

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                     |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                              |
| Core Size                  | 32-Bit Single-Core                                                           |
| Speed                      | 48MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART   |
| Peripherals                | Brown-out Detect/Reset, Cap Sense, LCD, LVD, POR, PWM, SmartSense, WDT       |
| Number of I/O              | 21                                                                           |
| Program Memory Size        | 64KB (64K x 8)                                                               |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                |                                                                              |
| RAM Size                   | 8K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                                 |
| Data Converters            | A/D 8x12b                                                                    |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 25-UFBGA, WLCSP                                                              |
| Supplier Device Package    | 25-WLCSP (2.07×2.11)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4246fni-d412t |
|                            |                                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

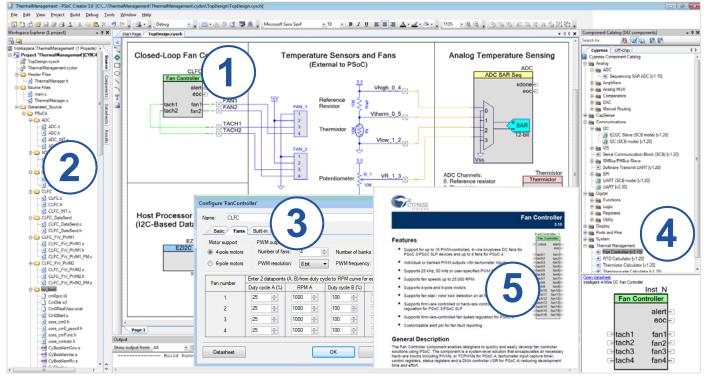


## **More Information**

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
  - □ AN79953: Getting Started With PSoC 4
  - □ AN88619: PSoC 4 Hardware Design Considerations
  - □ AN86439: Using PSoC 4 GPIO Pins
  - D AN57821: Mixed Signal Circuit Board Layout
  - □ AN81623: Digital Design Best Practices
  - □ AN73854: Introduction To Bootloaders
  - AN89610: ARM Cortex Code Optimization

- Technical Reference Manual (TRM) is in two documents:
- □ Architecture TRM details each PSoC 4 functional block.
- □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
  - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino<sup>™</sup> compatible shields and Digilent® Pmod<sup>™</sup> daughter cards.
  - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
  - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.


The MiniProg3 device provides an interface for flash programming and debug.

# PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets







## **Functional Definition**

### **CPU and Memory Subsystem**

### CPU

The Cortex-M0 CPU in the PSoC 4200-L is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and execute a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can wake the processor up from the Deep Sleep mode allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4200-L has four break-point (address) comparators and two watchpoint (data) comparators.

#### Flash

The PSoC 4200-L has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 2 wait-state (WS) access time at 48 MHz and with 1-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

### SRAM

SRAM memory is retained during Hibernate.

### SROM

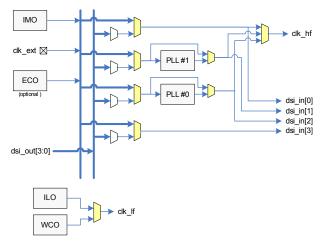
A supervisory ROM that contains boot and configuration routines is provided.

### DMA

A DMA engine is provided that can do 32-bit transfers and has chainable ping-pong descriptors.

### System Resources

### Power System


The power system is described in detail in the section Power on page 15. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low voltage detect (LVD)). The PSoC 4200-L operates with a single external supply over the range of 1.71 to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4200-L provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

#### Clock System

The PSoC 4200-L clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no meta-stable conditions occur.

The clock system for the PSoC 4200-L consists of a crystal oscillator (4 to 33 MHz), a watch crystal oscillator (32 kHz), a phase-locked loop (PLL), the IMO and the ILO internal oscillators, and provision for an external clock.





The clk\_hf signal can be divided down to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 16 clock dividers for the PSoC 4200-L, each with 16-bit divide capability; this allows 12 to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator.

#### IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4200-L. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of 1 MHz. IMO tolerance with Cypress-provided calibration settings is ±2%.

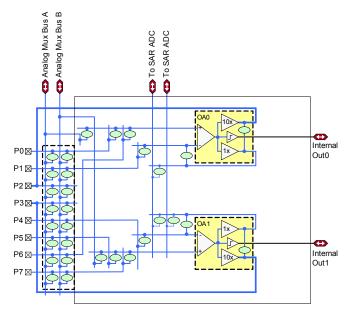
#### ILO Clock Source

The ILO is a very low power oscillator, nominally 32 kHz, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

### Crystal Oscillators and PLL

The PSoC 4200-L clock subsystem also implements two oscillators: high-frequency (4 to 33 MHz) and low-frequency (32-kHz watch crystal) that can be used for precision timing applications. The PLL can generate a 48-MHz output from the high-frequency oscillator.




#### Analog Multiplex Bus

The PSoC4200-L has two concentric analog buses (Analog Mux Bus A and Analog Mux Bus B) that circumnavigate the periphery of the chip. These buses can transport analog signals from any pin to various analog blocks (including the opamps) and to the CapSense blocks allowing, for instance, the ADC to monitor any pin on the chip. These buses are independent and can also be split into three independent sections. This allows one section to be used for CapSense purposes, one for general analog signal processing, and the third for general-purpose digital peripherals and GPIO.

#### Four Opamps (CTBm Blocks)

The PSoC 4200-L has four opamps with Comparator modes, which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering. The opamps can operate in the Deep Sleep mode at very low power levels. The following diagram shows one of two identical opamp pairs of the opamp subsystem.

### Figure 5. Identical Opamp Pairs in Opamp Subsystem



The ovals in Figure 5 represent analog switches, which may be controlled via user firmware, the SAR sequencer, or user-defined programmable logic. The opamps (OA0 and OA1) are configurable via these switches to perform all standard opamp functions with appropriate feedback components.

The opamps (OA0 and OA1) are programmable and reconfigurable to provide standard opamp functionality via switchable feedback components, unity gain functionality for driving pins directly, or for internal use (such as buffering SAR ADC inputs as indicated in the diagram), or as true comparators.

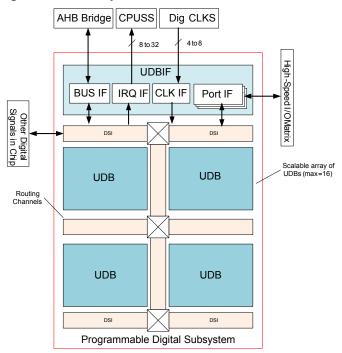
The opamp inputs provide highly flexible connectivity and can connect directly to dedicated pins or, via the analog mux buses,

The opamps operate in Deep Sleep mode at very low currents allowing analog circuits to remain operational during Deep Sleep.

#### Temperature Sensor

The PSoC 4200-L has one on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress-supplied software that includes calibration and linearization.

#### Low-power Comparators


The PSoC 4200-L has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid meta-stability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

### **Programmable Digital**

#### Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4200-L has eight UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.

#### Figure 6. UDB Array





| Port/Pin | Analog           | PRGIO & USB | Alt. Function 1       | Alt. Function 2   | Alt. Function 3                            | Alt. Function 4  | Alt. Function 5      |
|----------|------------------|-------------|-----------------------|-------------------|--------------------------------------------|------------------|----------------------|
| P4.2     | csd[0].c_mod     |             |                       | scb[0].uart_cts:2 | can[0].can_tx_enb_ lpcomp.comp[0]:2<br>n:1 |                  | scb[0].spi_clk:2     |
| P4.3     | csd[0].c_sh_tank |             |                       | scb[0].uart_rts:2 |                                            | lpcomp.comp[1]:2 | scb[0].spi_select0:2 |
| P4.4     |                  |             |                       |                   | can[1].can_tx_enb_<br>n:1                  |                  | scb[0].spi_select1:2 |
| P4.5     |                  |             |                       |                   | can[1].can_rx:1                            |                  | scb[0].spi_select2:2 |
| P4.6     |                  |             |                       |                   | can[1].can_tx:1                            |                  | scb[0].spi_select3:2 |
| P4.7     |                  |             |                       |                   |                                            |                  |                      |
| P13.0    |                  | USBDP       |                       |                   |                                            |                  |                      |
| P13.1    |                  | USBDM       |                       |                   |                                            |                  |                      |
| P13.2    |                  | VBUS        |                       |                   |                                            |                  |                      |
| P7.0     | srss.eco_in      |             | tcpwm.line[0]:3       | scb[3].uart_rx:2  |                                            | scb[3].i2c_scl:2 | scb[3].spi_mosi:2    |
| P7.1     | srss.eco_out     |             | tcpwm.line_compl[0]:3 | scb[3].uart_tx:2  |                                            | scb[3].i2c_sda:2 | scb[3].spi_miso:2    |
| P7.2     |                  |             | tcpwm.line[1]:3       | scb[3].uart_cts:2 |                                            |                  | scb[3].spi_clk:2     |
| P7.3     |                  |             | tcpwm.line_compl[1]:3 | scb[3].uart_rts:2 |                                            |                  | scb[3].spi_select0:2 |
| P7.4     |                  |             | tcpwm.line[2]:3       |                   |                                            |                  | scb[3].spi_select1:2 |
| P7.5     |                  |             | tcpwm.line_compl[2]:3 |                   |                                            |                  | scb[3].spi_select2:2 |
| P7.6     |                  |             | tcpwm.line[3]:3       |                   |                                            |                  | scb[3].spi_select3:2 |
| P7.7     |                  |             | tcpwm.line_compl[3]:3 |                   |                                            |                  |                      |

#### Descriptions of the power pin functions are as follows:

**VDDD**: Power supply for both analog and digital sections (where there is no  $V_{\text{DDA}}$  pin)

**VDDA**: Analog V<sub>DD</sub> pin where package pins allow; shorted to V<sub>DDD</sub> otherwise

VDDIO: I/O pin power domain

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin

VCCD: Regulated digital supply (1.8 V ±5%)

GPIO and GPIO\_OVT pins can be used as CSD sense and shield pins (a total of 94). Up to 64 of the pins can be used for LCD drive.

The following packages are supported: 124-ball BGA, 64-pin TQFP, 68-pin QFN, and 48-pin TQFP.

### Power

The supply voltage range is 1.71 V to 5.5 V with all functions and circuits operating over that range.

The PSoC 4200-L family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

### Unregulated External Supply

In this mode, the PSoC 4200-L is powered by an External Power Supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4200-L supplies the internal logic and the VCCD output of the PSoC 4200-L must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6  $\mu$ F; X5R ceramic or better).

VDDA and VDDD must be shorted together on the PC board; the grounds, VSSA and VSS must also be shorted together. Bypass capacitors must be used from VDDD and VDDA to ground, typical practice for systems in this frequency range is to use a capacitor in the 1  $\mu$ F range in parallel with a smaller capacitor (0.1  $\mu$ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

| Power Supply              | Bypass Capacitors                                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------|
| VDDD–VSS and<br>VDDIO-VSS | 0.1 $\mu$ F ceramic at each pin plus bulk capacitor 1 to 10 $\mu$ F.                                      |
| VDDA-VSSA                 | 0.1 $\mu$ F ceramic at pin. Additional 1 $\mu$ F to 10 $\mu$ F bulk capacitor                             |
| VCCD-VSS                  | 1 µF ceramic capacitor at the VCCD pin                                                                    |
| VREF–VSSA<br>(optional)   | The internal bandgap may be bypassed with a 1 $\mu$ F to 10 $\mu$ F capacitor for better ADC performance. |

### **Regulated External Supply**

In this mode, the PSoC 4200-L is powered by an external power supply that must be within the range of 1.71 V to 1.89 V ( $1.8 \pm 5\%$ ); note that this range needs to include power supply ripple. In this mode, the VCCD and VDDD pins are shorted together and bypassed. The internal regulator is disabled in firmware.



## **Electrical Specifications**

### **Absolute Maximum Ratings**

#### Table 1. Absolute Maximum Ratings<sup>[1]</sup>

| Spec ID# | Parameter                    | Description                                                              | Min  | Тур | Max                  | Units | Details/<br>Conditions |
|----------|------------------------------|--------------------------------------------------------------------------|------|-----|----------------------|-------|------------------------|
| SID1     | V <sub>DD_ABS</sub>          | Analog or digital supply relative to $V_{SS}$<br>( $V_{SSD} = V_{SSA}$ ) | -0.5 | -   | 6                    | V     | Absolute<br>maximum    |
| SID2     | V <sub>CCD_ABS</sub>         | Direct digital core voltage input relative to $V_{SSD}$                  | -0.5 | -   | 1.95                 | V     | Absolute<br>maximum    |
| SID3     | V <sub>GPIO_ABS</sub>        | GPIO voltage; V <sub>DDD</sub> or V <sub>DDA</sub>                       | -0.5 | -   | V <sub>DD</sub> +0.5 | V     | Absolute<br>maximum    |
| SID4     | I <sub>GPIO_ABS</sub>        | Current per GPIO                                                         | -25  | -   | 25                   | mA    | Absolute<br>maximum    |
| SID5     | I <sub>G-PIO_injection</sub> | GPIO injection current per pin                                           | -0.5 | -   | 0.5                  | mA    | Absolute<br>maximum    |
| BID44    | ESD_HBM                      | Electrostatic discharge human body model                                 | 2200 | -   | -                    | V     |                        |
| BID45    | ESD_CDM                      | Electrostatic discharge charged device model                             | 500  | -   | -                    | V     |                        |
| BID46    | LU                           | Pin current for latch-up                                                 | -140 | _   | 140                  | mA    |                        |

### **Device Level Specifications**

All specifications are valid for -40 °C  $\leq$  TA  $\leq$  85 °C and TJ  $\leq$  100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

#### Table 2. DC Specifications

| Spec ID#    | Parameter         | Description                                                         | Min  | Тур  | Max  | Units | Details / Conditions                     |
|-------------|-------------------|---------------------------------------------------------------------|------|------|------|-------|------------------------------------------|
| SID53       | V <sub>DDD</sub>  | Power Supply Input Voltage ( $V_{DDA} = V_{DDD} = V_{DD}$ )         | 1.8  | _    | 5.5  | V     | With regulator<br>enabled                |
| SID255      | V <sub>DDD</sub>  | Power supply input voltage unregulated                              | 1.71 | 1.8  | 1.89 | V     | Internally unregu-<br>lated Supply       |
| SID54       | V <sub>CCD</sub>  | Output voltage (for core logic)                                     | _    | 1.8  | _    | V     |                                          |
| SID55       | C <sub>EFC</sub>  | External regulator voltage bypass                                   | 1    | 1.3  | 1.6  | μF    | X5R ceramic or<br>better                 |
| SID56       | C <sub>EXC</sub>  | Power supply decoupling capacitor                                   | _    | 1    | -    | μF    | X5R ceramic or<br>better                 |
| Active Mode |                   |                                                                     |      |      |      |       | ·                                        |
| SID6        | I <sub>DD1</sub>  | Execute from flash; CPU at 6 MHz                                    | -    | 2.2  | 3.1  | mA    |                                          |
| SID7        | I <sub>DD2</sub>  | Execute from flash; CPU at 12 MHz                                   | _    | 3.7  | 4.8  | mA    |                                          |
| SID8        | I <sub>DD3</sub>  | Execute from flash; CPU at 24 MHz                                   | _    | 6.7  | 8.0  | mA    |                                          |
| SID9        | I <sub>DD4</sub>  | Execute from flash; CPU at 48 MHz                                   | _    | 12.8 | 14.5 | mA    |                                          |
| Sleep Mode  |                   |                                                                     |      |      |      |       |                                          |
| SID21       | I <sub>DD16</sub> | I <sup>2</sup> C wakeup, WDT, and Comparators on.<br>Regulator Off. | -    | 1.8  | 2.2  | mA    | V <sub>DD</sub> = 1.71 to 1.89,<br>6 MHz |
| SID22       | I <sub>DD17</sub> | I <sup>2</sup> C wakeup, WDT, and Comparators on.                   | _    | 1.7  | 2.1  | mA    | V <sub>DD</sub> = 1.8 to 5.5,<br>6 MHz   |

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.



### Table 2. DC Specifications

| Spec ID#     | Parameter          | Description                                                         | Min | Тур | Max    | Units | Details / Conditions                      |
|--------------|--------------------|---------------------------------------------------------------------|-----|-----|--------|-------|-------------------------------------------|
| SID23        | I <sub>DD18</sub>  | I <sup>2</sup> C wakeup, WDT, and Comparators on.<br>Regulator Off. | _   | 2.4 | 2.9    | mA    | V <sub>DD</sub> = 1.71 to 1.89,<br>12 MHz |
| SID24        | I <sub>DD19</sub>  | I <sup>2</sup> C wakeup, WDT, and Comparators on.                   | -   | 2.3 | 2.8    | mA    | V <sub>DD</sub> = 1.8 to 5.5, 12<br>MHz   |
| Deep Sleep I | Mode, –40 °C to    | + 60 °C                                                             |     |     |        |       |                                           |
| SID30        | I <sub>DD25</sub>  | I <sup>2</sup> C wakeup and WDT on. Regulator Off.                  | _   | -   | 13.5   | μA    | V <sub>DD</sub> = 1.71 to 1.89            |
| SID31        | I <sub>DD26</sub>  | I <sup>2</sup> C wakeup and WDT on.                                 | -   | 1.3 | 20.0   | μA    | V <sub>DD</sub> = 1.8 to 3.6              |
| SID32        | I <sub>DD27</sub>  | I <sup>2</sup> C wakeup and WDT on.                                 | -   | -   | 20.0   | μA    | V <sub>DD</sub> = 3.6 to 5.5              |
| Deep Sleep I | Mode, +85 °C       | · · · ·                                                             |     |     |        |       |                                           |
| SID33        | I <sub>DD28</sub>  | I <sup>2</sup> C wakeup and WDT on. Regulator Off.                  | -   | -   | 45.0   | μA    | V <sub>DD</sub> = 1.71 to 1.89            |
| SID34        | I <sub>DD29</sub>  | I <sup>2</sup> C wakeup and WDT on.                                 | -   | 15  | 60.0   | μA    | V <sub>DD</sub> = 1.8 to 3.6              |
| SID35        | I <sub>DD30</sub>  | I <sup>2</sup> C wakeup and WDT on.                                 | -   | -   | 45.0   | μA    | V <sub>DD</sub> = 3.6 to 5.5              |
| Hibernate Mo | ode, -40 °C to +   | 60 °C                                                               |     |     |        |       |                                           |
| SID39        | I <sub>DD34</sub>  | Regulator Off.                                                      | -   | _   | 1123   | nA    | V <sub>DD</sub> = 1.71 to 1.89            |
| SID40        | I <sub>DD35</sub>  |                                                                     | _   | 150 | 1600   | nA    | V <sub>DD</sub> = 1.8 to 3.6              |
| SID41        | I <sub>DD36</sub>  |                                                                     | -   | _   | 1600   | nA    | V <sub>DD</sub> = 3.6 to 5.5              |
| Hibernate Mo | ode, +85 °C        | · · · ·                                                             |     |     |        |       |                                           |
| SID42        | I <sub>DD37</sub>  | Regulator Off.                                                      | -   | _   | 4142   | nA    | V <sub>DD</sub> = 1.71 to 1.89            |
| SID43        | I <sub>DD38</sub>  |                                                                     | _   | -   | 9700   | nA    | V <sub>DD</sub> = 1.8 to 3.6              |
| SID44        | I <sub>DD39</sub>  |                                                                     | -   | -   | 10,400 | nA    | V <sub>DD</sub> = 3.6 to 5.5              |
| Stop Mode    | ·                  |                                                                     |     |     |        |       | <u>.</u>                                  |
| SID304       | I <sub>DD43A</sub> | Stop Mode current; V <sub>DD</sub> = 3.6 V                          | _   | 20  | 659    | nA    | T = $-40$ °C to $+60$ °C                  |
| SID304A      | I <sub>DD43B</sub> | Stop Mode current; V <sub>DD</sub> = 3.6 V                          | -   | -   | 1810   | nA    | T = +85 °C                                |
| XRES curren  | nt                 |                                                                     |     |     |        |       |                                           |
| SID307       | I <sub>DD_XR</sub> | Supply current while XRES (Active Low) asserted                     | -   | 2   | 5      | mA    |                                           |

### Table 3. AC Specifications

| Spec ID# | Parameter               | Description                 | Min | Тур | Max | Units | Details/<br>Conditions                           |
|----------|-------------------------|-----------------------------|-----|-----|-----|-------|--------------------------------------------------|
| SID48    | F <sub>CPU</sub>        | CPU frequency               | DC  | -   | 48  | MHz   | $1.71 \leq V_{DD} \leq 5.5$                      |
| SID49    | T <sub>SLEEP</sub>      | Wakeup from sleep mode      | -   | 0   | _   | μs    | Guaranteed by characterization                   |
| SID50    | T <sub>DEEPSLEEP</sub>  | Wakeup from Deep Sleep mode | -   | -   | 25  | μs    | 24-MHz IMO.<br>Guaranteed by<br>characterization |
| SID51    | T <sub>HIBERNATE</sub>  | Wakeup from Hibernate mode  | -   | -   | 0.7 | ms    | Guaranteed by characterization                   |
| SID51A   | T <sub>STOP</sub>       | Wakeup from Stop mode       | -   | -   | 1.9 | ms    | Guaranteed by characterization                   |
| SID52    | T <sub>RESETWIDTH</sub> | External reset pulse width  | 1   | -   | _   | μs    | Guaranteed by characterization                   |



#### GPIO

## Table 4. GPIO DC Specifications

| Spec ID# | Parameter                      | Description                                               | Min                        | Тур | Max                       | Units | Details/<br>Conditions                                                     |
|----------|--------------------------------|-----------------------------------------------------------|----------------------------|-----|---------------------------|-------|----------------------------------------------------------------------------|
| SID57    | V <sub>IH</sub> <sup>[2]</sup> | Input voltage high threshold                              | 0.7 ×<br>V <sub>DDD</sub>  | -   | -                         | V     | CMOS Input                                                                 |
| SID57A   | I <sub>IHS</sub>               | Input current when Pad > V <sub>DDIO</sub> for OVT inputs | -                          | -   | 10                        | μA    | Per I <sup>2</sup> C Spec                                                  |
| SID58    | V <sub>IL</sub>                | Input voltage low threshold                               | -                          | -   | 0.3 ×<br>V <sub>DDD</sub> | V     | CMOS Input                                                                 |
| SID241   | V <sub>IH</sub> [2]            | LVTTL input, V <sub>DDD</sub> < 2.7 V                     | 0.7×<br>V <sub>DDD</sub>   | -   | -                         | V     |                                                                            |
| SID242   | V <sub>IL</sub>                | LVTTL input, V <sub>DDD</sub> < 2.7 V                     | -                          | -   | 0.3 ×<br>V <sub>DDD</sub> | V     |                                                                            |
| SID243   | V <sub>IH</sub> [2]            | LVTTL input, $V_{DDD} \ge 2.7 V$                          | 2.0                        | -   | _                         | V     |                                                                            |
| SID244   | V <sub>IL</sub>                | LVTTL input, $V_{DDD} \ge 2.7 V$                          | -                          | -   | 0.8                       | V     |                                                                            |
| SID59    | V <sub>OH</sub>                | Output voltage high level                                 | V <sub>DDD</sub><br>-0.6   | -   | _                         | V     | I <sub>OH</sub> = 4 mA at<br>3 V V <sub>DDD</sub>                          |
| SID60    | V <sub>OH</sub>                | Output voltage high level                                 | V <sub>DDD</sub><br>-0.5   | -   | -                         | V     | I <sub>OH</sub> = 1 mA at<br>1.8 V V <sub>DDD</sub>                        |
| SID61    | V <sub>OL</sub>                | Output voltage low level                                  | -                          | -   | 0.6                       | V     | I <sub>OL</sub> = 4 mA at<br>1.8 V V <sub>DDD</sub>                        |
| SID62    | V <sub>OL</sub>                | Output voltage low level                                  | -                          | -   | 0.6                       | V     | I <sub>OL</sub> = 8 mA at 3 V<br>V <sub>DDD</sub>                          |
| SID62A   | V <sub>OL</sub>                | Output voltage low level                                  | -                          | -   | 0.4                       | V     | I <sub>OL</sub> = 3 mA at 3 V<br>V <sub>DDD</sub>                          |
| SID63    | R <sub>PULLUP</sub>            | Pull-up resistor                                          | 3.5                        | 5.6 | 8.5                       | kΩ    |                                                                            |
| SID64    | R <sub>PULLDOWN</sub>          | Pull-down resistor                                        | 3.5                        | 5.6 | 8.5                       | kΩ    |                                                                            |
| SID65    | IIL                            | Input leakage current (absolute value)                    | -                          | -   | 2                         | nA    | 25 °C, V <sub>DDD</sub> =<br>3.0 V                                         |
| SID65A   | I <sub>IL_CTBM</sub>           | Input leakage current (absolute value) for CTBM pins      | -                          | -   | 4                         | nA    |                                                                            |
| SID66    | C <sub>IN</sub>                | Input capacitance                                         | -                          | _   | 7                         | pF    | Not applicable<br>for P6.4, P6.5,<br>P12.0, P12.1,<br>and for USB<br>pins. |
| SID67    | V <sub>HYSTTL</sub>            | Input hysteresis LVTTL                                    | 25                         | 40  | _                         | mV    | $V_{DDD} \ge 2.7 \text{ V}$                                                |
| SID68    | V <sub>HYSCMOS</sub>           | Input hysteresis CMOS                                     | 0.05 ×<br>V <sub>DDD</sub> | -   | _                         | mV    |                                                                            |
| SID69    | I <sub>DIODE</sub>             | Current through protection diode to V <sub>DD</sub> /Vss  | -                          | -   | 100                       | μA    | Guaranteed by characterization                                             |
| SID69A   | I <sub>TOT_GPIO</sub>          | Maximum Total Source or Sink Chip<br>Current              | -                          | -   | 200                       | mA    | Guaranteed by characterization                                             |



### **Analog Peripherals**

### Opamp

## Table 8. Opamp Specifications

(Guaranteed by Characterization)

| Spec ID# | Parameter               | Description                                           | Min   | Тур  | Max                       | Units   | Details/Conditions                          |
|----------|-------------------------|-------------------------------------------------------|-------|------|---------------------------|---------|---------------------------------------------|
|          | I <sub>DD</sub>         | Opamp block current. No load.                         | -     | -    | -                         | _       |                                             |
| SID269   | I <sub>DD_HI</sub>      | Power = high                                          | -     | 1100 | 1850                      | μA      |                                             |
| SID270   | I <sub>DD_MED</sub>     | Power = medium                                        | -     | 550  | 950                       | μA      |                                             |
| SID271   | I <sub>DD_LOW</sub>     | Power = low                                           | -     | 150  | 350                       | μA      |                                             |
|          | GBW                     | Load = 20 pF, 0.1 mA. V <sub>DDA</sub> = 2.7 V        | -     | _    | -                         | _       |                                             |
| SID272   | GBW_HI                  | Power = high                                          | 6     | -    | -                         | MHz     |                                             |
| SID273   | GBW_MED                 | Power = medium                                        | 4     | _    | -                         | MHz     |                                             |
| SID274   | GBW_LO                  | Power = low                                           | -     | 1    | -                         | MHz     |                                             |
|          | I <sub>OUT_MAX</sub>    | $V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail | -     | -    | -                         | -       |                                             |
| SID275   | I <sub>OUT_MAX_HI</sub> | Power = high                                          | 10    | -    | -                         | mA      |                                             |
| SID276   | IOUT_MAX_MID            | Power = medium                                        | 10    | -    | -                         | mA      |                                             |
| SID277   | IOUT_MAX_LO             | Power = low                                           | -     | 5    | -                         | mA      |                                             |
|          | I <sub>OUT</sub>        | V <sub>DDA</sub> = 1.71 V, 500 mV from rail           | -     | -    | -                         | _       |                                             |
| SID278   | I <sub>OUT_MAX_HI</sub> | Power = high                                          | 4     | -    | -                         | mA      |                                             |
| SID279   | IOUT_MAX_MID            | Power = medium                                        | 4     | -    | -                         | mA      |                                             |
| SID280   | IOUT_MAX_LO             | Power = low                                           | -     | 2    | -                         | mA      |                                             |
| SID281   | V <sub>IN</sub>         | Input voltage range                                   | -0.05 | -    | V <sub>DDA</sub> -<br>0.2 | V       | Charge-pump on, $V_{DDA} \ge 2.7 \text{ V}$ |
| SID282   | V <sub>CM</sub>         | Input common mode voltage                             | -0.05 | _    | VDDA<br>- 0.2             | V       | Charge-pump on, $V_{DDA} \ge 2.7 \text{ V}$ |
|          | V <sub>OUT</sub>        | $V_{DDA} \ge 2.7 V$                                   | _     | _    | _                         |         |                                             |
| SID283   | V <sub>OUT_1</sub>      | Power = high, I <sub>load</sub> =10 mA                | 0.5   | _    | VDDA<br>- 0.5             | V       |                                             |
| SID284   | V <sub>OUT_2</sub>      | Power = high, I <sub>load</sub> =1 mA                 | 0.2   | _    | VDDA<br>- 0.2             | V       |                                             |
| SID285   | V <sub>OUT_3</sub>      | Power = medium, I <sub>load</sub> =1 mA               | 0.2   | _    | VDDA<br>- 0.2             | V       |                                             |
| SID286   | V <sub>OUT_4</sub>      | Power = low, I <sub>load</sub> =0.1mA                 | 0.2   | _    | VDDA<br>- 0.2             | V       |                                             |
| SID288   | V <sub>OS_TR</sub>      | Offset voltage, trimmed                               | 1     | ±0.5 | 1                         | mV      | High mode                                   |
| SID288A  | V <sub>OS_TR</sub>      | Offset voltage, trimmed                               | -     | ±1   | -                         | mV      | Medium mode                                 |
| SID288B  | V <sub>OS_TR</sub>      | Offset voltage, trimmed                               | -     | ±2   | -                         | mV      | Low mode                                    |
| SID290   | V <sub>OS_DR_TR</sub>   | Offset voltage drift, trimmed                         | -10   | ±3   | 10                        | μV/°C   | High mode                                   |
| SID290A  | V <sub>OS_DR_TR</sub>   | Offset voltage drift, trimmed                         | -     | ±10  | -                         | μV/°C   | Medium mode                                 |
| SID290B  | V <sub>OS_DR_TR</sub>   | Offset voltage drift, trimmed                         | -     | ±10  | -                         | μV/°C   | Low mode                                    |
| SID291   | CMRR                    | DC                                                    | 60    | 70   | -                         | dB      | V <sub>DDD</sub> = 3.6 V                    |
| SID292   | PSRR                    | At 1 kHz, 100 mV ripple                               | 70    | 85   | -                         | dB      | VDDD = 3.6 V                                |
|          | Noise                   |                                                       | -     | _    | -                         | -       |                                             |
| SID293   | V <sub>N1</sub>         | Input referred, 1 Hz - 1GHz, power =<br>high          | -     | 94   | -                         | µVrms   |                                             |
| SID294   | V <sub>N2</sub>         | Input referred, 1 kHz, power = high                   | _     | 72   | -                         | nV/rtHz |                                             |



### Table 13. SAR ADC AC Specifications

(Guaranteed by Characterization) (continued)

| Spec ID# | Parameter | Description                                        | Min  | Тур | Max  | Units | Details/Conditions                                                              |
|----------|-----------|----------------------------------------------------|------|-----|------|-------|---------------------------------------------------------------------------------|
| SID108B  | A_SAMP_3  | Sample rate with no bypass cap. Internal reference | -    | -   | 100  | ksps  |                                                                                 |
| SID109   | A_SNDR    | Signal-to-noise and distortion ratio (SINAD)       | 65   | -   | -    | dB    | F <sub>IN</sub> = 10 kHz                                                        |
| SID111   | A_INL     | Integral non linearity                             | -1.7 | _   | +2   | LSB   | V <sub>DD</sub> = 1.71 to 5.5,<br>1 Msps, Vref = 1 to<br>5.5.                   |
| SID111A  | A_INL     | Integral non linearity                             | -1.5 | -   | +1.7 | LSB   | V <sub>DDD</sub> = 1.71 to 3.6,<br>1 Msps, Vref = 1.71 to<br>V <sub>DDD</sub> . |
| SID111B  | A_INL     | Integral non linearity                             | -1.5 | -   | +1.7 | LSB   | V <sub>DDD</sub> = 1.71 to 5.5,<br>500 ksps, Vref = 1 to<br>5.5.                |
| SID112   | A_DNL     | Differential non linearity                         | -1   | -   | +2.2 | LSB   | V <sub>DDD</sub> = 1.71 to 5.5, 1<br>Msps, Vref = 1 to 5.5.                     |
| SID112A  | A_DNL     | Differential non linearity                         | –1   | _   | +2   | LSB   | V <sub>DDD</sub> = 1.71 to 3.6, 1<br>Msps, Vref = 1.71 to<br>V <sub>DDD</sub> . |
| SID112B  | A_DNL     | Differential non linearity                         | –1   | _   | +2.2 | LSB   | V <sub>DDD</sub> = 1.71 to 5.5,<br>500 ksps, Vref = 1 to<br>5.5.                |
| SID113   | A_THD     | Total harmonic distortion                          | _    | _   | -65  | dB    | F <sub>IN</sub> = 10 kHz.                                                       |

CSD

### Table 14. CSD Block Specification

| Spec ID# | Parameter  | Description                                                           | Min  | Тур   | Max   | Units | Details/Conditions                                        |
|----------|------------|-----------------------------------------------------------------------|------|-------|-------|-------|-----------------------------------------------------------|
| CSD Spec | ification  | -                                                                     |      | ••    |       | •     | •                                                         |
| SID308   | VCSD       | Voltage range of operation                                            | 1.71 | _     | 5.5 V |       |                                                           |
| SID309   | IDAC1      | DNL for 8-bit resolution                                              | -1   | _     | 1     | LSB   |                                                           |
| SID310   | IDAC1      | INL for 8-bit resolution                                              | -3   | _     | 3     | LSB   |                                                           |
| SID311   | IDAC2      | DNL for 7-bit resolution                                              | -1   | _     | 1     | LSB   |                                                           |
| SID312   | IDAC2      | INL for 7-bit resolution                                              | -3   | _     | 3     | LSB   |                                                           |
| SID313   | SNR        | Ratio of counts of finger to noise.<br>Guaranteed by characterization | 5    | -     | -     | Ratio | Capacitance range of<br>9 to 35 pF, 0.1 pF<br>sensitivity |
| SID314   | IDAC1_CRT1 | Output current of Idac1 (8-bits) in High range                        | -    | 612   | -     | μA    |                                                           |
| SID314A  | IDAC1_CRT2 | Output current of Idac1(8-bits) in Low range                          | -    | 306   | -     | μA    |                                                           |
| SID315   | IDAC2_CRT1 | Output current of Idac2 (7-bits) in High range                        | _    | 304.8 | _     | μA    |                                                           |
| SID315A  | IDAC2_CRT2 | Output current of Idac2 (7-bits) in Low range                         | _    | 152.4 | _     | μA    |                                                           |



### SPI Specifications

### Table 22. Fixed SPI DC Specifications

(Guaranteed by Characterization)

| Spec ID# | Parameter         | Description                              | Min | Тур | Max | Units |
|----------|-------------------|------------------------------------------|-----|-----|-----|-------|
| SID163   | I <sub>SPI1</sub> | Block current consumption at 1 Mbits/sec | -   | _   | 360 | μA    |
| SID164   | I <sub>SPI2</sub> | Block current consumption at 4 Mbits/sec | -   | _   | 560 | μA    |
| SID165   | I <sub>SPI3</sub> | Block current consumption at 8 Mbits/sec | -   | _   | 600 | μA    |

#### Table 23. Fixed SPI AC Specifications

(Guaranteed by Characterization)

| Spec ID# | Parameter | Description                                       | Min | Тур | Max | Units |
|----------|-----------|---------------------------------------------------|-----|-----|-----|-------|
| SID166   | 011       | SPI operating frequency (master; 6X oversampling) | -   | 1   | 8   | MHz   |

### Table 24. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

| Spec ID# | Parameter        | Description                                                                     | Min | Тур | Max | Units |
|----------|------------------|---------------------------------------------------------------------------------|-----|-----|-----|-------|
| SID167   | T <sub>DMO</sub> | MOSI valid after Sclock driving edge                                            | -   | -   | 15  | ns    |
| SID168   | T <sub>DSI</sub> | MISO valid before Sclock capturing edge.<br>Full clock, late MISO Sampling used | 20  | _   | _   | ns    |
| SID169   | Т <sub>НМО</sub> | Previous MOSI data hold time with respect to capturing edge at Slave            | 0   | _   | _   | ns    |

### Table 25. Fixed SPI Slave mode AC Specifications

(Guaranteed by Characterization)

| Spec ID# | Parameter            | Description                                                | Min | Тур | Max                          | Units |
|----------|----------------------|------------------------------------------------------------|-----|-----|------------------------------|-------|
| SID170   | T <sub>DMI</sub>     | MOSI valid before Sclock capturing edge                    | 40  | -   | -                            | ns    |
| SID171   | T <sub>DSO</sub>     | MISO valid after Sclock driving edge                       | -   | -   | 42 + 3 ×<br>T <sub>SCB</sub> | ns    |
| SID171A  | T <sub>DSO_ext</sub> | MISO valid after Sclock driving edge in Ext.<br>Clock mode | -   | -   | 48                           | ns    |
| SID172   | T <sub>HSO</sub>     | Previous MISO data hold time                               | 0   | -   | -                            | ns    |
| SID172A  | T <sub>SSELSCK</sub> | SSEL Valid to first SCK Valid edge                         | 100 | -   | -                            | ns    |



### Memory

### Table 26. Flash DC Specifications

| Spec ID# | Parameter       | Description               | Min  | Тур | Max | Units | Details/Conditions |
|----------|-----------------|---------------------------|------|-----|-----|-------|--------------------|
| SID173   | V <sub>PE</sub> | Erase and program voltage | 1.71 | -   | 5.5 | V     |                    |

### Table 27. Flash AC Specifications

| Spec ID# | Parameter               | Description                                                           | Min   | Тур | Max | Units   | Details/Conditions                  |
|----------|-------------------------|-----------------------------------------------------------------------|-------|-----|-----|---------|-------------------------------------|
| SID174   | T <sub>ROWWRITE</sub>   | Row (block) write time (erase and program)                            | -     | _   | 20  | ms      | Row (block) = 256 bytes             |
| SID175   | T <sub>ROWERASE</sub>   | Row erase time                                                        | -     | -   | 13  | ms      |                                     |
| SID176   | T <sub>ROWPROGRAM</sub> | Row program time after erase                                          | -     | -   | 7   | ms      |                                     |
| SID178   | T <sub>BULKERASE</sub>  | Bulk erase time (128 KB)                                              | -     | -   | 35  | ms      |                                     |
| SID180   | T <sub>DEVPROG</sub>    | Total device program time                                             | -     | _   | 15  | seconds | Guaranteed by charac-<br>terization |
| SID181   | F <sub>END</sub>        | Flash endurance                                                       | 100 K | _   | _   | cycles  | Guaranteed by charac-<br>terization |
| SID182   | F <sub>RET</sub>        | Flash retention. $T_A \le 55 \text{ °C}$ , 100 K P/E cycles           | 20    | -   | -   | years   | Guaranteed by charac-<br>terization |
| SID182A  |                         | Flash retention. $T_A \leq 85~^\circ\text{C},~10~\text{K}$ P/E cycles | 10    | _   | -   | years   | Guaranteed by charac-<br>terization |



### System Resources

Power-on-Reset (POR) with Brown Out

### Table 28. Imprecise Power On Reset (PRES)

| Spec ID# | Parameter             | Description          | Min  | Тур | Max  | Units | Details/Conditions                  |
|----------|-----------------------|----------------------|------|-----|------|-------|-------------------------------------|
| SID185   | V <sub>RISEIPOR</sub> | Rising trip voltage  | 0.80 | _   | 1.45 | V     | Guaranteed by charac-<br>terization |
| SID186   | V <sub>FALLIPOR</sub> | Falling trip voltage | 0.75 | _   | 1.4  | V     | Guaranteed by charac-<br>terization |
| SID187   | V <sub>IPORHYST</sub> | Hysteresis           | 15   | _   | 200  | mV    | Guaranteed by charac-<br>terization |

### Table 29. Precise Power On Reset (POR)

| Spec ID# | Parameter              | Description                                | Min  | Тур | Max | Units | Details/Conditions                  |
|----------|------------------------|--------------------------------------------|------|-----|-----|-------|-------------------------------------|
| SID190   | V <sub>FALLPPOR</sub>  | BOD trip voltage in active and sleep modes | 1.64 | -   | -   | V     | Guaranteed by charac-<br>terization |
| SID192   | V <sub>FALLDPSLP</sub> | BOD trip voltage in Deep Sleep             | 1.4  | -   | _   | V     | Guaranteed by charac-<br>terization |

### Voltage Monitors

#### Table 30. Voltage Monitors DC Specifications

| Spec ID# | Parameter          | Description              | Min  | Тур  | Max  | Units | Details/Conditions                  |
|----------|--------------------|--------------------------|------|------|------|-------|-------------------------------------|
| SID195   | V <sub>LVI1</sub>  | LVI_A/D_SEL[3:0] = 0000b | 1.71 | 1.75 | 1.79 | V     |                                     |
| SID196   | V <sub>LVI2</sub>  | LVI_A/D_SEL[3:0] = 0001b | 1.76 | 1.80 | 1.85 | V     |                                     |
| SID197   | V <sub>LVI3</sub>  | LVI_A/D_SEL[3:0] = 0010b | 1.85 | 1.90 | 1.95 | V     |                                     |
| SID198   | V <sub>LVI4</sub>  | LVI_A/D_SEL[3:0] = 0011b | 1.95 | 2.00 | 2.05 | V     |                                     |
| SID199   | V <sub>LVI5</sub>  | LVI_A/D_SEL[3:0] = 0100b | 2.05 | 2.10 | 2.15 | V     |                                     |
| SID200   | V <sub>LVI6</sub>  | LVI_A/D_SEL[3:0] = 0101b | 2.15 | 2.20 | 2.26 | V     |                                     |
| SID201   | V <sub>LVI7</sub>  | LVI_A/D_SEL[3:0] = 0110b | 2.24 | 2.30 | 2.36 | V     |                                     |
| SID202   | V <sub>LVI8</sub>  | LVI_A/D_SEL[3:0] = 0111b | 2.34 | 2.40 | 2.46 | V     |                                     |
| SID203   | V <sub>LVI9</sub>  | LVI_A/D_SEL[3:0] = 1000b | 2.44 | 2.50 | 2.56 | V     |                                     |
| SID204   | V <sub>LVI10</sub> | LVI_A/D_SEL[3:0] = 1001b | 2.54 | 2.60 | 2.67 | V     |                                     |
| SID205   | V <sub>LVI11</sub> | LVI_A/D_SEL[3:0] = 1010b | 2.63 | 2.70 | 2.77 | V     |                                     |
| SID206   | V <sub>LVI12</sub> | LVI_A/D_SEL[3:0] = 1011b | 2.73 | 2.80 | 2.87 | V     |                                     |
| SID207   | V <sub>LVI13</sub> | LVI_A/D_SEL[3:0] = 1100b | 2.83 | 2.90 | 2.97 | V     |                                     |
| SID208   | V <sub>LVI14</sub> | LVI_A/D_SEL[3:0] = 1101b | 2.93 | 3.00 | 3.08 | V     |                                     |
| SID209   | V <sub>LVI15</sub> | LVI_A/D_SEL[3:0] = 1110b | 3.12 | 3.20 | 3.28 | V     |                                     |
| SID210   | V <sub>LVI16</sub> | LVI_A/D_SEL[3:0] = 1111b | 4.39 | 4.50 | 4.61 | V     |                                     |
| SID211   | LVI_IDD            | Block current            | -    | -    | 100  | μA    | Guaranteed by charac-<br>terization |

### Table 31. Voltage Monitors AC Specifications

| Spec ID# | Parameter            | Description               | Min | Тур | Max | Units | Details/Conditions                  |
|----------|----------------------|---------------------------|-----|-----|-----|-------|-------------------------------------|
| SID212   | T <sub>MONTRIP</sub> | Voltage monitor trip time | -   | -   | 1   |       | Guaranteed by charac-<br>terization |



### SWD Interface

### Table 32. SWD Interface Specifications

| Spec ID# | Parameter    | Description                   | Min    | Тур | Max   | Units | Details/Conditions                  |
|----------|--------------|-------------------------------|--------|-----|-------|-------|-------------------------------------|
| SID213   | F_SWDCLK1    | $3.3~V \le V_{DD} \le 5.5~V$  | _      | -   | 14    | MHz   | SWDCLK ≤ 1/3 CPU<br>clock frequency |
| SID214   | F_SWDCLK2    | $1.71~V \le V_{DD} \le 3.3~V$ | _      | -   | 7     | MHz   | SWDCLK ≤ 1/3 CPU<br>clock frequency |
| SID215   | T_SWDI_SETUP | T = 1/f SWDCLK                | 0.25*T | -   | _     | ns    | Guaranteed by characterization      |
| SID216   | T_SWDI_HOLD  | T = 1/f SWDCLK                | 0.25*T | -   | _     | ns    | Guaranteed by characterization      |
| SID217   | T_SWDO_VALID | T = 1/f SWDCLK                | _      | -   | 0.5*T | ns    | Guaranteed by characterization      |
| SID217A  | T_SWDO_HOLD  | T = 1/f SWDCLK                | 1      | -   | _     | ns    | Guaranteed by characterization      |

Internal Main Oscillator

### Table 33. IMO DC Specifications

(Guaranteed by Design)

| Spec ID# | Parameter         | Description                     | Min | Тур | Max  | Units | Details/Conditions |
|----------|-------------------|---------------------------------|-----|-----|------|-------|--------------------|
| SID218   | I <sub>IMO1</sub> | IMO operating current at 48 MHz | _   | -   | 1000 | μA    |                    |
| SID219   | I <sub>IMO2</sub> | IMO operating current at 24 MHz | _   | -   | 325  | μA    |                    |
| SID220   | I <sub>IMO3</sub> | IMO operating current at 12 MHz | -   | -   | 225  | μA    |                    |
| SID221   | I <sub>IMO4</sub> | IMO operating current at 6 MHz  | _   | -   | 180  | μA    |                    |
| SID222   | I <sub>IMO5</sub> | IMO operating current at 3 MHz  | _   | -   | 150  | μA    |                    |

#### Table 34. IMO AC Specifications

| Spec ID# | Parameter               | Description                          | Min | Тур | Max | Units | Details/Conditions |
|----------|-------------------------|--------------------------------------|-----|-----|-----|-------|--------------------|
| SID223   | F <sub>IMOTOL1</sub>    | Frequency variation from 3 to 48 MHz | -   | -   | ±2  | %     |                    |
| SID226   | T <sub>STARTIMO</sub>   | IMO startup time                     | _   | -   | 12  | μs    |                    |
| SID227   | T <sub>JITRMSIMO1</sub> | RMS Jitter at 3 MHz                  | _   | 156 | -   | ps    |                    |
| SID228   | T <sub>JITRMSIMO2</sub> | RMS Jitter at 24 MHz                 | _   | 145 | -   | ps    |                    |
| SID229   | T <sub>JITRMSIMO3</sub> | RMS Jitter at 48 MHz                 | _   | 139 | _   | ps    |                    |

Internal Low-Speed Oscillator

### Table 35. ILO DC Specifications

(Guaranteed by Design)

| Spec ID# | Parameter         | Description                     | Min | Тур | Max  | Units | Details/Conditions                |
|----------|-------------------|---------------------------------|-----|-----|------|-------|-----------------------------------|
| SID231   | I <sub>ILO1</sub> | ILO operating current at 32 kHz | -   | 0.3 | 1.05 |       | Guaranteed by<br>Characterization |
| SID233   | IILOLEAK          | ILO leakage current             | -   | 2   | 15   |       | Guaranteed by<br>Design           |



#### Table 40. Watch Crystal Oscillator (WCO) Specifications

| Spec ID#                      | Parameter                           | Description                         | Min | Тур    | Max  | Units | Details / Conditions |
|-------------------------------|-------------------------------------|-------------------------------------|-----|--------|------|-------|----------------------|
| WCO Spec                      | ifications                          | <u>.</u>                            |     |        |      |       |                      |
| SID398 FWCO Crystal frequency |                                     |                                     |     | 32.768 | -    | kHz   |                      |
| SID399                        | FTOL                                | Frequency tolerance                 | -   | 50     | 250  | ppm   | With 20-ppm crystal. |
| SID400                        | ESR                                 | Equivalent series resistance        | -   | 50     | -    | kΩ    |                      |
| SID401                        | PD                                  | Drive Level                         |     | -      | 1    | μW    |                      |
| SID402                        | TSTART                              | Startup time                        | -   | -      | 500  | ms    |                      |
| SID403                        | CL                                  | Crystal load capacitance            | 6   | -      | 12.5 | pF    |                      |
| SID404                        | SID404 C0 Crystal shunt capacitance |                                     | -   | 1.35   | -    | pF    |                      |
| SID405                        | IWCO1                               | Operating current (high power mode) | _   | -      | 8    | uA    |                      |

### Table 41. External Crystal Oscillator (ECO) Specifications

| Spec ID# | Parameter | Description             | Min | Тур | Max | Units | Details/Conditions |
|----------|-----------|-------------------------|-----|-----|-----|-------|--------------------|
| SID316   | IECO1     | Block operating current | -   | -   | 1.5 | mA    |                    |
| SID317   | FECO      | Crystal frequency range | 4   | -   | 33  | MHz   |                    |

### Table 42. UDB AC Specifications

(Guaranteed by Characterization)

| Spec ID#   | Parameter                 | Description                                           | Min | Тур | Max | Units | Details/Conditions |
|------------|---------------------------|-------------------------------------------------------|-----|-----|-----|-------|--------------------|
| Datapath p | erformance                |                                                       |     |     |     |       |                    |
| SID249     | F <sub>MAX-TIMER</sub>    | Max frequency of 16-bit timer in a UDB pair           | -   | -   | 48  | MHz   |                    |
| SID250     |                           |                                                       |     | -   | 48  | MHz   |                    |
| SID251     | F <sub>MAX_CRC</sub>      | Max frequency of 16-bit CRC/PRS in a UDB pair         | -   | -   | 48  | MHz   |                    |
| PLD Perfor | mance in UDB              |                                                       |     |     |     |       |                    |
| SID252     | F <sub>MAX_PLD</sub>      | Max frequency of 2-pass PLD<br>function in a UDB pair | -   | -   | 48  | MHz   |                    |
| Clock to O | utput Performance         |                                                       |     |     |     |       |                    |
| SID253     | T <sub>CLK_OUT_UDB1</sub> | Prop. delay for clock in to data out at 25 °C, Typ.   | -   | 15  | -   | ns    |                    |
| SID254     | T <sub>CLK_OUT_UDB2</sub> | Prop. delay for clock in to data out,<br>Worst case.  | _   | 25  | _   | ns    |                    |



#### Table 43. Block Specs

| Spec ID#      | Parameter              | Description                                           | Min | Тур | Max | Units   | <b>Details/Conditions</b>                                            |
|---------------|------------------------|-------------------------------------------------------|-----|-----|-----|---------|----------------------------------------------------------------------|
| SID256        | T <sub>WS48</sub>      | Number of wait states at 48 MHz                       | 2   | -   | -   |         | CPU execution from<br>Flash. Guaranteed<br>by characterization       |
| SID257        | T <sub>WS24</sub>      | Number of wait states at 24 MHz                       | 1   | -   | -   |         | CPU execution from<br>Flash. Guaranteed<br>by characterization       |
| SID260        | V <sub>REFSAR</sub>    | Trimmed internal reference to SAR                     | -1  |     | +1  | %       | Percentage of Vbg<br>(1.024 V).<br>Guaranteed by<br>characterization |
| SID261        | F <sub>SARINTREF</sub> | SAR operating speed without external reference bypass | -   | 500 | _   | ksps    | 12-bit resolution.<br>Guaranteed by<br>characterization              |
| SID262        | T <sub>CLKSWITCH</sub> | Clock switching from clk1 to clk2 in<br>clk1 periods  | 3   | -   | 4   | Periods | Guaranteed by design                                                 |
| * Tws48 and T | Tws24 are guaranteed   | l by Design                                           |     |     |     |         |                                                                      |

#### Table 44. UDB Port Adaptor Specifications

(Based on LPC Component Specs; all specs except TLCLKDO are guaranteed by design -10-pF load, 3-V V<sub>DDIO</sub> and V<sub>DDD</sub>)

| Spec ID# | Parameter             | Description                           | Min | Тур | Max | Units | <b>Details/Conditions</b> |
|----------|-----------------------|---------------------------------------|-----|-----|-----|-------|---------------------------|
| SID263   | T <sub>LCLKDO</sub>   | LCLK to output delay                  | _   | -   | 18  | ns    |                           |
| SID264   | T <sub>DINLCLK</sub>  | Input setup time to LCLCK rising edge | _   | -   | 7   | ns    |                           |
| SID265   | TDINLCLKHLD           | Input hold time from LCLK rising edge | 0   | -   | _   | ns    |                           |
| SID266   | T <sub>LCLKHIZ</sub>  | LCLK to output tristated              | -   | -   | 28  | ns    |                           |
| SID267   | T <sub>FLCLK</sub>    | LCLK frequency                        | -   | -   | 33  | MHz   |                           |
| SID268   | T <sub>LCLKDUTY</sub> | LCLK duty cycle (percentage high)     | 40  | -   | 60  | %     |                           |

#### Table 45. USB Device Block Specifications (USB only)

| Spec ID# | Parameter    | Description                                                 | Min  | Тур | Max | Units | <b>Details / Conditions</b>                      |
|----------|--------------|-------------------------------------------------------------|------|-----|-----|-------|--------------------------------------------------|
| SID321   | Vusb_5       | Device supply for USB operation                             | 4.5  | -   | 5.5 | V     | USB Configured,<br>USB Reg. enabled              |
| SID322   | Vusb_3.3     | Device supply for USB operation                             | 3.15 | -   | 3.6 | V     | USB Configured,<br>USB Reg. bypassed             |
| SID323   | Vusb_3.3     | Device supply for USB operation (Functional operation only) | 2.85 | -   | 3.6 | V     | USB Configured,<br>USB Reg. bypassed             |
| SID324   | lusb_config  | Device supply current in Active mode,<br>IMO = 24 MHz       | -    | 10  | -   | mA    | V <sub>DDD</sub> = 5 V                           |
| SID325   | lusb_config  | Device supply current in Active mode,<br>IMO = 24 MHz       | -    | 8   | -   | mA    | V <sub>DDD</sub> = 3.3 V                         |
| SID326   | Isub_suspend | Device supply current in Sleep mode                         | -    | 0.5 | -   | mA    | V <sub>DDD</sub> = 5 V, PICU<br>wakeup           |
| SID327   | Isub_suspend | Device supply current in Sleep mode                         | -    | 0.3 | -   | mA    | V <sub>DDD</sub> = 5 V, Device<br>disconnected   |
| SID328   | Isub_suspend | Device supply current in Sleep mode                         | -    | 0.5 | -   | mA    | V <sub>DDD</sub> = 3.3 V, PICU<br>wakeup         |
| SID329   | Isub_suspend | Device supply current in Sleep mode                         | _    | 0.3 | _   | mA    | V <sub>DDD</sub> = 3.3 V, Device<br>disconnected |

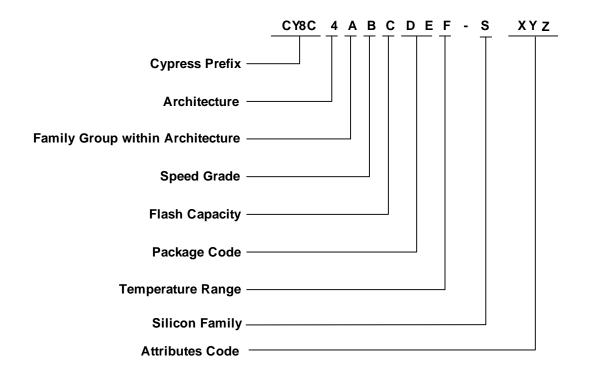


## **Ordering Information**

The PSoC 4200-L family part numbers and features are listed in the following table.

Table 48. PSoC 4200-L Ordering Information

|          |                  |                     |            |           |     |               |     | F                | eatures        |                |              |            |                |     |      |         | Pack    | kage   |           |
|----------|------------------|---------------------|------------|-----------|-----|---------------|-----|------------------|----------------|----------------|--------------|------------|----------------|-----|------|---------|---------|--------|-----------|
| Category | NdW              | Max CPU Speed (MHz) | Flash (KB) | SRAM (KB) | UDB | Op-amp (CTBm) | CSD | Direct LCD Drive | 12-bit SAR ADC | LP Comparators | TCPWM Blocks | SCB Blocks | USB Full Speed | CAN | GPIO | 48-TQFP | 64-TQFP | 68-QFN | 124-VFBGA |
|          | CY8C4246AZI-L423 | 48                  | 64         | 8         | 8   | 2             | 1   | >                | 1000 ksps      | 2              | 8            | 3          | -              | ١   | 38   | >       | Ι       | -      | -         |
|          | CY8C4246AZI-L433 | 48                  | 64         | 8         | 8   | 2             | Ι   | -                | 1000 ksps      | 2              | 8            | 3          | <              | -   | 38   | 1       | Ι       | Ι      | -         |
| 4246     | CY8C4246AZI-L435 | 48                  | 64         | 8         | 8   | 2             | -   | -                | 1000 ksps      | 2              | 8            | 4          | <              | -   | 53   | -       | <       | -      | -         |
|          | CY8C4246AZI-L445 | 48                  | 64         | 8         | 8   | 2             | 2   | ~                | 1000 ksps      | 2              | 8            | 4          | <              | -   | 53   | -       | <       | -      | -         |
|          | CY8C4246LTI-L445 | 48                  | 64         | 8         | 8   | 2             | 2   | ~                | 1000 ksps      | 2              | 8            | 4          | ~              | -   | 57   | -       | -       | ~      | -         |
|          | CY8C4247AZI-L423 | 48                  | 128        | 16        | 8   | 2             | 1   | ~                | 1000 ksps      | 2              | 8            | 3          | -              | -   | 38   | ~       | -       | -      | -         |
|          | CY8C4247AZI-L433 | 48                  | 128        | 16        | 8   | 2             | -   | _                | 1000 ksps      | 2              | 8            | 3          | ~              | _   | 38   | ~       | -       | -      | -         |
|          | CY8C4247AZI-L445 | 48                  | 128        | 16        | 8   | 2             | 2   | ~                | 1000 ksps      | 2              | 8            | 4          | ~              |     | 53   | Ι       | ~       | -      | -         |
|          | CY8C4247LTI-L445 | 48                  | 128        | 16        | 8   | 2             | 2   | >                | 1000 ksps      | 2              | 8            | 4          | ~              | -   | 57   | Ι       | -       | ~      | -         |
| 4247     | CY8C4247AZI-L475 | 48                  | 128        | 16        | 8   | 4             | 2   | -                | 1000 ksps      | 2              | 8            | 4          | ~              | -   | 53   | Ι       | ~       | -      | -         |
| 4247     | CY8C4247LTI-L475 | 48                  | 128        | 16        | 8   | 4             | 2   |                  | 1000 ksps      | 2              | 8            | 4          | ~              | -   | 57   | Ι       | -       | ~      | -         |
|          | CY8C4247BZI-L479 | 48                  | 128        | 16        | 8   | 4             | 2   | -                | 1000 ksps      | 2              | 8            | 4          | ~              | -   | 98   | -       | -       | -      | ~         |
|          | CY8C4247AZI-L485 | 48                  | 128        | 16        | 8   | 4             | 2   | >                | 1000 ksps      | 2              | 8            | 4          | ~              | >   | 53   | Ι       | ~       | -      | -         |
|          | CY8C4247LTI-L485 | 48                  | 128        | 16        | 8   | 4             | 2   | >                | 1000 ksps      | 2              | 8            | 4          | ~              | >   | 57   | Ι       | -       | ~      | -         |
|          | CY8C4247BZI-L489 | 48                  | 128        | 16        | 8   | 4             | 2   | >                | 1000 ksps      | 2              | 8            | 4          | ~              | >   | 98   | -       | -       | -      | ~         |
|          | CY8C4248BZI-L469 | 48                  | 256        | 32        | 8   | 4             | Ι   | -                | 1000 ksps      | 2              | 8            | 4          | -              | -   | 96   | Ι       | -       | -      | ~         |
|          | CY8C4248AZI-L475 | 48                  | 256        | 32        | 8   | 4             | 2   | -                | 1000 ksps      | 2              | 8            | 4          | ~              | -   | 53   | -       | ~       | -      | -         |
|          | CY8C4248LTI-L475 | 48                  | 256        | 32        | 8   | 4             | 2   | _                | 1000 ksps      | 2              | 8            | 4          | ~              | _   | 57   | _       | -       | ~      | -         |
| 4248     | CY8C4248BZI-L479 | 48                  | 256        | 32        | 8   | 4             | 2   | _                | 1000 ksps      | 2              | 8            | 4          | ~              | _   | 98   | -       | -       | -      | ~         |
|          | CY8C4248AZI-L485 | 48                  | 256        | 32        | 8   | 4             | 2   | ~                | 1000 ksps      | 2              | 8            | 4          | ~              | ~   | 53   | _       | ~       | -      | -         |
|          | CY8C4248LTI-L485 | 48                  | 256        | 32        | 8   | 4             | 2   | ~                | 1000 ksps      | 2              | 8            | 4          | ~              | ~   | 57   | _       | -       | ~      | -         |
|          | CY8C4248BZI-L489 | 48                  | 256        | 32        | 8   | 4             | 2   | >                | 1000 ksps      | 2              | 8            | 4          | ~              | >   | 98   | Ι       | -       | -      | ~         |




| The nomenclature used in | Toble 10 is been  | l an tha fallowing nort r | umboring convertions |
|--------------------------|-------------------|---------------------------|----------------------|
| The nomenciature used in | Table 40 IS Dased | i on me ioliowino pari r  | iumbenna conveniion. |
|                          |                   |                           |                      |

| Field | Description       | Values  | Meaning                                    |
|-------|-------------------|---------|--------------------------------------------|
| CY8C  | Cypress Prefix    |         |                                            |
| 4     | Architecture      | 4       | PSoC 4                                     |
| Α     | Family            | 2       | 4200 Family                                |
| В     | CPU Speed         | 4       | 48 MHz                                     |
| С     | Flash Capacity    | 6       | 64 KB                                      |
|       |                   | 7       | 128 KB                                     |
|       |                   | 8       | 256 KB                                     |
| DE    | Package Code      | AX, AZ  | TQFP                                       |
|       |                   | LT      | QFN                                        |
|       |                   | BU      | BGA                                        |
|       |                   | FD      | CSP                                        |
| F     | Temperature Range | I       | Industrial                                 |
| S     | Silicon Family    | N/A     | PSoC 4A                                    |
|       |                   | L       | PSoC 4A-L                                  |
|       |                   | BL      | PSoC 4A-BLE                                |
| XYZ   | Attributes Code   | 000-999 | Code of feature set in the specific family |

### Part Numbering Conventions

The part number fields are defined as follows.





## Packaging

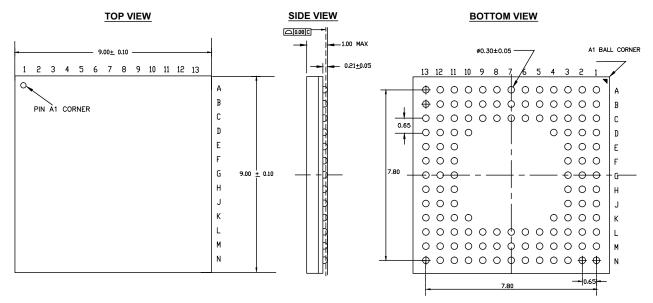
The description of the PSoC4200-L package dimensions follows.

| SPEC ID# | Package        | Description                                                      | Package DWG # |
|----------|----------------|------------------------------------------------------------------|---------------|
| PKG_1    | 124-ball VFBGA | 124-ball, 9 mm x 9 mm x 1.0 mm<br>height with 0.65 mm ball pitch | 001-97718     |
| PKG_2    | 64-pin TQFP    | 64-pin TQFP, 10 mm x10 mm x<br>1,4 mm height with 0.5 mm pitch   | 51-85051      |
| PKG_3    | 68-pin QFN     | 68-pin QFN, 8 mm x 8 mm x<br>1.0 mm height with 0.4 mm pitch     | 001-09618     |
| PKG_4    | 48-pin TQFP    | 48-pin TQFP, 7 mm x 7 mm x<br>1.4 mm height with 0.5 mm pitch    | 51-85135      |

### Table 49. Package Characteristics

| Parameter       | Description                            | Conditions | Min | Тур   | Max | Units   |
|-----------------|----------------------------------------|------------|-----|-------|-----|---------|
| T <sub>A</sub>  | Operating ambient temperature          |            | -40 | 25.00 | 85  | °C      |
| TJ              | Operating junction temperature         |            | -40 | -     | 100 | °C      |
| T <sub>JA</sub> | Package $\theta_{JA}$ (124-ball VFBGA) |            | -   | 35    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (64-pin TQFP)    |            | -   | 54    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (68-pin QFN)     |            | -   | 17    | -   | °C/Watt |
| T <sub>JA</sub> | Package $\theta_{JA}$ (48-pin TQFP)    |            | _   | 67    | _   | °C/Watt |

#### Table 50. Solder Reflow Peak Temperature


| Package      | Maximum Peak Temperature | Maximum Time at Peak Temperature |
|--------------|--------------------------|----------------------------------|
| All packages | 260 °C                   | 30 seconds                       |

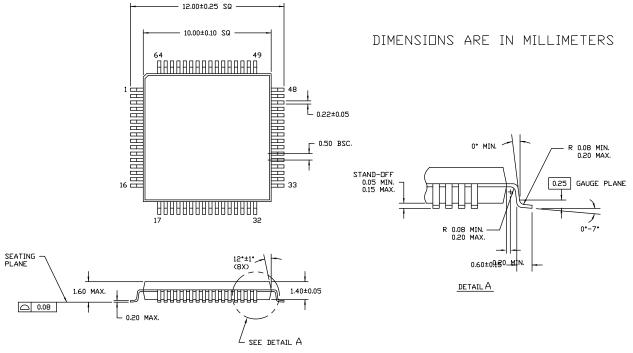
### Table 51. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

| Package      | MSL   |
|--------------|-------|
| All packages | MSL 3 |



### Figure 8. 124-Ball VFBGA Package Outline




NOTES:

1. REFERENCE JEDEC # MO-280

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-97718 \*\*





51-85051 \*D



### Table 52. Acronyms Used in this Document (continued)

| Acronym           | Description                                                  |  |
|-------------------|--------------------------------------------------------------|--|
| PC                | program counter                                              |  |
| PCB               | printed circuit board                                        |  |
| PGA               | programmable gain amplifier                                  |  |
| PHUB              | peripheral hub                                               |  |
| PHY               | physical layer                                               |  |
| PICU              | port interrupt control unit                                  |  |
| PLA               | programmable logic array                                     |  |
| PLD               | programmable logic device, see also PAL                      |  |
| PLL               | phase-locked loop                                            |  |
| PMDD              | package material declaration data sheet                      |  |
| POR               | power-on reset                                               |  |
| PRES              | precise power-on reset                                       |  |
| PRS               | pseudo random sequence                                       |  |
| PS                | port read data register                                      |  |
| PSoC <sup>®</sup> | Programmable System-on-Chip™                                 |  |
| PSRR              | power supply rejection ratio                                 |  |
| PWM               | pulse-width modulator                                        |  |
| RAM               | random-access memory                                         |  |
| RISC              | reduced-instruction-set computing                            |  |
| RMS               | root-mean-square                                             |  |
| RTC               | real-time clock                                              |  |
| RTL               | register transfer language                                   |  |
| RTR               | remote transmission request                                  |  |
| RX                | receive                                                      |  |
| SAR               | successive approximation register                            |  |
| SC/CT             | switched capacitor/continuous time                           |  |
| SCL               | I <sup>2</sup> C serial clock                                |  |
| SDA               | I <sup>2</sup> C serial data                                 |  |
| S/H               | sample and hold                                              |  |
| SINAD             | signal to noise and distortion ratio                         |  |
| SIO               | special input/output, GPIO with advanced features. See GPIO. |  |
| SOC               | start of conversion                                          |  |
| SOF               | start of frame                                               |  |
| SPI               | Serial Peripheral Interface, a communications protocol       |  |
| SR                | slew rate                                                    |  |
| SRAM              | static random access memory                                  |  |
| SRES              | software reset                                               |  |
| SWD               | serial wire debug, a test protocol                           |  |

#### Table 52. Acronyms Used in this Document (continued)

| Acronym | Description                                                            |
|---------|------------------------------------------------------------------------|
| SWV     | single-wire viewer                                                     |
| TD      | transaction descriptor, see also DMA                                   |
| THD     | total harmonic distortion                                              |
| TIA     | transimpedance amplifier                                               |
| TRM     | technical reference manual                                             |
| TTL     | transistor-transistor logic                                            |
| TX      | transmit                                                               |
| UART    | Universal Asynchronous Transmitter Receiver, a communications protocol |
| UDB     | universal digital block                                                |
| USB     | Universal Serial Bus                                                   |
| USBIO   | USB input/output, PSoC pins used to connect to a USB port              |
| VDAC    | voltage DAC, see also DAC, IDAC                                        |
| WDT     | watchdog timer                                                         |
| WOL     | write once latch, see also NVL                                         |
| WRES    | watchdog timer reset                                                   |
| XRES    | external reset I/O pin                                                 |
| XTAL    | crystal                                                                |