 5       | 3       | 3        | 3        | _                          | _     | _       | _                | $V_{DD}$          |  |  |
| 6       | 4       | _        | _        | _                          | _     | _       | $V_{DDA}$        | V <sub>REFH</sub> |  |  |
| 7       | 5       | _        | _        | _                          | _     | _       | V <sub>SSA</sub> | V <sub>REFL</sub> |  |  |
| 8       | 6       | 4        | 4        | _                          | _     | _       | _                | V <sub>SS</sub>   |  |  |
| 9       | 7       | 5        | 5        | PTB7                       | _     | _       | SCL              | EXTAL             |  |  |
| 10      | 8       | 6        | 6        | PTB6                       | _     | _       | SDA              | XTAL              |  |  |
| 11      | _       | _        | _        | _                          | _     | _       | _                | Vss               |  |  |
| 12      | 9       | 7        | 7        | PTB5 <sup>1</sup>          | _     | FTM2CH5 | SS0              | _                 |  |  |
| 13      | 10      | 8        | 8        | PTB4 <sup>1</sup>          | _     | FTM2CH4 | MISO0            | _                 |  |  |
| 14      | 11      | 9        | _        | PTC3                       | _     | FTM2CH3 | ADP11            | TSI9              |  |  |
| 15      | 12      | 10       | _        | PTC2                       | _     | FTM2CH2 | ADP10            | TSI8              |  |  |
| 16      |         | _        | _        | PTD7                       | _     |         | _                | _                 |  |  |
| 17      | _       | _        | _        | PTD6                       | _     | _       |                  | _                 |  |  |



Table 18. Pin availability by package pin-count (continued)

|         | Pin     | Number   |          | Lowest Priority <> Highest |        |            |       |          |  |
|---------|---------|----------|----------|----------------------------|--------|------------|-------|----------|--|
| 44-LQFP | 32-LQFP | 20-TSSOP | 16-TSSOP | Port Pin                   | Alt 1  | Alt 2      | Alt 3 | Alt 4    |  |
| 18      | _       | _        | _        | PTD5                       | _      | _          | _     | _        |  |
| 19      | 13      | 11       | _        | PTC1                       | _      | FTM2CH1    | ADP9  | TSI7     |  |
| 20      | 14      | 12       | _        | PTC0                       | _      | FTM2CH0    | ADP8  | TSI6     |  |
| 21      | 15      | 13       | 9        | PTB3                       | KBI0P7 | MOSI0      | ADP7  | TSI5     |  |
| 22      | 16      | 14       | 10       | PTB2                       | KBI0P6 | SPSCK0     | ADP6  | TSI4     |  |
| 23      | 17      | 15       | 11       | PTB1                       | KBI0P5 | TXD0       | ADP5  | TSI3     |  |
| 24      | 18      | 16       | 12       | PTB0                       | KBI0P4 | RXD0       | ADP4  | TSI2     |  |
| 25      | 19      | _        |          | PTA7                       | _      | FTM2FAULT2 | ADP3  | TSI1     |  |
| 26      | 20      | _        | _        | PTA6                       | _      | FTM2FAULT1 | ADP2  | TSI0     |  |
| 27      | _       | _        |          | _                          | _      | _          | _     | Vss      |  |
| 28      | _       | _        |          | _                          | _      | _          | _     | $V_{DD}$ |  |
| 29      | _       | _        | _        | PTD4                       | _      | _          | _     | _        |  |
| 30      | 21      | _        |          | PTD3                       | _      | _          | _     | TSI15    |  |
| 31      | 22      | _        | _        | PTD2                       | _      | _          | _     | TSI14    |  |
| 32      | 23      | 17       | 13       | PTA3 <sup>2</sup>          | KBI0P3 | TXD0       | SCL   | _        |  |
| 33      | 24      | 18       | 14       | PTA2 <sup>2</sup>          | KBI0P2 | RXD0       | SDA   | _        |  |
| 34      | 25      | 19       | 15       | PTA1                       | KBI0P1 | FTM0CH1    | ACMP1 | ADP1     |  |
| 35      | 26      | 20       | 16       | PTA0                       | KBI0P0 | FTM0CH0    | ACMP0 | ADP0     |  |
| 36      | 27      | _        |          | PTC7                       | _      | TxD1       | _     | TSI13    |  |
| 37      | 28      | _        | _        | PTC6                       | _      | RxD1       | _     | TSI12    |  |
| 38      | _       | _        | _        | PTE2                       | _      | MISO0      | _     | _        |  |
| 39      | _       | _        | _        | PTE1                       | _      | MOSI0      | _     | _        |  |
| 40      | _       | _        | _        | PTE0                       | _      | SPSCK0     | _     | _        |  |
| 41      | 29      | _        | _        | PTC5                       | _      | FTM0CH1    | _     | TSI11    |  |
| 42      | 30      | _        |          | PTC4                       | _      | FTM0CH0    | _     | TSI10    |  |
| 43      | 31      | 1        | 1        | PTA5                       | IRQ    | TCLK0      | _     | RESET    |  |
| 44      | 32      | 2        | 2        | PTA4                       | _      | ACMPO      | BKGD  | MS       |  |

- 1. This is a high current drive pin when operated as output.
- 2. This is a true open-drain pin when operated as output.


### **Note**

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function



already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

# 8.2 Device pin assignment



Pins in **bold** are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 21. MC9S08PT16 44-pin LQFP package



#### nevision history

| PTA4/ACMPO/BKGD/MS         2         15         PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1           VDD         3         14         PTA2/KBI0P2/RxD0/SDA²           VSS         4         13         PTA3/KBI0P3/TxD0/SCL²           PTB7/SCL/EXTAL         5         12         PTB0/KBI0P4/RxD0/ADP4/TSI2           PTB6/SDA/XTAL         6         11         PTB1/KBI0P5/TxD0/ADP5/TSI3           PTB5/FTM2CH5/SS0¹         7         10         PTB2/KBI0P6/SPSCK0/ADP6/TSI4 |                                                          |                       |                            |                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>SS</sub> [<br>PTB7/SCL/EXTAL [<br>PTB6/SDA/XTAL [ | 2<br>3<br>4<br>5<br>6 | 15<br>14<br>13<br>12<br>11 | PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 PTA2/KBI0P2/RxD0/SDA <sup>2</sup> PTA3/KBI0P3/TxD0/SCL <sup>2</sup> PTB0/KBI0P4/RxD0/ADP4/TSI2 PTB1/KBI0P5/TxD0/ADP5/TSI3 PTB2/KBI0P6/SPSCK0/ADP6/TSI4 |

Pins in **bold** are not available on less pin-count packages.

- High source/sink current pins
   True open drain pins

Figure 24. MC9S08PT16 16-pin TSSOP package

#### **Revision history** 9

The following table provides a revision history for this document.

**Table 19. Revision history** 

| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 7/2012  | Initial public release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2        | 09/2014 | <ul> <li>Updated V<sub>OH</sub> and V<sub>OL</sub> in DC characteristics</li> <li>Added footnote on the S3I<sub>DD</sub> in Supply current characteristics</li> <li>Added EMC radiated emissions operating behaviors</li> <li>Updated the typical of f<sub>int_t</sub> to 31.25 kHz and updated footnote to t<sub>Acquire</sub> in External oscillator (XOSC) and ICS characteristics</li> <li>Updated the assumption for all the timing values in SPI switching specifications</li> <li>Updated the rating descriptions for t<sub>Rise</sub> and t<sub>Fall</sub> in Control timing</li> <li>Updated the part number format to add new field for new part numbers in Fields</li> </ul> |
| 3        | 06/2015 | <ul> <li>Corrected the Min. of the t<sub>extrst</sub> in Control timing</li> <li>Updated Thermal characteristics to add footnote to the T<sub>A</sub> and removed redundant information. Updated the symbol of θ<sub>JA</sub> to R<sub>θJA</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |



How to Reach Us:

**Home Page:** 

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved

© 2011-2015 Freescale Semiconductor, Inc.

