

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

·XF

Details	
Product Status	Active
Applications	Audio Record/Playback
Core Processor	ARM® Cortex®-M0
Program Memory Type	FLASH (145kB)
Controller Series	-
RAM Size	12K x 8
Interface	I ² C, IrDA, LIN, SPI, UART/USART
Number of I/O	8
Voltage - Supply	2.5V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/isd9160fi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16 ~ IRQ19 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_19	Reserved					
23	22	21	20	19	18	17	16
PRI_18			Reserved				
15	14	13	12	11	10	9	8
PRI	_17			Rese	erved		
7	6	5	4	3	2	1	0
PRI	_16	Reserved					

Table 5-26 Interrupt Priority Register (IPR4, address 0xE000_E410)

Bits	Description	Description				
[31:30]	PRI_19	Priority of IRQ19 "0" denotes the highest priority and "3" denotes lowest priority				
[23:22]	PRI_18	Priority of IRQ18 "0" denotes the highest priority and "3" denotes lowest priority				
[15:14]	PRI_17	Priority of IRQ17 "0" denotes the highest priority and "3" denotes lowest priority				
[7:6]	PRI_16	Priority of IRQ16 "0" denotes the highest priority and "3" denotes lowest priority				

IRQ26(PDMA) Interrupt Source Identify Register (IRQ26_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ26_SRC	INT_BA+0x68	R	IRQ26 (PDMA) Interrupt Source Identity Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved						INT_SRC[2:0]			

Bits	Description				
[2:0] INT_SRC	Interrupt Source Identity				
	INT_SRC	Bit2: 0			
[=:0]		Bit1: 0			
		Bit0: PDMA_INT			

nuvoTon

ISD9160 Technical Reference Manual

Figure 5-22 Slave Receiver Mode

NUVOTON ISD9160 Technical Reference Manual

PWM Interrupt Enable Register (PWM_INTEN)							
Register	Offset	R/W	Description	Reset Value			
PWM_INTEN	PWM_BA+0x040	R/W	PWM Interrupt Enable Register	0x0000_0000			
	•						

7	6	5	4	3	2	1	0
	Reserved						PIEN0

Table 5-63 PWM Interrupt Enable Register (PWM_INTEN, address 0x4004_0040).

Bits	Description			
		PWM Timer 1 Interrupt Enable		
[1]	PIEN1	0 = Disable		
		1 = Enable		
		PWM Timer 0 Interrupt Enable		
[0]	PIEN0	0 = Disable		
		1 = Enable		

RTC Time-Tick Register (RTC_TICK)						
Register	Offset	R/W	Description	Reset Value		
RTC_TICK	RTC_BA+0x030	R/W	RTC Time Tick Register	0x0000_0000		

7	6	5	4	3	2	1	0
Reserved				TWKEN		TICKSEL	

Table 5-83 RTC Time-Tick Register (RTC_TICK, address 0x4000_8030).

Bits	Description					
		RTC Timer Wakeup CPU Function Enable Bit				
[3]	TWKEN	If TWKEN is set before CPU is in power-down mode, when a RTC Time-Tick or Alarm Match occurs, CPU will wake up.				
		0= Disable Wakeup CPU function.				
		1= Enable the Wakeup function.				
		Time Tick Register				
[2:0]	TICKSEL	The RTC time tick period for Periodic Time-Tick Interrupt request.				
[2:0]		Time Tick (second) : 1 / (2^TICKSEL)				
		Note: This register can be read back after the RTC is active.				

LSB First

nuvoTon

The SPI_CTL.LSB bit defines the **bit** order of data transmission. If LSB=0 then MSB of transfer word is sent first in time. If LSB=1 then LSB of transfer word is sent first in time.

Transmit Edge

The SPI_CTL.TXNEG bit determines whether transmit data is changed on the positive or negative edge of the SPI_SCLK serial clock. If TXNEG=0 then transmitted data will change state on the rising edge of SPI_SCLK. If TXNEG=1 then transmitted data will change state on the falling edge of SPI_SCLK.

Receive Edge

The SPI_CTL.RXNET bit determines whether data is received at either the negative edge or positive edge of serial clock SPI_SCLK. If RXNET=1 then data is clocked in on the falling edge of SPI_SCLK. If RXNET=0 data is clocked in on the rising edge of SPI_SCLK. Note that RXNET should be the inverse of TXNEG for standard SPI operation.

Word Sleep Suspend

The bit field SPI_CTL.SUSPITV provides a configurable suspend interval of SUSPITV+2 serial clock periods between successive word transfers in master mode. The suspend interval is from the last falling clock edge of the preceding transfer word to the first rising clock edge of the following transfer word if CLKPOL = 0. If CLKPOL = 1, the interval is from the rising clock edge of the preceding transfer word to the falling clock edge of the following transfer word. The default value of SUSPITV is 0x0 (2 serial clock cycles). Word Sleep only occurs when TXCNT=1. For TXCNT=0, this parameter will determine a Byte Sleep condition if the BYTEITV bit is set.

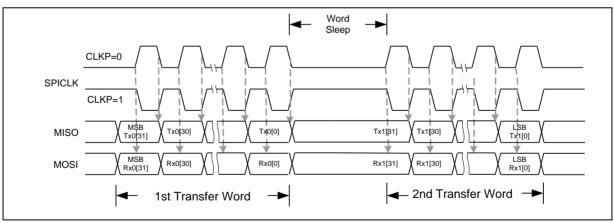


Figure 5-38 Word Sleep Suspend Mode

words. Now consider if this data were to be sent to the SPI port; the user could:

UVOTON

- 1. Set DWIDTH=8 and send data byte-by-byte SPI_TX0 = ucSPI_DATA[i++]
- 2. Set DWIDTH=32 and send word-by-word SPI_TX0 = uiSPI_DATA[i++]

Both of these would result in the byte stream {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08} being sent.

It would be common that a byte array of data is constructed but user, for efficiency, wishes to transfer data to SPI via word transfers. Consider the situation of Figure 5-41 where a int pointer points to the byte data array.

unsigned char ucSPI_DATA[]={0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}; unsigned int *uiSPI_DATA = (unsigned int *)ucSPI_DATA[];							
	RAM Address	RAM	Content	S			
	0x20000014	Byte0	Byte1	Byte2	Byte3		
	0x20000010	Byte0	Byte1	Byte2	Byte3		
	0x200000c	0x08	0x07	0x06	0x05		
	0x2000008	0x04	0x03	0x02	0x01		
	0x20000004	0x05	0x06	0x07	0x08		
uiSPI_DATA[]→	ucSPI_DATA[]→ 0x20000000	0x01	0x02	0x03	0x04		
	APB Data Bus	[7:0]	[15:8]	[23:16]	[31:24]		

Figure 5-41 Byte Order in Memory

Now if we set DWIDTH=32 and sent word-by-word SPI_TX0 = $uiSPI_DATA[i++]$, the order transmitted would be {0x04, 0x03, 0x02, 0x01, 0x08, 0x07, 0x06, 0x05}. However if we set REORDER=1, we would reverse this order to the desired stream: {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}.

SPI Divider Register (SPI_CLKDIV)								
Register	Offset	R/W	Description	Reset Value				
SPI_CLKDIV	SPI0_BA + 0x04	R/W	Clock Divider Register (Master Only)	0x0000_0000				

31	30	29	28	27	26	25	24		
	DIVIDER1[15:8]								
23	22	21	20	19	18	17	16		
	DIVIDER1[7:0]								
15	14	13	12	11	10	9	8		
	DIVIDER0[15:8]								
7	6	5	4	3	2	1	0		
	DIVIDER0[7:0]								

Table 5-85 SPI Clock Divider Register (SPI_CLKDIV, address 0x4003_0004)

Bits	Description	
		Clock Divider 2 Register (master only)
[31:16]	DIVIDER1	The value in this field is the 2 nd frequency divider of the system clock, PCLK, to generate the serial clock on the output SCLK. The desired frequency is obtained according to the following equation:
		Fsclk aaa Fpclk / ((DIVIDER1+1) * 2)
		Clock Divider Register (master only)
		The value in this field is the frequency division of the system clock, PCLK, to generate the serial clock on the output SCLK. The desired frequency is obtained according to the following equation:
[15:0]	DIVIDER0	Fsclk aaa Fpclk / ((DIVIDER0+1) * 2)
		In slave mode, the period of SPI clock driven by a master shall satisfy
		Fsclk < aaa (Fpclk / 5)
		In other words, the maximum frequency of SCLK clock is one fifth of the SPI peripheral clock.

5.10.4 Timer Controller Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
TMR Base Address:							
TMRn_BA=0x4001_	TMRn_BA=0x4001_0000+(0x20*n)						
n=0,1							
TIMERx_CTL	TMRn_BA+0x00	R/W	Timer Control and Status Register	0x0000_0005			
TIMERx_CMP	TMRn_BA+0x04	R/W	Timer Compare Register	0x0000_0000			
TIMERx_INTSTS	TMRn_BA+0x08	R/W	Timer Interrupt Status Register	0x0000_0000			
TIMERx_CNT	TMRn_BA+0x0C	R/W	Timer Data Register	0x0000_0000			

5.12.2 Features of UART controller

- UART supports 8 byte FIFO for receive and transmit data payloads.
- PDMA access support.

nuvoTon

- Auto flow control function (/CTS, /RTS) supported.
- Programmable baud-rate generator.
- Fully programmable serial-interface characteristics:
 - 5-, 6-, 7-, or 8-bit character.
 - Even, odd, or no-parity bit generation and detection.
 - 1-, 1&1/2, or 2-stop bit generation.
 - Baud rate generation.
 - False start bit detection.
- IrDA SIR Function.
- LIN master mode.

[8]	LINIEN	LIN RX Break Field Detected Interrupt Enable 0 = Mask off Lin bus Rx break field interrupt. 1 = Enable Lin bus Rx break field interrupt.
[7:6]	Reserved	Reserved
[5]	BUFERRIEN	Buffer Error Interrupt Enable 0 = Mask off BUFERRINT 1 = Enable IBUFERRINT
[4]	RXTOIEN	Receive Time out Interrupt Enable 0 = Mask off RXTOINT 1 = Enable RXTOINT
[3]	MODEMIEN	Modem Status Interrupt Enable 0 = Mask off MODEMINT 1 = Enable MODEMINT
[2]	RLSIEN	Receive Line Status Interrupt Enable 0 = Mask off RLSINT 1 = Enable RLSINT
[1]	THREIEN	Transmit FIFO Register Empty Interrupt Enable 0 = Mask off THERINT 1 = Enable THERINT
[0]	RDAIEN	Receive Data Available Interrupt Enable.0 = Mask off RDAINT1 = Enable RDAINT

5.13.5 FIFO operation

,									
	Mono 8-bit data mode)							-
	N+3 7 0	N+2 7 0	7	N+1	0	7	N	0	
	Stereo 8-bit data mod		·		<u> </u>				I
	LEFT+1	RIGHT+1		LEFT			RIGHT		
	7 0	7 0	7		0	7		0]
	Mono 16-bit data mod		T						1
	N+	+10	15		N			0	
	Stereo 16-bit data mo	de							
	LE 15	FT 0	15		RIGI	ΗТ		0	
	Mono 24-bit data mod								I
				N					
		23		••				0]
	Stereo 24-bit data mo	de T							1
		23		LEFT				0	N
		1		RIGHT					N+1
		23		RIGHT				0	N+1
	Mono 32-bit data mod	le							_
	31		N					0	
	Stereo 32-bit data mo	de							I
			EFT						N
	31							0	
	31	RI	GHT					0	N+1
	31]

Figure 5-63 FIFO contents for various I2S modes

5.13.6 I2S Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
I2S Base Address:	I2S Base Address:						
$12S_BA = 0x400A_0$	0000						
I2S_CTL	I2S_BA + 0x00	R/W	I2S Control Register	0x0000_0000			
I2S_CLKDIV	I2S_BA + 0x04	R/W	I2S Clock Divider Register	0x0000_0000			
I2S_IEN	I2S_BA + 0x08	R/W	I2S Interrupt Enable Register	0x0000_0000			
I2S_STATUS	I2S_BA + 0x0C	R/W	I2S Status Register	0x0014_1000			
I2S_TX	I2S_BA + 0x10	W	I2S Transmit FIFO Register	0x0000_0000			
I2S_RX	I2S_BA + 0x14	R	I2S Receive FIFO Register	0x0000_0000			

NUVOTON ISD9160 Technical Reference Manual

I2S Interrupt Enable Register (I2S_IEN)							
Register	Offset	R/W	Description	Reset Value			
I2S_IEN	I2S_BA + 0x08	R/W	I2S Interrupt Enable Register	0x0000_0000			

15	14	13	12	11	10	9	8
	Reserved			RZCIEN	TXTHIEN	TXOVIEN	TXUDIEN
7	6	5	4	3	2	1	0
	-	Reserved	RXTHIEN	RXOVIEN	RXUDIEN		

Table 5-116 I2S Interrupt Enable Register (I2S_IEN, address 0x400A_0008)

Bits	Description	
[12]	LZCIEN	Left Channel Zero Cross Interrupt Enable Interrupt will occur if this bit is set to 1 and left channel has zero cross event 0 = Disable interrupt 1 = Enable interrupt
[11]	RZCIEN	Right Channel Zero Cross Interrupt EnableInterrupt will occur if this bit is set to 1 and right channel has zero cross event0 = Disable interrupt1 = Enable interrupt
[10]	TXTHIEN	Transmit FIFO Threshold Level Interrupt Enable Interrupt occurs if this bit is set to 1 and data words in transmit FIFO is less than TXTH[2:0]. 0 = Disable interrupt 1 = Enable interrupt
[9]	TXOVIEN	Transmit FIFO Overflow Interrupt Enable Interrupt occurs if this bit is set to 1 and transmit FIFO overflow flag is set to 1 0 = Disable interrupt 1 = Enable interrupt
[8]	TXUDIEN	Transmit FIFO Underflow Interrupt Enable Interrupt occur if this bit is set to 1 and transmit FIFO underflow flag is set to 1. 0 = Disable interrupt 1 = Enable interrupt
[2]	RXTHIEN	Receive FIFO Threshold Level Interrupt Interrupt occurs if this bit is set to 1 and data words in receive FIFO is greater than or equal to RXTH[2:0]. 0 = Disable interrupt 1 = Enable interrupt

nuvoTon

CRC Output						
Register	Offset	R/W	Description	Reset Value		
CRC_CHECKSUM	CRC_BA+0x08	R	CRC Output Register	0x0000_FFFF		

Table 5-122 CRC Output Register

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			CHECKS	UM[15:8]					
7	6	5	4	3	2	1	0		
	CHECKSUM[7:0]								

Bits	Description	
[15:0]	CHECKSUM	CRC Output The result of CRC computation. The result is valid four clock cycles after last CRC_DAT input data is written to CRC generator.

Register	Offset	R/W	Description	Reset Value
PDMA_DSCT0_ENDSA	PDMA_BA+0x04	R/W	PDMA Transfer Source Address Register of Channel 0	0x0000_0000
PDMA_DSCT1_ENDSA	PDMA_BA+0x104	R/W	PDMA Transfer Source Address Register of Channel 1	0x0000_0000
PDMA_DSCT2_ENDSA	PDMA_BA+0x204	R/W	PDMA Transfer Source Address Register of Channel 2	0x0000_0000
PDMA_DSCT3_ENDSA	PDMA_BA+0x304	R/W	PDMA Transfer Source Address Register of Channel 3	0x0000_0000

PDMA Transfer Source Address Register (PDMA_DSCTn_ENDSA)(n=0~3)

Table 5-124 PDMA Source Address Register (PDMA_DSCTn_ENDSA, address 0x5000_8004 + *n**0x100)

Bits	Description					
		PDMA Transfer Source Address Register				
[31:0]	ENDSA	This register holds the initial Source Address of PDMA transfer.				
		Note: The source address must be word aligned.				

PDMA Current Byte Count Register (PDMA_CURBCCHn) (n=0~3)

Register	Offset	R/W	Description	Reset Value
PDMA_CURBCCH0	PDMA_BA+0x1C	R	PDMA Current Byte Count Register of Channel 0	0x0000_0000
PDMA_CURBCCH1	PDMA_BA+0x11C	R	PDMA Current Byte Count Register of Channel 1	0x0000_0000
PDMA_CURBCCH2	PDMA_BA+0x21C	R	PDMA Current Byte Count Register of Channel 2	0x0000_0000
PDMA_CURBCCH3	PDMA_BA+0x31C	R	PDMA Current Byte Count Register of Channel 3	0x0000_0000

Table 5-130 PDMA Current Byte Count Register (PDMA_CURBCCHn, address 0x5000_801C + *n**0x100)

Bits	Description					
[31:16]	Reserved Reserved					
[15:0]	CURBC	PDMA Current Byte Count Register (Read Only) This field indicates the current remaining byte count of PDMA transfer. This register is initialized with PDMA_TXBCCHn register when PDMA is triggered or when a wraparound occurs				

PDMA Interrupt Status Register (PDMA_CHnIF) (n=0~3)

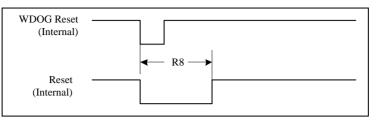
Register	Offset	R/W	Description	Reset Value
PDMA_CH0IF	PDMA_BA+0x24	R/W	PDMA Interrupt Status Register of Channel 0	0x0000_0000
PDMA_CH1IF	PDMA_BA+0x124	R/W	PDMA Interrupt Status Register of Channel 1	0x0000_0000
PDMA_CH2IF	PDMA_BA+0x224	R/W	PDMA Interrupt Status Register of Channel 2	0x0000_0000
PDMA_CH3IF	PDMA_BA+0x324	R/W	PDMA Interrupt Status Register of Channel 3	0x0000_0000

31	30	29	28	27	26	25	24				
INTSTS		Reserved									
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Rese	erved		WAIF							
7	6	5	4	3	2	1	0				
		TXOKIF	TXABTIF								

Table 5-132 PDMA Interrupt Enable Status Register (PDMA_CHnIF, address 0x5000_8024 +

*n**0x100)

Bits	Description				
[31]	INTSTS	Interrupt Pin Status (Read Only) This bit is the Interrupt pin status of PDMA channel.			
[30:12]	Reserved	Reserved			
[11:8]	WAIF	 Wrap Around Transfer Byte Count Interrupt Flag These flags are set whenever the conditions for a wraparound interrupt (complete or half complete) are met. They are cleared by writing one to the bits. 0001 aaa Current transfer finished flag (CURBC aaaaaa 0). 0100 aaa Current transfer half complete flag (CURBC aaaaaa BYTECNT/2). 			
[1]	TXOKIF	 Block Transfer Done Interrupt Flag This bit indicates that PDMA block transfer complete interrupt has been generated. It is cleared by writing 1 to the bit. 0 = Transfer ongoing or Idle. 1 = Transfer Complete. 			


nuvoTon

ISD9160 Technical Reference Manual

	I _{DD13}	12.5	mA	V _{DD} = 5.5V, Enable all IP.
Operating Current	I _{DD14}	10.3	mA	V _{DD} = 5.5V, Disable all IP.
Normal Run Mode @ 12.288Mhz	I _{DD15}	11.4	mA	V _{DD} = 3V, Enable all IP.
	I _{DD16}	9	mA	V _{DD} = 3V, Disable all IP.
	I _{DD9}	9.7	mA	$V_{DD} = 5.5V$, Enable all IP.
Operating Current Normal Run Mode	I _{DD10}	8.1	mA	V _{DD} = 5.5V, Disable all IP.
@ 4.9152Mhz	I _{DD11}	8.7	mA	V _{DD} = 3V, Enable all IP.
	I _{DD12}	7.0	mA	V _{DD} = 3V, Disable all IP.
Operating Current Sleep Mode	I _{IDLE1}	10	mA	V _{DD} = 5.5V
Sleep wode	I _{IDLE1}	9	mA	V _{DD} = 3.3V
Operating Current	I _{IDLE1}	10	mA	V _{DD} =5.5V
Deep Sleep Mode	I _{IDLE1}	8	mA	V _{DD} = 3.3V
Standby Power down	I _{IDLE1}	3	uA	V_{DD} =3.3V 32K running with RTC
mode(SPD)	I _{IDLE1}	1	uA	V _{DD} = 3.3V 16K running
Operating Current	I _{IDLE1}	500	nA	V _{DD} =3.3V Wakeup with16K
Deep Power down mode(DPD)	I _{IDLE1}		nA	$V_{\text{DD}}\text{=}3.3V$ wakeup with wakeup pin

9.5.1.4 Watchdog Reset Timing

