

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, LCD, LVD, POR, PWM, SmartSense, WDT
Number of I/O	57
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4248lti-l485

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - □ AN81623: Digital Design Best Practices
 - □ AN73854: Introduction To Bootloaders
 - □ AN89610: ARM Cortex Code Optimization

- Technical Reference Manual (TRM) is in two documents:
- □ Architecture TRM details each PSoC 4 functional block.
- □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino[™] compatible shields and Digilent® Pmod[™] daughter cards.
 - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.

The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs. The port interface is shown in Figure 7.

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 7. Port Interface

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals, which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention. The PSoC 4200-L has eight TCPWM blocks.

Serial Communication Blocks (SCB)

The PSoC 4200-L has four SCBs, which can each implement an I^2 C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EzI2C that creates a mailbox address range in the memory of the PSoC 4200-L and effectively reduces I²C communication to reading from and writing to an array in memory. In

addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

USB Device

A Full-speed USB 2.0 device interface is provided. It has a Control endpoint and eight other endpoints. The interface has a USB transceiver and can be operated from the IMO obviating the need for a crystal oscillator.

CAN Blocks

There are two independent CAN 2.0B blocks, which are certified CAN conformant.

GPIO

The PSoC 4200-L has 96 GPIOs. The GPIO block implements the following:

- Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up and pull-down, open drain and open source, input only, and disabled
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output disables
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (13 for PSoC 4200-L).

There are 14 GPIO pins that are overvoltage tolerant (V_{IN} can exceed V_{DD}). The overvoltage cells will not sink more than 10 μ A when their inputs exceed V_{DDIO} in compliance with I²C specifications. Meeting the I²C minimum fall time requirement for FM and FM+ may require the slower slew rate setting depending on bus loading (also applies to all GPIO and SIO pins).

SIO

The Special I/O (SIO) pins have the following features in addition to the GPIO features:

- Overvoltage protection and hot swap capability
- Programmable switching thresholds
- Programmable output pull-up voltage capability

They allow interfacing to buses, such as I²C with full I²C compatibility and interfacing to devices operating at different voltage levels. There are two SIO pins on the PSoC4200-L.

Special Function Peripherals

LCD Segment Drive

The PSoC 4200-L has an LCD controller, which can drive up to eight commons and up to 56 segments. Any pin can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4200-L through two CapSense Sigma-Delta (CSD) blocks that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

Each CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available). The two CapSense blocks can be used independently.

Pinouts

The following is the pin list for the PSoC 4200-L.

	124-BGA		68-QFN		64-TQFP	48-TQFP		48-TQFP-USB	
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
H13	P0.0	42	P0.0	39	P0.0	28	P0.0	28	P0.0
H12	P0.1	43	P0.1	40	P0.1	29	P0.1	29	P0.1
G13	P0.2	44	P0.2	41	P0.2	30	P0.2	30	P0.2
G12	P0.3	45	P0.3	42	P0.3	31	P0.3	31	P0.3
K10	VSSD								
G11	P0.4	46	P0.4	43	P0.4	32	P0.4	32	P0.4
F13	P0.5	47	P0.5	44	P0.5	33	P0.5	33	P0.5
F12	P0.6	48	P0.6	45	P0.6	34	P0.6	34	P0.6
F11	P0.7	49	P0.7	46	P0.7	35	P0.7	35	P0.7
E13	P8.0								
E12	P8.1								
E11	P8.2								
D13	P8.3								
D12	P8.4								
C13	P8.5								
C12	P8.6								
B12	P8.7								
C11	XRES	50	XRES	47	XRES	36	XRES	36	XRES
A12	VCCD	51	VCCD	48	VCCD	37	VCCD	37	VCCD
D10	VSSD	52	VSSD	49	VSSD	38	VSSD	38	VSSD
B13	VDDD	53	VDDD	50	VDDD	39	VDDD	39	VDDD
A13	VDDD	53	VDDD	50	VDDD	39	VDDD	39	VDDD
A11	P9.0								
B11	P9.1								
A10	P9.2								
B10	P9.3								
C10	P9.4								
A9	P9.5								
B9	P9.6								
C9	P9.7								
						40	VDDA	40	VDDA
C8	P5.0	54	P5.0	51	P5.0				
B8	P5.1	55	P5.1	52	P5.1				
A8	P5.2	56	P5.2	53	P5.2				
A7	P5.3	57	P5.3	54	P5.3				
B7	P5.4	58	P5.4						
C7	P5.5	59	P5.5	55	P5.5				
A6	P5.6								
B6	P5.7								
A2	VDDA	60	VDDA	56	VDDA	40	VDDA	40	VDDA
B2	VDDA	60	VDDA	56	VDDA	40	VDDA	40	VDDA

Port/Pin	Analog	PRGIO & USB	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P0.0	lpcomp.in_p[0]				can[1].can_rx:0	usb.vbus_valid	scb[0].spi_select1:3
P0.1	lpcomp.in_n[0]				can[1].can_tx:0		scb[0].spi_select2:3
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:3
P0.3	lpcomp.in_n[1]						
P0.4	wco_in			scb[1].uart_rx:0		scb[1].i2c_scl:0	scb[1].spi_mosi:0
P0.5	wco_out			scb[1].uart_tx:0		scb[1].i2c_sda:0	scb[1].spi_miso:0
P0.6			srss.ext_clk:0	scb[1].uart_cts:0			scb[1].spi_clk:0
P0.7				scb[1].uart_rts:0	can[1].can_tx_enb_ n:0	srss.wakeup	scb[1].spi_select0:0
P8.0				scb[3].uart_rx:0		scb[3].i2c_scl:0	scb[3].spi_mosi:0
P8.1				scb[3].uart_tx:0		scb[3].i2c_sda:0	scb[3].spi_miso:0
P8.2				scb[3].uart_cts:0		lpcomp.comp[0]:0	scb[3].spi_clk:0
P8.3				scb[3].uart_rts:0		lpcomp.comp[1]:0	scb[3].spi_select0:0
P8.4							scb[3].spi_select1:0
P8.5							scb[3].spi_select2:0
P8.6							scb[3].spi_select3:0
P8.7							
P9.0			tcpwm.line[0]:2	scb[0].uart_rx:0		scb[0].i2c_scl:0	scb[0].spi_mosi:0
P9.1			tcpwm.line_compl[0]:2	scb[0].uart_tx:0		scb[0].i2c_sda:0	scb[0].spi_miso:0
P9.2			tcpwm.line[1]:2	scb[0].uart_cts:0			scb[0].spi_clk:0
P9.3			tcpwm.line_compl[1]:2	scb[0].uart_rts:0			scb[0].spi_select0:0
P9.4			tcpwm.line[2]:2				scb[0].spi_select1:0
P9.5			tcpwm.line_compl[2]:2				scb[0].spi_select2:0
P9.6			tcpwm.line[3]:2			scb[3].i2c_scl:3	scb[0].spi_select3:0
P9.7			tcpwm.line_compl[3]:2			scb[3].i2c_sda:3	
P5.0	ctb1_pads[0] csd[1].c_mod		tcpwm.line[4]:2	scb[2].uart_rx:0		scb[2].i2c_scl:0	scb[2].spi_mosi:0
P5.1	ctb1_pads[1] csd[1].c_sh_tank		tcpwm.line_compl[4]:2	scb[2].uart_tx:0		scb[2].i2c_sda:0	scb[2].spi_miso:0
P5.2	ctb1_pads[2] ctb1_oa0_out_10x		tcpwm.line[5]:2	scb[2].uart_cts:0		lpcomp.comp[0]:1	scb[2].spi_clk:0
P5.3	ctb1_pads[3] ctb1_oa1_out_10x		tcpwm.line_compl[5]:2	scb[2].uart_rts:0		lpcomp.comp[1]:1	scb[2].spi_select0:0
P5.4	ctb1_pads[4]		tcpwm.line[6]:2				scb[2].spi_select1:0
P5.5	ctb1_pads[5]		tcpwm.line_compl[6]:2				scb[2].spi_select2:0
P5.6	ctb1_pads[6]		tcpwm.line[7]:2				scb[2].spi_select3:0
P5.7	ctb1_pads[7]		tcpwm.line_compl[7]:2				
P1.0	ctb0_pads[0]		tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:1	scb[0].spi_mosi:1
P1.1	ctb0_pads[1]		tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:1	scb[0].spi_miso:1
P1.2	ctb0_pads[2] ctb0_oa0_out_10x		tcpwm.line[3]:1	scb[0].uart_cts:1			scb[0].spi_clk:1
P1.3	ctb0_pads[3] ctb0_oa1_out_10x		tcpwm.line_compl[3]:1	scb[0].uart_rts:1			scb[0].spi_select0:1
P1.4	ctb0_pads[4]		tcpwm.line[6]:1				scb[0].spi_select1:1

Each of the pins shown in the previous table can have multiple programmable functions as shown in the following table.

Port/Pin	Analog	PRGIO & USB	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P4.2	csd[0].c_mod			scb[0].uart_cts:2	can[0].can_tx_enb_ n:1	lpcomp.comp[0]:2	scb[0].spi_clk:2
P4.3	csd[0].c_sh_tank			scb[0].uart_rts:2		lpcomp.comp[1]:2	scb[0].spi_select0:2
P4.4					can[1].can_tx_enb_ n:1		scb[0].spi_select1:2
P4.5					can[1].can_rx:1		scb[0].spi_select2:2
P4.6					can[1].can_tx:1		scb[0].spi_select3:2
P4.7							
P13.0		USBDP					
P13.1		USBDM					
P13.2		VBUS					
P7.0	srss.eco_in		tcpwm.line[0]:3	scb[3].uart_rx:2		scb[3].i2c_scl:2	scb[3].spi_mosi:2
P7.1	srss.eco_out		tcpwm.line_compl[0]:3	scb[3].uart_tx:2		scb[3].i2c_sda:2	scb[3].spi_miso:2
P7.2			tcpwm.line[1]:3	scb[3].uart_cts:2			scb[3].spi_clk:2
P7.3			tcpwm.line_compl[1]:3	scb[3].uart_rts:2			scb[3].spi_select0:2
P7.4			tcpwm.line[2]:3				scb[3].spi_select1:2
P7.5			tcpwm.line_compl[2]:3				scb[3].spi_select2:2
P7.6			tcpwm.line[3]:3				scb[3].spi_select3:2
P7.7			tcpwm.line_compl[3]:3				

Descriptions of the power pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin)

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise

VDDIO: I/O pin power domain

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin

VCCD: Regulated digital supply (1.8 V ±5%)

GPIO and GPIO_OVT pins can be used as CSD sense and shield pins (a total of 94). Up to 64 of the pins can be used for LCD drive.

The following packages are supported: 124-ball BGA, 64-pin TQFP, 68-pin QFN, and 48-pin TQFP.

Power

The supply voltage range is 1.71 V to 5.5 V with all functions and circuits operating over that range.

The PSoC 4200-L family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, the PSoC 4200-L is powered by an External Power Supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4200-L supplies the internal logic and the VCCD output of the PSoC 4200-L must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6 μ F; X5R ceramic or better).

VDDA and VDDD must be shorted together on the PC board; the grounds, VSSA and VSS must also be shorted together. Bypass capacitors must be used from VDDD and VDDA to ground, typical practice for systems in this frequency range is to use a capacitor in the 1 μ F range in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Power Supply	Bypass Capacitors
VDDD–VSS and VDDIO-VSS	0.1 μF ceramic at each pin plus bulk capacitor 1 to 10 μF.
VDDA-VSSA	0.1 μ F ceramic at pin. Additional 1 μ F to 10 μ F bulk capacitor
VCCD-VSS	1 μ F ceramic capacitor at the VCCD pin
VREF–VSSA (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor for better ADC performance.

Regulated External Supply

In this mode, the PSoC 4200-L is powered by an external power supply that must be within the range of 1.71 V to 1.89 V (1.8 \pm 5%); note that this range needs to include power supply ripple. In this mode, the VCCD and VDDD pins are shorted together and bypassed. The internal regulator is disabled in firmware.

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID1	V _{DD_ABS}	Analog or digital supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	-	6	V	Absolute maximum
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SSD}	-0.5	-	1.95	V	Absolute maximum
SID3	V _{GPIO_ABS}	GPIO voltage; V _{DDD} or V _{DDA}	-0.5	-	V _{DD} +0.5	V	Absolute maximum
SID4	I _{GPIO_ABS}	Current per GPIO	-25	-	25	mA	Absolute maximum
SID5	I _{G-PIO_injection}	GPIO injection current per pin	-0.5	-	0.5	mA	Absolute maximum
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	
BID46	LU	Pin current for latch-up	-140	-	140	mA	

Device Level Specifications

All specifications are valid for -40 °C \leq TA \leq 85 °C and TJ \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID53	V _{DDD}	Power Supply Input Voltage ($V_{DDA} = V_{DDD} = V_{DD}$)	1.8	-	5.5	V	With regulator enabled
SID255	V _{DDD}	Power supply input voltage unregulated	1.71	1.8	1.89	V	Internally unregu- lated Supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-	V	
SID55	C _{EFC}	External regulator voltage bypass	1	1.3	1.6	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	_	1	-	μF	X5R ceramic or better
Active Mode							·
SID6	I _{DD1}	Execute from flash; CPU at 6 MHz	_	2.2	3.1	mA	
SID7	I _{DD2}	Execute from flash; CPU at 12 MHz	_	3.7	4.8	mA	
SID8	I _{DD3}	Execute from flash; CPU at 24 MHz	_	6.7	8.0	mA	
SID9	I _{DD4}	Execute from flash; CPU at 48 MHz	_	12.8	14.5	mA	
Sleep Mode							
SID21	I _{DD16}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	1.8	2.2	mA	V _{DD} = 1.71 to 1.89, 6 MHz
SID22	I _{DD17}	I ² C wakeup, WDT, and Comparators on.	-	1.7	2.1	mA	V _{DD} = 1.8 to 5.5, 6 MHz

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions		
SID23	I _{DD18}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	-	2.4	2.9	mA	V _{DD} = 1.71 to 1.89, 12 MHz		
SID24	I _{DD19}	I ² C wakeup, WDT, and Comparators on.	_	2.3	2.8	mA	V _{DD} = 1.8 to 5.5, 12 MHz		
Deep Sleep I	Mode, –40 °C to	+ 60 °C							
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator Off.	-	-	13.5	μA	V _{DD} = 1.71 to 1.89		
SID31	I _{DD26}	I ² C wakeup and WDT on.	-	1.3	20.0	μA	V _{DD} = 1.8 to 3.6		
SID32	I _{DD27}	I ² C wakeup and WDT on.	-	-	20.0	μA	V _{DD} = 3.6 to 5.5		
Deep Sleep I	Mode, +85 °C								
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator Off.	-	-	45.0	μA	V _{DD} = 1.71 to 1.89		
SID34	I _{DD29}	I ² C wakeup and WDT on.	-	15	60.0	μA	V _{DD} = 1.8 to 3.6		
SID35	I _{DD30}	I ² C wakeup and WDT on.	-	-	45.0	μA	V _{DD} = 3.6 to 5.5		
Hibernate Mo	Hibernate Mode, –40 °C to + 60 °C								
SID39	I _{DD34}	Regulator Off.	-	-	1123	nA	V _{DD} = 1.71 to 1.89		
SID40	I _{DD35}		-	150	1600	nA	V _{DD} = 1.8 to 3.6		
SID41	I _{DD36}		_	-	1600	nA	V _{DD} = 3.6 to 5.5		
Hibernate Mo	ode, +85 °C								
SID42	I _{DD37}	Regulator Off.	-	-	4142	nA	V _{DD} = 1.71 to 1.89		
SID43	I _{DD38}		_	-	9700	nA	V _{DD} = 1.8 to 3.6		
SID44	I _{DD39}		-	-	10,400	nA	V _{DD} = 3.6 to 5.5		
Stop Mode									
SID304	I _{DD43A}	Stop Mode current; V _{DD} = 3.6 V	-	20	659	nA	T = -40 °C to +60 °C		
SID304A	I _{DD43B}	Stop Mode current; V _{DD} = 3.6 V	_	-	1810	nA	T = +85 °C		
XRES curren	nt	· · · · ·		•	·				
SID307	I _{DD_XR}	Supply current while XRES (Active Low) asserted	_	2	5	mA			

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	-	0	-	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	_	25	μs	24-MHz IMO. Guaranteed by characterization
SID51	T _{HIBERNATE}	Wakeup from Hibernate mode	_	-	0.7	ms	Guaranteed by characterization
SID51A	T _{STOP}	Wakeup from Stop mode	_	-	1.9	ms	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	-	_	μs	Guaranteed by characterization

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode.

Timer/Counter/PWM

Table 15. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	_	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	_	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	_	650	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	-	_	Fc	MHz	Fc max = Fcpu. Maximum = 48 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	_	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	_	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	-	_	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

βC

Table 16. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	10.5	55	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	_	_	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	_	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.4	μA	

Table 17. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Mbps	

SPI Specifications

Table 22. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	-	-	360	μA
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	-	-	560	μA
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	_	_	600	μA

Table 23. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units
SID166	F _{SPI}	SPI operating frequency (master; 6X oversampling)	-	-	8	MHz

Table 24. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	-	15	ns
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	_	-	ns
SID169	т _{нмо}	Previous MOSI data hold time with respect to capturing edge at Slave	0	_	_	ns

Table 25. Fixed SPI Slave mode AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns
SID171	T _{DSO}	MISO valid after Sclock driving edge	_	-	42+3× T _{SCB}	ns
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	_	-	48	ns
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	_	_	ns

Table 36. ILO AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by charac- terization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by charac- terization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	±60% with trim.

Table 37. PLL DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID410	IDD_PLL_48	In = 3 MHz, Out = 48 MHz	-	530	610	μA	
SID411	IDD_PLL_24	In = 3 MHz, Out = 24 MHz	-	300	405	μA	

Table 38. PLL AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID412	F _{PLLIN}	PLL input frequency	1	_	48	MHz	
SID413	F _{PLLINT}	PLL intermediate frequency; prescaler out	1	-	3	MHz	
SID414	F _{PLLVCO}	VCO output frequency before post-divide	22.5	-	104	MHz	
SID415	D _{IVVCO}	VCO Output post-divider range; PLL output frequency is F _{PPLVCO} /D _{IVVCO}	1	_	8	_	
SID416	PLLlocktime	Lock time at startup	-	_	250	us	
SID417	Jperiod_1	Period jitter for VCO ≥ 67 MHz	-	_	150	ps	Guaranteed By Design
SID416A	Jperiod_2	Period jitter for VCO ≤ 67 MHz	_	_	200	ps	Guaranteed By Design

Table 39. External Clock Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	48	MHz	Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	-	55	%	Guaranteed by characterization

Table 40. Watch Crystal Oscillator (WCO) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions		
IMO WCO-PLL calibrated mode									
SID330	IMOWCO1	Frequency variation with IMO set to 3 MHz	-0.6	_	0.6	%	Does not include WCO tolerance		
SID331	IMOWCO2	Frequency variation with IMO set to 5 MHZ	-0.4	-	0.4	%	Does not include WCO tolerance		
SID332	IMOWCO3	Frequency variation with IMO set to 7 or 9 MHZ	-0.3	-	0.3	%	Does not include WCO tolerance		
SID333	IMOWCO4	All other IMO frequency settings	-0.2	-	0.2	%	Does not include WCO tolerance		

Table 40. Watch Crystal Oscillator (WCO) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions			
WCO Spec	WCO Specifications									
SID398	FWCO	Crystal frequency	_	32.768	_	kHz				
SID399	FTOL	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal.			
SID400	ESR	Equivalent series resistance	-	50	_	kΩ				
SID401	PD	Drive Level	-	-	1	μW				
SID402	TSTART	Startup time	-	-	500	ms				
SID403	CL	Crystal load capacitance	6	-	12.5	pF				
SID404	C0	Crystal shunt capacitance	-	1.35	_	pF				
SID405	IWCO1	Operating current (high power mode)	_	_	8	uA				

Table 41. External Crystal Oscillator (ECO) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID316	IECO1	Block operating current	-	-	1.5	mA	
SID317	FECO	Crystal frequency range	4	-	33	MHz	

Table 42. UDB AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Datapath p	erformance						
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	_	-	48	MHz	
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	_	-	48	MHz	
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	_	-	48	MHz	
PLD Perfor	mance in UDB						
SID252	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	_	-	48	MHz	
Clock to O	utput Performance						
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	_	15	_	ns	
SID254	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case.	_	25	_	ns	

Table 46. SIO Specifications

Spec ID#	ID# Parameter Description		Min	Тур	Max	Units	Details / Conditions	
SIO DC S	pecifications							
SID330	V _{IH}	Input voltage high threshold	0.7*VDD	_	-	V	CMOS input; with respect to V _{DDIO}	
SID331	V _{IL}	Input voltage low threshold	-	-	0.3*VDD	V	CMOS input; with respect to V _{DDIO}	
SID332	V _{IH}	Differential input mode high voltage; hysteresis disabled	Vr+0.2	_	-	V	Vr is the SIO reference voltage	
SID333	V _{IL}	Differential input mode low voltage, hysteresis disabled	-	_	Vr-0.2	V	Vr is the SIO reference voltage	
SID334	V _{OH}	Output high voltage in unregu- lated mode	VDDIO - 0.4	-	-	V	I _{OH} = 4 mA, V _{DD} = 3.3 V	
SID335	V _{OH}	Output high voltage in regulated mode	Vr - 0.65	-	Vr + 0.2	V	I _{OH} = 1 mA	
SID336	V _{OH}	Output high voltage in regulated mode	Vr - 0.3	-	Vr + 0.2	V	I _{OH} = 0.1 mA	
SID337	V _{OL}	Output low voltage	-	-	0.8	V	V _{DDIO} = 3.3 V, I _{OL} = 25 mA	
SID338	V _{OL}	Output low voltage	-	_	0.4	V	V _{DDIO} = 1.8 V, I _{OL} = 4 mA	
SID339	Vinref	Input voltage reference	0.48	_	0.52*VDDIO	V		
SID340	Voutref	Output voltage reference (regulated mode)	1	_	VDDIO-1	V	V _{DDIO} > 3.3	
SID341	Voutref	Output voltage reference (regulated mode)	1	_	VDDIO-0.5	V	V _{DDIO} < 3.3	
SID342	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ		
SID343	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ		
SID344	IIL	Input leakage current (absolute value)	-	-	14	nA	V _{IH} ≤ V _{DDSIO} ; 25 °C	
SID345	IIL	Input leakage current (absolute value)	-	-	10	nA	V _{IH} > V _{DDSIO} ; 25 °C	
SID346	C _{IN}	Input capacitance	-	_	7	pF		
SID347	VHYST-Single	Hysteresis in single-ended mode	-	40	-	mV		
SID348	VHYST_Diff	Hysteresis in differential mode	-	35	-	mV		
SID349	IDIODE	Current through protection diode to V_{DD}/V_{SS}	-	-	100	μA		
SIO AC S	pecifications (G	uaranteed By Design)						
SID350	T _{RISEF}	Rise time in Fast Strong mode	-	_	12	ns	3.3-V V _{DD} , Cload = 25 pF	
SID351	T _{FALLF}	Fall time in Fast Strong mode	-	—	12	ns	3.3-V V _{DD} , Cload = 25 pF	
SID352	T _{RISES}	Rise time in Slow Strong mode	-	_	75	ns	3.3-V V _{DD} , Cload = 25 pF	
SID353	T _{FALLS}	Fall time in Slow Strong mode	-	_	70	ns	3.3-V V _{DD} , Cload = 25 pF	
SID354	F _{SIOUT1}	SIO Fout; Unregulated, Fast Strong mode	-	-	33	MHz	$3.3-V \le V_{DD} \le 5.5 V$, 25 pF. Guaranteed by design.	
SID355	F _{SIOUT2}	SIO Fout; Unregulated, Fast Strong mode	-	-	16	MHz	1.71-V ≤ V _{DD} ≤ 3.3 V, 25 pF	
SID356	F _{SIOUT3}	SIO Fout; Regulated, Fast Strong mode	-	-	20	MHz	3.3-V ≤ V _{DD} ≤ 5.5 V, 25 pF	
SID357	F _{SIOUT4}	SIO Fout; Regulated, Fast Strong mode	-	-	10	MHz	1.71 V ≤ V _{DD} ≤ 3.3 V, 25 pF	

Ordering Information

The PSoC 4200-L family part numbers and features are listed in the following table.

Table 48. PSoC 4200-L Ordering Information

			Features						Package										
Category	NdW	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Op-amp (CTBm)	CSD	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	USB Full Speed	CAN	GPIO	48-TQFP	64-TQFP	68-QFN	124-VFBGA
	CY8C4246AZI-L423	48	64	8	8	2	1	>	1000 ksps	2	8	3	Ι	I	38	>	Ι	-	-
	CY8C4246AZI-L433	48	64	8	8	2	-	I	1000 ksps	2	8	3	>	I	38	>	Ι	-	-
4246	CY8C4246AZI-L435	48	64	8	8	2	-	-	1000 ksps	2	8	4	~	-	53	-	~	_	-
	CY8C4246AZI-L445	48	64	8	8	2	2	5	1000 ksps	2	8	4	5	-	53	-	~	_	-
	CY8C4246LTI-L445	48	64	8	8	2	2	>	1000 ksps	2	8	4	>	-	57	-	-	~	-
	CY8C4247AZI-L423	48	128	16	8	2	1	>	1000 ksps	2	8	3	I	I	38	>	Ι	-	-
	CY8C4247AZI-L433	48	128	16	8	2	-	I	1000 ksps	2	8	3	>	I	38	>	Ι	-	-
	CY8C4247AZI-L445	48	128	16	8	2	2	>	1000 ksps	2	8	4	>	I	53	١	>	-	-
	CY8C4247LTI-L445	48	128	16	8	2	2	>	1000 ksps	2	8	4	>	I	57	I	Ι	~	-
4247	CY8C4247AZI-L475	48	128	16	8	4	2	I	1000 ksps	2	8	4	>	I	53	I	>	-	-
7271	CY8C4247LTI-L475	48	128	16	8	4	2	-	1000 ksps	2	8	4	2	-	57	-	Ι	~	-
	CY8C4247BZI-L479	48	128	16	8	4	2	-	1000 ksps	2	8	4	>	1	98	I	-	-	~
	CY8C4247AZI-L485	48	128	16	8	4	2	~	1000 ksps	2	8	4	~	~	53	-	~	-	-
	CY8C4247LTI-L485	48	128	16	8	4	2	~	1000 ksps	2	8	4	~	~	57	-	-	~	-
	CY8C4247BZI-L489	48	128	16	8	4	2	~	1000 ksps	2	8	4	~	~	98	-	-	-	~
	CY8C4248BZI-L469	48	256	32	8	4	-	-	1000 ksps	2	8	4	-	-	96	-	-	-	~
	CY8C4248AZI-L475	48	256	32	8	4	2	_	1000 ksps	2	8	4	~	_	53	-	~	—	-
	CY8C4248LTI-L475	48	256	32	8	4	2	_	1000 ksps	2	8	4	~	_	57	-	-	~	-
4248	CY8C4248BZI-L479	48	256	32	8	4	2	—	1000 ksps	2	8	4	~	—	98	_	-	-	~
	CY8C4248AZI-L485	48	256	32	8	4	2	~	1000 ksps	2	8	4	~	~	53	—	~	-	-
	CY8C4248LTI-L485	48	256	32	8	4	2	~	1000 ksps	2	8	4	~	~	57	—	-	~	-
	CY8C4248BZI-L489	48	256	32	8	4	2	~	1000 ksps	2	8	4	~	~	98	_	_	-	~

	Table 40 is based	and the standard strains of	in a set in conseller a set of a	
The nomenciature used in	Ianie 4X is nasen	on the following	nart numnering	convention.
		on the following	part numbering	convention.

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
A	Family	2	4200 Family
В	CPU Speed	4	48 MHz
С	Flash Capacity	6	64 KB
		7	128 KB
		8	256 KB
DE	Package Code	AX, AZ	TQFP
		LT	QFN
		BU	BGA
		FD	CSP
F	Temperature Range	I	Industrial
S	Silicon Family	N/A	PSoC 4A
		L	PSoC 4A-L
		BL	PSoC 4A-BLE
XYZ	Attributes Code	000-999	Code of feature set in the specific family

Part Numbering Conventions

The part number fields are defined as follows.

Packaging

The description of the PSoC4200-L package dimensions follows.

SPEC ID#	Package	Description	Package DWG #
PKG_1	124-ball VFBGA	124-ball, 9 mm x 9 mm x 1.0 mm height with 0.65 mm ball pitch	001-97718
PKG_2	64-pin TQFP	64-pin TQFP, 10 mm x10 mm x 1,4 mm height with 0.5 mm pitch	51-85051
PKG_3	68-pin QFN	68-pin QFN, 8 mm x 8 mm x 1.0 mm height with 0.4 mm pitch	001-09618
PKG_4	48-pin TQFP	48-pin TQFP, 7 mm x 7 mm x 1.4 mm height with 0.5 mm pitch	51-85135

Table 49. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25.00	85	°C
TJ	Operating junction temperature		-40	-	100	°C
T _{JA}	Package θ_{JA} (124-ball VFBGA)		_	35	_	°C/Watt
T _{JA}	Package θ_{JA} (64-pin TQFP)		-	54	_	°C/Watt
T _{JA}	Package θ_{JA} (68-pin QFN)		-	17	_	°C/Watt
T _{JA}	Package θ_{JA} (48-pin TQFP)		_	67	_	°C/Watt

Table 50. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature				
All packages	260 °C	30 seconds				

Table 51. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
All packages	MSL 3

Figure 8. 124-Ball VFBGA Package Outline

NOTES:

1. REFERENCE JEDEC # MO-280

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-97718 **

51-85051 *D

Figure 10. 68-Pin QFN Package Outline

Acronyms

Table 52. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
AHB	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 52. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
IIR	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD

Revision History

Descriptio Document	Description Title: PSoC [®] 4: PSoC 4200-L Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-91686							
Revision	ECN	Orig. of Change	Submission Date	Description of Change				
**	4414601	WKA	02/06/2015	New datasheet for new device family.				
*A	4774497	WKA	05/22/2015	Updated Pin List. Added a footnote explaining ground perturbations in GPIO AC Specifications. Updated values for SID269, SID270, SID271, and SID291. Added Conditions for Deep Sleep Mode in Opamp Specifications. Updated Conditions for SID_DS_10 through SID_DS_18. Added Conditions for SID_DS_22 through SID_DS_24. Updated description for SID85 and SID85A. Updated values for SID89, SID248, SID259, SID91, SID258, and SID92. Updated max value for SID.TCPWM.2A. Updated typ and max values for SID149. Added PLL DC Specifications and PLL AC Specifications. Updated Watch Crystal Oscillator (WCO) Specifications. Added CAN Specifications. Changed µFBGA package to VFBGA package.				
*В	4867142	WKA	08/03/2015	Changed datasheet status to Preliminary. Updated Pinouts. Removed typ value for SID43. Updated Conditions for SID_DS_7, SID_DS_8, and SID_DS_9. Updated max value for SID87. Removed SID179. Added External Crystal Oscillator (ECO) Specifications. Updated max value for SID321, SID353, and SID359. Added "Guaranteed by Design" note for SID354. Updated Ordering Information.				
*C	5034067	WKA	12/03/2015	Updated Conditions for SID85A, SID247A, SID259, SID92, SID417, SID416A Updated typ and max values for SID410. Updated description for SID323. Added "Guaranteed by Characterization" note for SIO AC Specs. Updated Ordering Information.				
*D	5170871	WKA	03/11/2016	Removed VDDA and VDDIO pins in Regulated External Supply section. Updated values for Deep Sleep Mode, Hibernate Mode and Stop Mode in DC Specifications. Added SID299A. Added a note in UDB Port Adaptor Specifications that all specs except TLCLKDO are guaranteed by design. Updated T _{JA} value for the 124-VFBGA package.				
*E	5281150	WKA	05/23/2016	Changed datasheet status to Final. Updated max values for SID6, SID7, SID8, SID9, SID31, SID32, SID34, SID35, SID40, SID41, SID43, and SID44. Updated the template.				
*F	5516529	WKA	11/15/2016	Added CY8C4248BZI-L469 in Ordering Information.				
*G	5559970	WKA	11/20/2016	Updated max values for SID33, SID34, and SID35. Updated SID171.				