

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, LVD, POR, PWM, SmartSense, WDT
Number of I/O	57
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4247lti-l475

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in the PSoC 4200-L is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and execute a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can wake the processor up from the Deep Sleep mode allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4200-L has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4200-L has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 2 wait-state (WS) access time at 48 MHz and with 1-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SRAM

SRAM memory is retained during Hibernate.

SROM

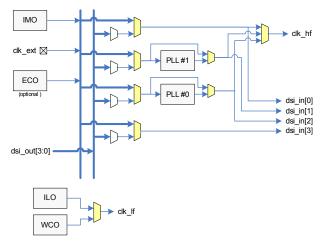
A supervisory ROM that contains boot and configuration routines is provided.

DMA

A DMA engine is provided that can do 32-bit transfers and has chainable ping-pong descriptors.

System Resources

Power System


The power system is described in detail in the section Power on page 15. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low voltage detect (LVD)). The PSoC 4200-L operates with a single external supply over the range of 1.71 to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4200-L provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4200-L clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no meta-stable conditions occur.

The clock system for the PSoC 4200-L consists of a crystal oscillator (4 to 33 MHz), a watch crystal oscillator (32 kHz), a phase-locked loop (PLL), the IMO and the ILO internal oscillators, and provision for an external clock.

The clk_hf signal can be divided down to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 16 clock dividers for the PSoC 4200-L, each with 16-bit divide capability; this allows 12 to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

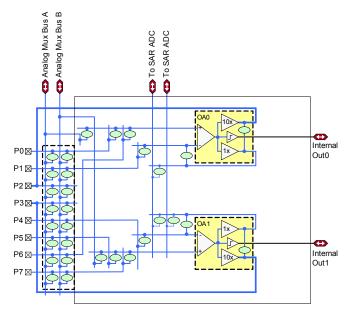
The IMO is the primary source of internal clocking in the PSoC 4200-L. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of 1 MHz. IMO tolerance with Cypress-provided calibration settings is ±2%.

ILO Clock Source

The ILO is a very low power oscillator, nominally 32 kHz, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Crystal Oscillators and PLL

The PSoC 4200-L clock subsystem also implements two oscillators: high-frequency (4 to 33 MHz) and low-frequency (32-kHz watch crystal) that can be used for precision timing applications. The PLL can generate a 48-MHz output from the high-frequency oscillator.


Analog Multiplex Bus

The PSoC4200-L has two concentric analog buses (Analog Mux Bus A and Analog Mux Bus B) that circumnavigate the periphery of the chip. These buses can transport analog signals from any pin to various analog blocks (including the opamps) and to the CapSense blocks allowing, for instance, the ADC to monitor any pin on the chip. These buses are independent and can also be split into three independent sections. This allows one section to be used for CapSense purposes, one for general analog signal processing, and the third for general-purpose digital peripherals and GPIO.

Four Opamps (CTBm Blocks)

The PSoC 4200-L has four opamps with Comparator modes, which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering. The opamps can operate in the Deep Sleep mode at very low power levels. The following diagram shows one of two identical opamp pairs of the opamp subsystem.

Figure 5. Identical Opamp Pairs in Opamp Subsystem

The ovals in Figure 5 represent analog switches, which may be controlled via user firmware, the SAR sequencer, or user-defined programmable logic. The opamps (OA0 and OA1) are configurable via these switches to perform all standard opamp functions with appropriate feedback components.

The opamps (OA0 and OA1) are programmable and reconfigurable to provide standard opamp functionality via switchable feedback components, unity gain functionality for driving pins directly, or for internal use (such as buffering SAR ADC inputs as indicated in the diagram), or as true comparators.

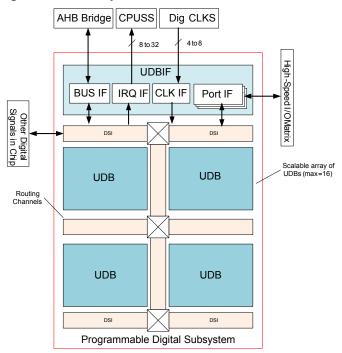
The opamp inputs provide highly flexible connectivity and can connect directly to dedicated pins or, via the analog mux buses,

The opamps operate in Deep Sleep mode at very low currents allowing analog circuits to remain operational during Deep Sleep.

Temperature Sensor

The PSoC 4200-L has one on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress-supplied software that includes calibration and linearization.

Low-power Comparators

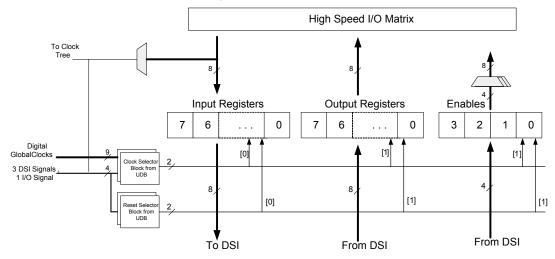

The PSoC 4200-L has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid meta-stability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4200-L has eight UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.

Figure 6. UDB Array



UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs. The port interface is shown in Figure 7.

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 7. Port Interface

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals, which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention. The PSoC 4200-L has eight TCPWM blocks.

Serial Communication Blocks (SCB)

The PSoC 4200-L has four SCBs, which can each implement an I^2 C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EzI2C that creates a mailbox address range in the memory of the PSoC 4200-L and effectively reduces I²C communication to reading from and writing to an array in memory. In

addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

USB Device

A Full-speed USB 2.0 device interface is provided. It has a Control endpoint and eight other endpoints. The interface has a USB transceiver and can be operated from the IMO obviating the need for a crystal oscillator.

CAN Blocks

There are two independent CAN 2.0B blocks, which are certified CAN conformant.

GPIO

The PSoC 4200-L has 96 GPIOs. The GPIO block implements the following:

- Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up and pull-down, open drain and open source, input only, and disabled
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output disables
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (13 for PSoC 4200-L).

There are 14 GPIO pins that are overvoltage tolerant (V_{IN} can exceed V_{DD}). The overvoltage cells will not sink more than 10 μ A when their inputs exceed V_{DDIO} in compliance with I²C specifications. Meeting the I²C minimum fall time requirement for FM and FM+ may require the slower slew rate setting depending on bus loading (also applies to all GPIO and SIO pins).

SIO

The Special I/O (SIO) pins have the following features in addition to the GPIO features:

- Overvoltage protection and hot swap capability
- Programmable switching thresholds
- Programmable output pull-up voltage capability

They allow interfacing to buses, such as I²C with full I²C compatibility and interfacing to devices operating at different voltage levels. There are two SIO pins on the PSoC4200-L.

Special Function Peripherals

LCD Segment Drive

The PSoC 4200-L has an LCD controller, which can drive up to eight commons and up to 56 segments. Any pin can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4200-L through two CapSense Sigma-Delta (CSD) blocks that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

Each CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available). The two CapSense blocks can be used independently.

Pinouts

The following is the pin list for the PSoC 4200-L.

	124-BGA		68-QFN		64-TQFP	4	8-TQFP	48-	TQFP-USB
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
H13	P0.0	42	P0.0	39	P0.0	28	P0.0	28	P0.0
H12	P0.1	43	P0.1	40	P0.1	29	P0.1	29	P0.1
G13	P0.2	44	P0.2	41	P0.2	30	P0.2	30	P0.2
G12	P0.3	45	P0.3	42	P0.3	31	P0.3	31	P0.3
K10	VSSD								
G11	P0.4	46	P0.4	43	P0.4	32	P0.4	32	P0.4
F13	P0.5	47	P0.5	44	P0.5	33	P0.5	33	P0.5
F12	P0.6	48	P0.6	45	P0.6	34	P0.6	34	P0.6
F11	P0.7	49	P0.7	46	P0.7	35	P0.7	35	P0.7
E13	P8.0								
E12	P8.1								
E11	P8.2								
D13	P8.3								
D12	P8.4								
C13	P8.5								
C12	P8.6								
B12	P8.7								
C11	XRES	50	XRES	47	XRES	36	XRES	36	XRES
A12	VCCD	51	VCCD	48	VCCD	37	VCCD	37	VCCD
D10	VSSD	52	VSSD	49	VSSD	38	VSSD	38	VSSD
B13	VDDD	53	VDDD	50	VDDD	39	VDDD	39	VDDD
A13	VDDD	53	VDDD	50	VDDD	39	VDDD	39	VDDD
A11	P9.0								
B11	P9.1								
A10	P9.2								
B10	P9.3								
C10	P9.4								
A9	P9.5								
B9	P9.6								
C9	P9.7								
						40	VDDA	40	VDDA
C8	P5.0	54	P5.0	51	P5.0				
B8	P5.1	55	P5.1	52	P5.1				
A8	P5.2	56	P5.2	53	P5.2				
A7	P5.3	57	P5.3	54	P5.3				
B7	P5.4	58	P5.4						
C7	P5.5	59	P5.5	55	P5.5				
A6	P5.6								
B6	P5.7								
A2	VDDA	60	VDDA	56	VDDA	40	VDDA	40	VDDA
B2	VDDA	60	VDDA	56	VDDA	40	VDDA	40	VDDA

Port/Pin	Analog	PRGIO & USB	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P0.0	lpcomp.in_p[0]				can[1].can_rx:0	usb.vbus_valid	scb[0].spi_select1:3
P0.1	lpcomp.in_n[0]				can[1].can_tx:0		scb[0].spi_select2:3
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:3
P0.3	lpcomp.in_n[1]						
P0.4	wco_in			scb[1].uart_rx:0		scb[1].i2c_scl:0	scb[1].spi_mosi:0
P0.5	wco_out			scb[1].uart_tx:0		scb[1].i2c_sda:0	scb[1].spi_miso:0
P0.6			srss.ext_clk:0	scb[1].uart_cts:0			scb[1].spi_clk:0
P0.7				scb[1].uart_rts:0	can[1].can_tx_enb_ n:0	srss.wakeup	scb[1].spi_select0:0
P8.0				scb[3].uart_rx:0		scb[3].i2c_scl:0	scb[3].spi_mosi:0
P8.1				scb[3].uart_tx:0		scb[3].i2c_sda:0	scb[3].spi_miso:0
P8.2				scb[3].uart_cts:0		lpcomp.comp[0]:0	scb[3].spi_clk:0
P8.3				scb[3].uart_rts:0		lpcomp.comp[1]:0	scb[3].spi_select0:0
P8.4							scb[3].spi_select1:0
P8.5							scb[3].spi_select2:0
P8.6							scb[3].spi_select3:0
P8.7							
P9.0			tcpwm.line[0]:2	scb[0].uart_rx:0		scb[0].i2c_scl:0	scb[0].spi_mosi:0
P9.1			tcpwm.line_compl[0]:2	scb[0].uart_tx:0		scb[0].i2c_sda:0	scb[0].spi_miso:0
P9.2			tcpwm.line[1]:2	scb[0].uart_cts:0			scb[0].spi_clk:0
P9.3			tcpwm.line_compl[1]:2	scb[0].uart_rts:0			scb[0].spi_select0:0
P9.4			tcpwm.line[2]:2				scb[0].spi_select1:0
P9.5			tcpwm.line_compl[2]:2				scb[0].spi_select2:0
P9.6			tcpwm.line[3]:2			scb[3].i2c_scl:3	scb[0].spi_select3:0
P9.7			tcpwm.line_compl[3]:2			scb[3].i2c_sda:3	
P5.0	ctb1_pads[0] csd[1].c_mod		tcpwm.line[4]:2	scb[2].uart_rx:0		scb[2].i2c_scl:0	scb[2].spi_mosi:0
P5.1	ctb1_pads[1] csd[1].c_sh_tank		tcpwm.line_compl[4]:2	scb[2].uart_tx:0		scb[2].i2c_sda:0	scb[2].spi_miso:0
P5.2	ctb1_pads[2] ctb1_oa0_out_10x		tcpwm.line[5]:2	scb[2].uart_cts:0		lpcomp.comp[0]:1	scb[2].spi_clk:0
P5.3	ctb1_pads[3] ctb1_oa1_out_10x		tcpwm.line_compl[5]:2	scb[2].uart_rts:0		lpcomp.comp[1]:1	scb[2].spi_select0:0
P5.4	ctb1_pads[4]		tcpwm.line[6]:2				scb[2].spi_select1:0
P5.5	ctb1_pads[5]		tcpwm.line_compl[6]:2				scb[2].spi_select2:0
P5.6	ctb1_pads[6]		tcpwm.line[7]:2				scb[2].spi_select3:0
P5.7	ctb1_pads[7]		tcpwm.line_compl[7]:2				
P1.0	ctb0_pads[0]		tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:1	scb[0].spi_mosi:1
P1.1	ctb0_pads[1]		tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:1	scb[0].spi_miso:1
P1.2	ctb0_pads[2] ctb0_oa0_out_10x		tcpwm.line[3]:1	scb[0].uart_cts:1			scb[0].spi_clk:1
P1.3	ctb0_pads[3] ctb0_oa1_out_10x		tcpwm.line_compl[3]:1	scb[0].uart_rts:1			scb[0].spi_select0:1
P1.4	ctb0_pads[4]		tcpwm.line[6]:1				scb[0].spi_select1:1

Each of the pins shown in the previous table can have multiple programmable functions as shown in the following table.

Port/Pin	Analog	PRGIO & USB	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P1.5	ctb0_pads[5]		tcpwm.line_compl[6]:1				scb[0].spi_select2:1
P1.6	ctb0_pads[6]		tcpwm.line[7]:1				scb[0].spi_select3:1
P1.7	ctb0_pads[7], sar_ext_vref		tcpwm.line_compl[7]:1				
P2.0	sarmux_pads[0]		tcpwm.line[4]:1	scb[1].uart_rx:1		scb[1].i2c_scl:1	scb[1].spi_mosi:1
P2.1	sarmux_pads[1]		tcpwm.line_compl[4]:1	scb[1].uart_tx:1		scb[1].i2c_sda:1	scb[1].spi_miso:1
P2.2	sarmux_pads[2]		tcpwm.line[5]:1	scb[1].uart_cts:1			scb[1].spi_clk:1
P2.3	sarmux_pads[3]		tcpwm.line_compl[5]:1	scb[1].uart_rts:1			scb[1].spi_select0:1
P2.4	sarmux_pads[4]		tcpwm.line[0]:1				scb[1].spi_select1:0
P2.5	sarmux_pads[5]		tcpwm.line_compl[0]:1				scb[1].spi_select2:0
P2.6	sarmux_pads[6]		tcpwm.line[1]:1				scb[1].spi_select3:0
P2.7	sarmux_pads[7]		tcpwm.line_compl[1]:1				
P10.0				scb[2].uart_rx:1		scb[2].i2c_scl:1	scb[2].spi_mosi:1
P10.1				scb[2].uart_tx:1		scb[2].i2c_sda:1	scb[2].spi_miso:1
P10.2				scb[2].uart_cts:1			scb[2].spi_clk:1
P10.3				scb[2].uart_rts:1			scb[2].spi_select0:1
P10.4							scb[2].spi_select1:1
P10.5							scb[2].spi_select2:1
P10.6							scb[2].spi_select3:1
P10.7							
P6.0			tcpwm.line[4]:0	scb[3].uart_rx:1	can[0].can_tx_enb_ n:0	scb[3].i2c_scl:1	scb[3].spi_mosi:1
P6.1			tcpwm.line_compl[4]:0	scb[3].uart_tx:1	can[0].can_rx:0	scb[3].i2c_sda:1	scb[3].spi_miso:1
P6.2			tcpwm.line[5]:0	scb[3].uart_cts:1	can[0].can_tx:0	scb[2].i2c_scl:3	scb[3].spi_clk:1
P6.3			tcpwm.line_compl[5]:0	scb[3].uart_rts:1		scb[2].i2c_sda:3	scb[3].spi_select0:1
P6.4			tcpwm.line[6]:0			scb[0].i2c_scl:3	scb[3].spi_select1:1
P12.0			tcpwm.line[7]:0			scb[1].i2c_scl:3	scb[3].spi_select3:1
P12.1			tcpwm.line_compl[7]:0			scb[1].i2c_sda:3	
P6.5			tcpwm.line_compl[6]:0			scb[0].i2c_sda:3	scb[3].spi_select2:1
P3.0			tcpwm.line[0]:0	scb[1].uart_rx:2		scb[1].i2c_scl:2	scb[1].spi_mosi:2
P3.1			tcpwm.line_compl[0]:0	scb[1].uart_tx:2		scb[1].i2c_sda:2	scb[1].spi_miso:2
P3.2			tcpwm.line[1]:0	scb[1].uart_cts:2		cpuss.swd_data:0	scb[1].spi_clk:2
P3.3			tcpwm.line_compl[1]:0	scb[1].uart_rts:2		cpuss.swd_clk:0	scb[1].spi_select0:2
P3.4			tcpwm.line[2]:0				scb[1].spi_select1:1
P3.5			tcpwm.line_compl[2]:0				scb[1].spi_select2:1
P3.6			tcpwm.line[3]:0				scb[1].spi_select3:1
P3.7			tcpwm.line_compl[3]:0				
P11.0		prgio[0].io[0]	tcpwm.line[4]:3	scb[2].uart_rx:2		scb[2].i2c_scl:2	scb[2].spi_mosi:2
P11.1		prgio[0].io[1]	tcpwm.line_compl[4]:3	scb[2].uart_tx:2		scb[2].i2c_sda:2	scb[2].spi_miso:2
P11.2		prgio[0].io[2]	tcpwm.line[5]:3	scb[2].uart_cts:2		cpuss.swd_data:1	scb[2].spi_clk:2
P11.3		prgio[0].io[3]	tcpwm.line_compl[5]:3	scb[2].uart_rts:2		cpuss.swd_clk:1	scb[2].spi_select0:2
P11.4		prgio[0].io[4]	tcpwm.line[6]:3				scb[2].spi_select1:2
P11.5		prgio[0].io[5]	tcpwm.line_compl[6]:3				scb[2].spi_select2:2
P11.6		prgio[0].io[6]	tcpwm.line[7]:3				scb[2].spi_select3:2
P11.7		prgio[0].io[7]	tcpwm.line_compl[7]:3				
P4.0				scb[0].uart_rx:2	can[0].can_rx:1	scb[0].i2c_scl:2	scb[0].spi_mosi:2
P4.1				scb[0].uart_tx:2	can[0].can_tx:1	scb[0].i2c_sda:2	scb[0].spi_miso:2

Development Support

The PSoC 4200-L family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200-L family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200-L family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID1	V _{DD_ABS}	Analog or digital supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	-	6	V	Absolute maximum
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SSD}	-0.5	-	1.95	V	Absolute maximum
SID3	V _{GPIO_ABS}	GPIO voltage; V _{DDD} or V _{DDA}	-0.5	-	V _{DD} +0.5	V	Absolute maximum
SID4	I _{GPIO_ABS}	Current per GPIO	-25	-	25	mA	Absolute maximum
SID5	I _{G-PIO_injection}	GPIO injection current per pin	-0.5	-	0.5	mA	Absolute maximum
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	
BID46	LU	Pin current for latch-up	-140	_	140	mA	

Device Level Specifications

All specifications are valid for -40 °C \leq TA \leq 85 °C and TJ \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID53	V _{DDD}	Power Supply Input Voltage ($V_{DDA} = V_{DDD} = V_{DD}$)	1.8	_	5.5	V	With regulator enabled
SID255	V _{DDD}	Power supply input voltage unregulated	1.71	1.8	1.89	V	Internally unregu- lated Supply
SID54	V _{CCD}	Output voltage (for core logic)	_	1.8	_	V	
SID55	C _{EFC}	External regulator voltage bypass	1	1.3	1.6	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	_	1	-	μF	X5R ceramic or better
Active Mode							·
SID6	I _{DD1}	Execute from flash; CPU at 6 MHz	-	2.2	3.1	mA	
SID7	I _{DD2}	Execute from flash; CPU at 12 MHz	_	3.7	4.8	mA	
SID8	I _{DD3}	Execute from flash; CPU at 24 MHz	_	6.7	8.0	mA	
SID9	I _{DD4}	Execute from flash; CPU at 48 MHz	_	12.8	14.5	mA	
Sleep Mode							
SID21	I _{DD16}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	-	1.8	2.2	mA	V _{DD} = 1.71 to 1.89, 6 MHz
SID22	I _{DD17}	I ² C wakeup, WDT, and Comparators on.	-	1.7	2.1	mA	V _{DD} = 1.8 to 5.5, 6 MHz

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID23	I _{DD18}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	2.4	2.9	mA	V _{DD} = 1.71 to 1.89, 12 MHz
SID24	I _{DD19}	I ² C wakeup, WDT, and Comparators on.	-	2.3	2.8	mA	V _{DD} = 1.8 to 5.5, 12 MHz
Deep Sleep I	Mode, –40 °C to	+ 60 °C					
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator Off.	_	-	13.5	μA	V _{DD} = 1.71 to 1.89
SID31	I _{DD26}	I ² C wakeup and WDT on.	-	1.3	20.0	μA	V _{DD} = 1.8 to 3.6
SID32	I _{DD27}	I ² C wakeup and WDT on.	-	-	20.0	μA	V _{DD} = 3.6 to 5.5
Deep Sleep I	Mode, +85 °C	· · · ·					
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator Off.	-	-	45.0	μA	V _{DD} = 1.71 to 1.89
SID34	I _{DD29}	I ² C wakeup and WDT on.	-	15	60.0	μA	V _{DD} = 1.8 to 3.6
SID35	I _{DD30}	I ² C wakeup and WDT on.	-	-	45.0	μA	V _{DD} = 3.6 to 5.5
Hibernate Mo	ode, -40 °C to +	60 °C					
SID39	I _{DD34}	Regulator Off.	-	_	1123	nA	V _{DD} = 1.71 to 1.89
SID40	I _{DD35}		_	150	1600	nA	V _{DD} = 1.8 to 3.6
SID41	I _{DD36}		-	_	1600	nA	V _{DD} = 3.6 to 5.5
Hibernate Mo	ode, +85 °C	· · · ·					
SID42	I _{DD37}	Regulator Off.	-	_	4142	nA	V _{DD} = 1.71 to 1.89
SID43	I _{DD38}		_	-	9700	nA	V _{DD} = 1.8 to 3.6
SID44	I _{DD39}		-	-	10,400	nA	V _{DD} = 3.6 to 5.5
Stop Mode	·						<u>.</u>
SID304	I _{DD43A}	Stop Mode current; V _{DD} = 3.6 V	_	20	659	nA	T = -40 °C to $+60$ °C
SID304A	I _{DD43B}	Stop Mode current; V _{DD} = 3.6 V	-	-	1810	nA	T = +85 °C
XRES curren	nt						
SID307	I _{DD_XR}	Supply current while XRES (Active Low) asserted	-	2	5	mA	

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	_	0	_	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	-	25	μs	24-MHz IMO. Guaranteed by characterization
SID51	T _{HIBERNATE}	Wakeup from Hibernate mode	-	-	0.7	ms	Guaranteed by characterization
SID51A	T _{STOP}	Wakeup from Stop mode	-	-	1.9	ms	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	-	_	μs	Guaranteed by characterization

Table 5. GPIO AC Specifications

(Guaranteed by Characterization)^[3]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	ns	3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	ns	3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	_	-	33	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	_	-	16.7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	-	-	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	_	-	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	-	48	MHz	90/10% V _{IO}

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	_	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	_	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Guaranteed by characterization
SID82	IDIODE	Current through protection diode to $V_{DDD}\!/V_{SS}$	-	_	100	μA	Guaranteed by characterization

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	_	-	μs	Guaranteed by characterization

Note

Simultaneous switching transitions on many fully-loaded GPIO pins may cause ground perturbations depending on several factors including PCB and decoupling capacitor design. For applications that are very sensitive to ground perturbations, the slower GPIO slew rate setting may be used.

Table 13. SAR ADC AC Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	-	-	100	ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID111	A_INL	Integral non linearity	-1.7	-	+2	LSB	V _{DD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID111A	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID111B	A_INL	Integral non linearity	-1.5	-	+1.7	LSB	V _{DDD} = 1.71 to 5.5, 500 ksps, Vref = 1 to 5.5.
SID112	A_DNL	Differential non linearity	-1	-	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 1 Msps, Vref = 1 to 5.5.
SID112A	A_DNL	Differential non linearity	–1	_	+2	LSB	V _{DDD} = 1.71 to 3.6, 1 Msps, Vref = 1.71 to V _{DDD} .
SID112B	A_DNL	Differential non linearity	–1	_	+2.2	LSB	V _{DDD} = 1.71 to 5.5, 500 ksps, Vref = 1 to 5.5.
SID113	A_THD	Total harmonic distortion	_	_	-65	dB	F _{IN} = 10 kHz.

CSD

Table 14. CSD Block Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
CSD Spec	ification	-		••		•	•
SID308	VCSD	Voltage range of operation	1.71	_	5.5	V	
SID309	IDAC1	DNL for 8-bit resolution	-1	_	1	LSB	
SID310	IDAC1	INL for 8-bit resolution	-3	_	3	LSB	
SID311	IDAC2	DNL for 7-bit resolution	-1	_	1	LSB	
SID312	IDAC2	INL for 7-bit resolution	-3	_	3	LSB	
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	-	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity
SID314	IDAC1_CRT1	Output current of Idac1 (8-bits) in High range	-	612	-	μA	
SID314A	IDAC1_CRT2	Output current of Idac1(8-bits) in Low range	-	306	-	μA	
SID315	IDAC2_CRT1	Output current of Idac2 (7-bits) in High range	_	304.8	_	μA	
SID315A	IDAC2_CRT2	Output current of Idac2 (7-bits) in Low range	_	152.4	_	μA	

Memory

Table 26. Flash DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	Ι	5.5	V	

Table 27. Flash AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE}	Row (block) write time (erase and program)	-	_	20	ms	Row (block) = 256 bytes
SID175	T _{ROWERASE}	Row erase time	-	-	13	ms	
SID176	T _{ROWPROGRAM}	Row program time after erase	-	-	7	ms	
SID178	T _{BULKERASE}	Bulk erase time (128 KB)	-	-	35	ms	
SID180	T _{DEVPROG}	Total device program time	-	_	15	seconds	Guaranteed by charac- terization
SID181	F _{END}	Flash endurance	100 K	_	_	cycles	Guaranteed by charac- terization
SID182	F _{RET}	Flash retention. $T_A \le 55 \text{ °C}$, 100 K P/E cycles	20	-	-	years	Guaranteed by charac- terization
SID182A		Flash retention. $T_A \leq 85~^\circ\text{C},~10~\text{K}$ P/E cycles	10	_	-	years	Guaranteed by charac- terization

SWD Interface

Table 32. SWD Interface Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \le V_{DD} \le 5.5~V$	_	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71~V \le V_{DD} \le 3.3~V$	_	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	_	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	_	-	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications

(Guaranteed by Design)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	-	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	-	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	_	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	_	-	150	μA	

Table 34. IMO AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-	-	±2	%	
SID226	T _{STARTIMO}	IMO startup time	_	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	_	156	-	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	_	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	_	139	_	ps	

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications

(Guaranteed by Design)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	-	0.3	1.05		Guaranteed by Characterization
SID233	IILOLEAK	ILO leakage current	-	2	15		Guaranteed by Design

Table 40. Watch Crystal Oscillator (WCO) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions				
WCO Spec	VCO Specifications										
SID398	FWCO	Crystal frequency	-	32.768	-	kHz					
SID399	FTOL	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal.				
SID400	ESR	Equivalent series resistance	-	50	-	kΩ					
SID401	PD	Drive Level	-	-	1	μW					
SID402	TSTART	Startup time	-	-	500	ms					
SID403	CL	Crystal load capacitance	6	-	12.5	pF					
SID404	C0	Crystal shunt capacitance	-	1.35	-	pF					
SID405	IWCO1	Operating current (high power mode)	_	-	8	uA					

Table 41. External Crystal Oscillator (ECO) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID316	IECO1	Block operating current	-	-	1.5	mA	
SID317	FECO	Crystal frequency range	4	-	33	MHz	

Table 42. UDB AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions			
Datapath p	Datapath performance									
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	-	-	48	MHz				
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	-	-	48	MHz				
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	-	-	48	MHz				
PLD Perfor	mance in UDB									
SID252	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	-	-	48	MHz				
Clock to O	utput Performance									
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	-	15	-	ns				
SID254	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case.	_	25	_	ns				

Table 46. SIO Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SIO DC S	pecifications						
SID330	V _{IH}	Input voltage high threshold	0.7*VDD	_	-	V	CMOS input; with respect to V_{DDIO}
SID331	V _{IL}	Input voltage low threshold	-	-	0.3*VDD	V	CMOS input; with respect to V_{DDIO}
SID332	V _{IH}	Differential input mode high voltage; hysteresis disabled	Vr+0.2	-	_	V	Vr is the SIO reference voltage
SID333	V _{IL}	Differential input mode low voltage, hysteresis disabled	-	-	Vr-0.2	V	Vr is the SIO reference voltage
SID334	V _{OH}	Output high voltage in unregu- lated mode	VDDIO - 0.4	-	-	V	I _{OH} = 4 mA, V _{DD} = 3.3 V
SID335	V _{OH}	Output high voltage in regulated mode	Vr - 0.65	-	Vr + 0.2	V	I _{OH} = 1 mA
SID336	V _{OH}	Output high voltage in regulated mode	Vr - 0.3	-	Vr + 0.2	V	I _{OH} = 0.1 mA
SID337	V _{OL}	Output low voltage	-	Ι	0.8	V	V _{DDIO} = 3.3 V, I _{OL} = 25 mA
SID338	V _{OL}	Output low voltage	-	Ι	0.4	V	V _{DDIO} = 1.8 V, I _{OL} = 4 mA
SID339	Vinref	Input voltage reference	0.48	Ι	0.52*VDDIO	V	
SID340	Voutref	Output voltage reference (regulated mode)	1	-	VDDIO-1	V	V _{DDIO} > 3.3
SID341	Voutref	Output voltage reference (regulated mode)	1	-	VDDIO-0.5	V	V _{DDIO} < 3.3
SID342	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID343	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID344	IIL	Input leakage current (absolute value)	-	-	14	nA	V _{IH} ≤ V _{DDSIO} ; 25 °C
SID345	IIL	Input leakage current (absolute value)	-	-	10	nA	V _{IH} > V _{DDSIO} ; 25 °C
SID346	C _{IN}	Input capacitance	-	Ι	7	pF	
SID347	VHYST-Single	Hysteresis in single-ended mode	-	40	-	mV	
SID348	VHYST_Diff	Hysteresis in differential mode	-	35	-	mV	
SID349	IDIODE	Current through protection diode to V_{DD}/V_{SS}	-	Ι	100	μA	
SIO AC S	pecifications (G	uaranteed By Design)			•		·
SID350	T _{RISEF}	Rise time in Fast Strong mode	-	-	12	ns	3.3-V V _{DD} , Cload = 25 pF
SID351	T _{FALLF}	Fall time in Fast Strong mode	-	-	12	ns	3.3-V V _{DD} , Cload = 25 pF
SID352	T _{RISES}	Rise time in Slow Strong mode	-	-	75	ns	3.3-V V _{DD} , Cload = 25 pF
SID353	T _{FALLS}	Fall time in Slow Strong mode	-	-	70	ns	3.3-V V _{DD} , Cload = 25 pF
SID354	F _{SIOUT1}	SIO Fout; Unregulated, Fast Strong mode	-	Ι	33	MHz	$3.3-V \le V_{DD} \le 5.5 V$, 25 pF. Guaranteed by design.
SID355	F _{SIOUT2}	SIO Fout; Unregulated, Fast Strong mode	-	-	16	MHz	1.71-V ≤ V _{DD} ≤ 3.3 V, 25 pF
SID356	F _{SIOUT3}	SIO Fout; Regulated, Fast Strong mode	-	-	20	MHz	$3.3-V \le V_{DD} \le 5.5 \text{ V}, 25 \text{ pF}$
SID357	F _{SIOUT4}	SIO Fout; Regulated, Fast Strong mode	-	_	10	MHz	1.71 V ≤ V _{DD} ≤ 3.3 V, 25 pF

Table 46. SIO Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID358	F _{SIOUT3}	SIO Fout; Unregulated, Slow Strong mode.	-	-	5	MHz	3.3 V ≤ V _{DD} ≤ 5.5 V, 25 pF
SID359	F _{SIOUT4}	SIO Fout, Unregulated, Slow Strong mode.	-	-	3.5	MHz	1.71 V ≤ V _{DD} ≤ 3.3 V, 25 pF
SID360	F _{SIOUT5}	SIO Fout, Regulated, Slow Strong mode.	-	-	2.5	MHz	1.7 V ≤ V _{DD} ≤ 5.5 V, 25 pF
SID361	F _{GPIOIN}	GPIO input operating frequency;1.71 V \leq V _{DD} \leq 5.5 V	-	_	48	MHz	1.71 V ≤ V _{DD} ≤ 5.5 V

Table 47. CAN Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID420	IDD_CAN	Block current consumption	-	-	200	uA	
SID421	CAN_bits	CAN Bit rate (Min 8-MHz clock)	_	-	1	Mbps	

Ordering Information

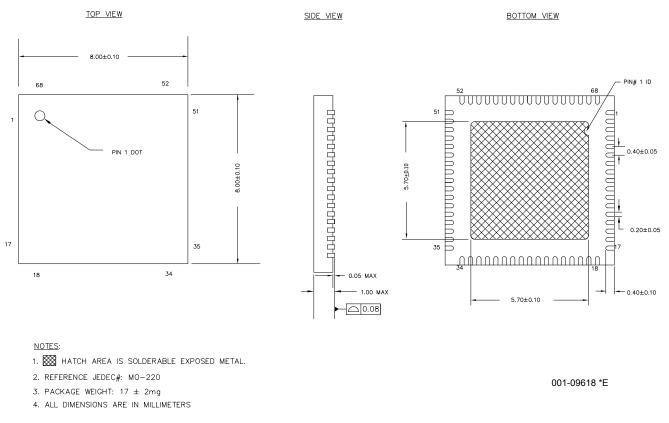

The PSoC 4200-L family part numbers and features are listed in the following table.

Table 48. PSoC 4200-L Ordering Information

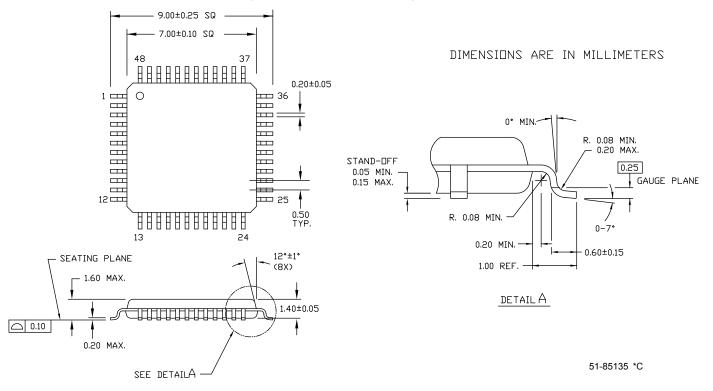

		Features												Package					
Category	NdW	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Op-amp (CTBm)	CSD	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	USB Full Speed	CAN	GPIO	48-TQFP	64-TQFP	68-QFN	124-VFBGA
	CY8C4246AZI-L423	48	64	8	8	2	1	>	1000 ksps	2	8	3	-	١	38	>	Ι	-	-
4246	CY8C4246AZI-L433	48	64	8	8	2	Ι	-	1000 ksps	2	8	3	<	-	38	1	Ι	Ι	-
	CY8C4246AZI-L435	48	64	8	8	2	-	-	1000 ksps	2	8	4	<	-	53	-	<	-	-
	CY8C4246AZI-L445	48	64	8	8	2	2	~	1000 ksps	2	8	4	<	-	53	-	<	-	-
	CY8C4246LTI-L445	48	64	8	8	2	2	~	1000 ksps	2	8	4	~	-	57	-	-	~	-
	CY8C4247AZI-L423	48	128	16	8	2	1	~	1000 ksps	2	8	3	-	-	38	~	-	-	-
	CY8C4247AZI-L433	48	128	16	8	2	-	_	1000 ksps	2	8	3	~	_	38	~	-	-	-
	CY8C4247AZI-L445	48	128	16	8	2	2	~	1000 ksps	2	8	4	~		53	Ι	~	-	-
	CY8C4247LTI-L445	48	128	16	8	2	2	>	1000 ksps	2	8	4	~		57	Ι	-	~	-
4247	CY8C4247AZI-L475	48	128	16	8	4	2	-	1000 ksps	2	8	4	~	-	53	Ι	~	-	-
4247	CY8C4247LTI-L475	48	128	16	8	4	2		1000 ksps	2	8	4	~		57	Ι	-	~	-
	CY8C4247BZI-L479	48	128	16	8	4	2	-	1000 ksps	2	8	4	~	-	98	-	-	-	~
	CY8C4247AZI-L485	48	128	16	8	4	2	>	1000 ksps	2	8	4	~	>	53	Ι	~	-	-
	CY8C4247LTI-L485	48	128	16	8	4	2	>	1000 ksps	2	8	4	~	>	57	Ι	-	~	-
	CY8C4247BZI-L489	48	128	16	8	4	2	>	1000 ksps	2	8	4	~	>	98	-	-	-	~
4248	CY8C4248BZI-L469	48	256	32	8	4	Ι	-	1000 ksps	2	8	4	-	-	96	Ι	-	-	~
	CY8C4248AZI-L475	48	256	32	8	4	2	-	1000 ksps	2	8	4	~	-	53	-	~	-	-
	CY8C4248LTI-L475	48	256	32	8	4	2	_	1000 ksps	2	8	4	~	_	57	_	-	~	-
	CY8C4248BZI-L479	48	256	32	8	4	2	_	1000 ksps	2	8	4	~	_	98	-	-	-	~
	CY8C4248AZI-L485	48	256	32	8	4	2	~	1000 ksps	2	8	4	~	~	53	_	~	-	-
	CY8C4248LTI-L485	48	256	32	8	4	2	~	1000 ksps	2	8	4	~	~	57	_	-	~	-
	CY8C4248BZI-L489	48	256	32	8	4	2	>	1000 ksps	2	8	4	~	>	98	Ι	-	-	~

Figure 10. 68-Pin QFN Package Outline

Document Conventions

Units of Measure

Table 53. Units of Measure

Symbol	Unit of Measure				
°C	degrees Celsius				
dB	decibel				
fF	femto farad				
Hz	hertz				
KB	1024 bytes				
kbps	kilobits per second				
Khr	kilohour				
kHz	kilohertz				
kΩ	kilo ohm				
ksps	kilosamples per second				
LSB	least significant bit				
Mbps	megabits per second				
MHz	megahertz				
MΩ	mega-ohm				
Msps	megasamples per second				
μA	microampere				
μF	microfarad				
μH	microhenry				
μs	microsecond				
μV	microvolt				
μW	microwatt				
mA	milliampere				
ms	millisecond				
mV	millivolt				
nA	nanoampere				
ns	nanosecond				
nV	nanovolt				
Ω	ohm				
pF	picofarad				
ppm	parts per million				
ps	picosecond				
S	second				
sps	samples per second				
sqrtHz	square root of hertz				
V	volt				